地球科学进展 ›› 2015, Vol. 30 ›› Issue (1): 50 -59. doi: 10.11867/j.issn.1001-8166.2015.01.0050

上一篇    下一篇

河流溶解硅的生物地球化学循环研究综述
张乾柱 1( ), 陶贞 1, *( ), 高全洲 1, 2, 马赞文 1   
  1. 1.中山大学地理科学与规划学院, 广东省城市化与地理环境空间模拟重点实验室, 广东 广州510275
    2.广东省地质过程与矿产资源探查重点实验室, 广东 广州 510275
  • 收稿日期:2014-09-30 修回日期:2014-12-18 出版日期:2015-03-05
  • 通讯作者: 陶贞 E-mail:qianzhuzhang@163.com;taozhen@mail.sysu.edu.cn
  • 基金资助:
    国家自然科学基金项目“海南岛典型流域生态系统硅的生物地球化学循环研究”(编号:41340019)和“人类活动干预下的流域地表过程在河流碳循环中的响应”(编号:41071054)资助

A Review of the Biogeochemical Cycles of Dissolved Silicon in Rivers

Qianzhu Zhang 1( ), Zhen Tao 1( ), Quanzhou Gao 1, 2, Zanwen Ma 1   

  1. 1. Geography and Planning School of Sun Yat-Sen University, Guangdong Provincial Key Laboratory for Urbanization and Geo-simulation, Guangzhou 510275, China
    2. Key Laboratory of Mineral Resource & Geological Processes of Guangdong Province, Guangzhou 510275, China
  • Received:2014-09-30 Revised:2014-12-18 Online:2015-03-05 Published:2015-01-20

河流溶解硅(DSi)承载着陆地表生过程的环境信息, 其输入、迁移、转化和输出受多种因素制约。在全球硅酸盐岩风化过程中, 31.53%~64.87%的DSi被陆地植被吸收, 仅12.91%迁移至河流, 在向海洋输送过程中, 河流DSi又受到水生生物吸收、逆风化作用及“人造湖效应”等因素的影响, 输出量进一步减少, 弱化了海洋系统的“生物泵”作用;不多的研究表明全球河流DSi浓度变化介于138~218 μmol/L之间, 空间差异显著, 有必要量化各影响因素的贡献, 建立多因素控制的河流DSi输出通量模型;与地壳主要硅酸盐岩的δ30Si值(约为-0.5‰)相比, 全球河流DSi的δ30Si值变化范围较大(介于-0.2‰~3.4‰之间)且显著正偏, 分馏系数达0.3‰~3.9‰。这是由于流域内Si同位素的无机分馏和有机分馏2种动力分馏过程所导致。因此, 探讨河流DSi来源、迁移及转化机制是未来深入研究河流DSi循环的关键问题。

The riverine dissolved silicon (DSi) brings environmental information on biogeochemical processes of terrestrial surface, of which the input, transferring, transformation and output are influenced by many factors. Among the weathering of global silicate rocks, 31.53%~64.87% of DSi are intercepted by terrestrial vegetation and only about 12.9% are transferred into rivers. During being transported into ocean, riverine DSi gets impacts from aquatic biological absorption, reverse weathering process and artificial lake effect. The quantity of output is further reduced, which weakens the effect of the oceanic biological pump. According to limited data, the DSi concentration of global rivers has a large variation, ranging from 138 μmol/L to 218μmol/L. It is necessary to quantify contribution rates of influencing factors and establish output models controlled by multiple factors. The δ30Si of riverine DSi ranges from -0.2‰ to 3.4‰. Comparing with the δ30Si of silicate rock, which is about -0.5‰, the fractionation factor is significantly partial to positive from 0.3‰ to 3.9‰. That is because of the occurrence of kinetic fractionation process in river basin including inorganic and organic fractionation. Thus, the key problems, sources and transformation mechanisms of riverine DSi during migration and being transported should be solved in future.

中图分类号: 

图1 地球表层DSi的循环
Fig.1 Dissolved silicon cycle of the earth’s surface
表1 全球河流DSi迁移率估算
Table1 Calculation of migration rate of DSi in global rivers
表2 世界部分河流的 δ 30Si
Tab.2 The δ 30Si of several rivers in the world
[1] Hans Wedepohl K.The composition of the continental crust[J]. Geochimica et Cosmochimica Acta, 1995, 59(7): 1 217-1 232.
[2] Epstein E.The anomaly of silicon in plant biology[J]. Proceedings of the National Academy of Sciences, 1994, 91(1): 11-17.
[3] Epstein E.Silicon[J]. Annual review of Plant Biology, 1999, 50(1): 641-664.
[4] Datnoff L E, Snyder G H, Korndrfer G H. Silicon in Agriculture[M].Netherlands: Elsevier Science, 2001.
[5] Gaillardet J, Dupré B, Louvat P, et al. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers[J]. Chemical Geology, 1999, 159(1/4): 3-30.
[6] Garnier J, Beusen A, Thieu V, et al. N∶P∶Si nutrient export ratios and ecological consequences in coastal seas evaluated by the ICEP approach[J]. Global Biogeochemical Cycles, 2010, 24(4), doi: 10.1029/2009GB003583.
[7] Tréguer P, Nelson D M, Van Bennekom A J, et al. The silica balance in the world ocean: A reestimate[J]. Science, 1995, 268(5 209): 375-379.
[8] Alexandre A, Meunier J, Colin F, et al. Plant impact on the biogeochemical cycle of silicon and related weathering processes[J]. Geochimica et Cosmochimica Acta, 1997, 61(3): 677-682.
[9] Norris A R, Hackney C T.Silica content of a mesohaline tidal marsh in North Carolina[J]. Estuarine, Coastal and Shelf Science, 1999, 49(4): 597-605.
[10] Berner R A, Lasaga A C, Garrels R M.The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years[J]. American Journal of Science, 1983, 283(7): 641-683.
[11] Bartoli F.The biogeochemical cycle of silicon in two temperate forest ecosystems[J]. Ecological Bulletins, 1983, 35:469-476.
[12] Sommer M, Kaczorek D, Kuzyakov Y, et al. Silicon pools and fluxes in soils and landscapes—A review[J]. Journal of Plant Nutrition and Soil Science, 2006, 169(3): 310-329.
[13] Conley D J.Terrestrial ecosystems and the global biogeochemical silica cycle[J]. Global Biogeochemical Cycles, 2002, 16(4): 61-68.
[14] Tao Zhen, Zhang Chao, Gao Quanzhou, et al. A review of the biogeochemical cycle of silicon in terrestrial ecosystems[J]. Advances in Earth Science, 2012, 27(7): 725-732.
[陶贞, 张超, 高全洲, 等. 陆地硅的生物地球化学循环研究进展[J]. 地球科学进展, 2012, 27(7): 725-732.]
[15] Froelich P N, Blanc V, Mortlock R A, et al. River fluxes of dissolved silica to the ocean were higher during glacials: Ge/Si in diatoms, rivers, and oceans[J]. Paleoceanography, 1992, 7(6): 739-767.
[16] Bernard C Y, Heinze C, Segschneider J, et al. Contribution of riverine nutrients to the silicon biogeochemistry of the global ocean—A model study[J]. Biogeosciences, 2011, 8(3):551.
[17] Tréguer P J, De La Rocha C L. The world ocean silica cycle[J]. Annual Review of Marine Science, 2013, 5:477-501.
[18] Ran Xiangbin, Yu Zhigang, Zang Jiaye, et al. Advances in the influence of Earth surface process and human activity on silicon output[J]. Advances in Earth Science, 2013, 28(5): 577-587.
[冉祥滨, 于志刚, 臧家业, 等. 地表过程与人类活动对硅产出影响的研究进展[J]. 地球科学进展, 2013, 28(5): 577-587.]
[19] Schelske C L, Stoermer E F, Conley D J, et al. Early eutrophication in the lower great lakes[J]. Science, 1983, 222(4 621): 320-322.
[20] Conley D J, Schelske C L, Stoermer E F.Modification of the biogeochemical cycle of silica with eutrophication[J]. Marine Ecology Progress Series, 1993, 101(1/2): 179-192.
[21] Hartmann J, Levy J, Kempe S.Increasing dissolved silica trends in the Rhine River: An effect of recovery from high P loads?[J]. Limnology, 2011, 12(1): 63-73.
[22] Humborg C, Conley D J, Rahm L, et al. Silicon retention in river basins: Far-reaching effects on biogeochemistry and aquatic food webs in coastal marine environments[J]. AMBIO: A Journal of the Human Environment, 2000, 29(1): 45-50.
[23] Xiangbin R, Zhigang Y, Hongtao C, et al. Silicon and sediment transport of the Changjiang River (Yangtze River): Could the Three Gorges Reservoir be a filter?[J]. Environmental Earth Sciences, 2013, 70(4): 1 881-1 893.
[24] Liu Yingjun.Element Geochemistry[M]. Beijing: Science Press, 1984.
[刘英俊. 元素地球化学[M]. 北京: 科学出版社, 1984.]
[25] Li Rencheng, Fan Jun, Gao Chonghui.Advances in modern phytolith research[J]. Advances in Earth Science, 2013, 28(12): 1 287-1 295.
[李仁成, 樊俊, 高崇辉. 植硅体现代过程研究进展[J]. 地球科学进展, 2013, 28(12): 1 287-1 295.]
[26] Sommer M, Kaczorek D, Kuzyakov Y, et al. Silicon pools and fluxes in soils and landscapes—A review[J]. Journal of Plant Nutrition and Soil Science, 2006, 169(3): 310-329.
[27] Lucas Y, Luizao F J, Chauvel A, et al. The relation between biological activity of the rain forest and mineral composition of soils[J]. Science, 1993, 260(5 107): 521-523.
[28] Meunier J D, Colin F, Alarcon C.Biogenic silica storage in soils[J]. Geology, 1999, 27(9): 835-838.
[29] Georg R B, Reynolds B C, West A J, et al. Silicon isotope variations accompanying basalt weathering in Iceland[J]. Earth and Planetary Science Letters, 2007, 261(3): 476-490.
[30] Hughes H J, Sondag F, Santos R V, et al. The riverine silicon isotope composition of the Amazon Basin[J]. Geochimica et Cosmochimica Acta, 2013, 121:637-651.
[31] Cui Zhijiu, Yang Jianqiang, Chen Yixin.The type and evolution of the granite landforms in China[J]. Acta Geographica Sinica, 2007, 62(7): 675-690.
[崔之久, 杨建强, 陈艺鑫. 中国花岗岩地貌的类型特征与演化[J]. 地理学报, 2007, 62(7): 675-690.]
[32] Siever R.Silica in the oceans: Biological-geochemical interplay[M]//Scientists on Gaia. Cambridge: MZT Press, 1991:287-295.
[33] Maldonado M, Carmona M C, Uriz M J, et al. Decline in Mesozoic reef-building sponges explained by silicon limitation[J]. Nature, 1999, 401(6 755): 785-788.
[34] Harper H E, Knoll A H.Silica, diatoms, and Cenozoic radiolarian evolution[J]. Geology, 1975, 3(4): 175-177.
[35] Conley D J, Kilham S S, Theriot E.Differences in silica content between marine and freshwater diatoms[J]. Limnology and Oceanography, 1989, 34(1): 205-213.
[36] Dürr H H, Meybeck M, Hartmann J, et al. Global spatial distribution of natural riverine silica inputs to the coastal zone[J]. Biogeosciences, 2011, 8(3):597-620.
[37] Conley D J.Riverine contribution of biogenic silica to the oceanic silica budget[J]. Limnology and Oceanography, 1997, 42(4): 774-777.
[38] Gamier J, Billen G, Coste M.Seasonal succession of diatoms and Chlorophyceae in the drainage network of the Seine River: Observations and modeling[J]. Limnology and Oceanography, 1995, 40(4): 750-765.
[39] Admiraal W, Breugem P, Jacobs D, et al. Fixation of dissolved silicate and sedimentation of biogenic silicate in the lower river Rhine during diatom blooms[J]. Biogeochemistry, 1990, 9(2): 175-185.
[40] Fulweiler R W, Nixon S W.Terrestrial vegetation and the seasonal cycleof dissolved silica in a southern New Englandcoastal river[J]. Biogeochemistry, 2005, 74(1): 115-130.
[41] Struyf E, Conley D J.Emerging understanding of the ecosystem silica filter[J]. Biogeochemistry, 2012, 107(1/3): 9-18.
[42] Chen N, Wu Y, Wu J, et al. Natural and human influences on dissolved silica export from watershed to coast in Southeast China[J]. Journal of Geophysical Research: Biogeosciences, 2014, 119(1): 95-109.
[43] Carey J C, Fulweiler R W.Human activities directly alter watershed dissolved silica fluxes[J]. Biogeochemistry, 2012, 111(1/3): 125-138.
[44] Sun C, Shen Z, Liu R, et al. Historical trend of nitrogen and phosphorus loads from the upper Yangtze River Basin and their responses to the Three Gorges Dam[J]. Environmental Science and Pollution Research, 2013, 20(12): 8 871-8 880.
[45] Tallberg P, Räike A, Lukkari K, et al. Horizontal and vertical distribution of biogenic silica in coastal and profundal sediments of the Gulf of Finland (northeastern Baltic Sea)[J]. Boreal Environment Research, 2012, 17(5): 347-362.
[46] Jung S W, Kwon O Y, Yun S M, et al. Impacts of dam discharge on river environments and phytoplankton communities in a regulated river system, the lower Han River of South Korea[J]. Journal of Ecology and Environment, 2014, 37(1):1-11.
[47] Gao Y, Wang B, Liu X, et al. Impacts of river impoundment on the riverine water chemistry composition and their response to chemical weathering rate[J]. Frontiers of Earth Science, 2013, 7(3): 351-360.
[48] Zhu K, Bi Y, Hu Z.Responses of phytoplankton functional groups to the hydrologic regime in the Daning River, a tributary of Three Gorges Reservoir, China[J]. Science of the Total Environment, 2013, 450:169-177.
[49] Domingues R B, Barbosa A B, Galvão H M.River damming leads to decreased phytoplankton biomass and disappearance of cyanobacteria blooms[J]. Estuarine, Coastal and Shelf Science, 2014, 136:129-138.
[50] Cook P L, Aldridge K T, Lamontagne S, et al. Retention of nitrogen, phosphorus and silicon in a large semi-arid riverine lake system[J]. Biogeochemistry, 2010, 99(1/3): 49-63.
[51] Harrison J A, Frings P J, Beusen A H, et al. Global importance, patterns, and controls of dissolved silica retention in lakes and reservoirs[J]. Global Biogeochemical Cycles, 2012, 26(2), doi: 10.1029/2011GB004228.
[52] Humborg C, Pastuszak M, Aigars J, et al. Decreased silica land-sea fluxes through damming in the Baltic Sea catchment-significance of particle trapping and hydrological alterations[J]. Biogeochemistry, 2006, 77(2): 265-281.
[53] Hughes H J, Bouillon S, André L, et al. The effects of weathering variability and anthropogenic pressures upon silicon cycling in an intertropical watershed (Tana River, Kenya)[J]. Chemical Geology, 2012, 308:18-25.
[54] Ran X, Yu Z, Yao Q, et al. Silica retention in the Three Gorges Reservoir[J]. Biogeochemistry, 2013, 112(1/3): 209-228.
[55] Mackenzie F T, Garrels R M.Chemical mass balance between rivers and oceans[J]. American Journal of Science, 1966, 264(7): 507-525.
[56] Garrels R M.Silica: Role in the buffering of natural waters[J]. Science, 1965, 148(3 666): 69.
[57] Michalopoulos P, Aller R C.Rapid clay mineral formation in Amazon delta sediments: Reverse weathering and oceanic elemental cycles[J]. Science, 1995, 270:614-617.
[58] Michalopoulos P, Aller R C.Early diagenesis of biogenic silica in the Amazon delta: Alteration, authigenic clay formation, and storage[J]. Geochimica et Cosmochimica Acta, 2004, 68(5): 1 061-1 085.
[59] Presti M, Michalopoulos P.Estimating the contribution of the authigenic mineral component to the long-term reactive silica accumulation on the western shelf of the Mississippi River Delta[J]. Continental Shelf Research, 2008, 28(6): 823-838.
[60] Humborg C, Smedberg E, Medina M R, et al. Changes in dissolved silicate loads to the Baltic Sea—The effects of lakes and reservoirs[J]. Journal of Marine Systems, 2008, 73(3): 223-235.
[61] Humborg C, Ittekkot V, Cociasu A, et al. Effect of Danube River dam on Black Sea biogeochemistry and ecosystem structure[J]. Nature, 1997, 386(6 623): 385-388.
[62] Jansen N, Hartmann J, Lauerwald R, et al. Dissolved silica mobilization in the conterminous USA[J]. Chemical Geology, 2010, 270(1): 90-109.
[63] Moosdorf N, Hartmann J, Lauerwald R.Changes in dissolved silica mobilization into river systems draining North America until the period 2081-2100[J]. Journal of Geochemical Exploration, 2011, 110(1): 31-39.
[64] Lauerwald R, Hartmann J, Moosdorf N, et al. Retention of dissolved silica within the fluvial system of the conterminous USA[J]. Biogeochemistry, 2013, 112(1/3): 637-659.
[65] Beusen A, Bouwman A F, Dürr H H, et al. Global patterns of dissolved silica export to the coastal zone: Results from a spatially explicit global model[J]. Global Biogeochemical Cycles, 2009, 23(4), doi: 10.1029/2008GB003281.
[66] Clarke F W.The Data of Geochemistry[M]. Washington: US Government Printing Office Nabu Press, 1920.
[67] Livingstone D A.Chemical Composition of Rivers and Lakes[M]. California: The University of California Press, 1963.
[68] Meybeck M.Concentrations des eaux fluviales en elements majeurs et apports en solution aux oceans[J]. Revue de Géologie Dynamique et de Géographie Physique, 1979, 21(3): 215-246.
[69] Meybeck M.Global occurrence of major elements in rivers[J]. Treatise on Geochemistry, 2003, 5:207-223.
[70] Ding Tiping.Research progress of silicon isotope geochemistry[J]. Bulletin of Mineralogy Petrology and Geochemistry, 1990, (2): 99-101.
[丁悌平. 硅同位素地球化学研究进展[J]. 矿物岩石地球化学通报, 1990, (2): 99-101.]
[71] De La Rocha C L, Brzezinski M A, DeNiro M J. A first look at the distribution of the stable isotopes of silicon in natural waters[J]. Geochimica et Cosmochimica Acta, 2000, 64(14): 2 467-2 477.
[72] Ding Tiping.Silicon Isotope Geochemistry[M]. Beijing: Geological Publishing House, 1994.
[丁悌平. 硅同位素地球化学[M]. 北京: 地质出版社, 1994.]
[73] Ziegler K, Chadwick O A, Kelly E F, et al. The delta Si30 values of soil weathering profiles: Indicators of Si pathways at the lithosphere/hydro(bio)sphere interface[J]. Geochimica et Cosmochimica Acta, 2000, 66(15A): A881.
[74] Douthitt C B. The geochemistry of the stable isotopes of silicon[J]. Geochimica et Cosmochimica Acta, 1982, 46(8): 1 449-1 458.
[75] Ding T, Wang C, Zhang F, et al. Silicon isotope fractionation in some surface processes (A study on river water and plants)[J]. Chinese Science Bulletin, 1998, 43:33.
[76] Ding T, Wan D, Wang C, et al. Silicon isotope compositions of dissolved silicon and suspended matter in the Yangtze River, China[J]. Geochimica et Cosmochimica Acta, 2004, 68(2): 205-216.
[77] Ding T P, Ma G R, Shui M X, et al. Silicon isotope study on rice plants from the Zhejiang Province, China[J]. Chemical Geology, 2005, 218(1): 41-50.
[78] Opfergelt S, Cardinal D, Henriet C, et al. Silicon isotopic fractionation by banana (Musa spp.) grown in a continuous nutrient flow device[J]. Plant and Soil, 2006, 285(1/2): 333-345.
[79] Yanhe L, Tiping D, Defang W.Experimental study of silicon isotope dynamic fractionation and its application in geology[J]. Chinese Journal of Geochemistry, 1995, 14(3): 212-219.
[80] De La Rocha C L, Brzezinski M A, DeNiro M J. Fractionation of silicon isotopes by marine diatoms during biogenic silica formation[J]. Geochimica et Cosmochimica Acta, 1997, 61(23): 5 051-5 056.
[81] Varela D E, Pride C J, Brzezinski M A.Biological fractionation of silicon isotopes in Southern Ocean surface waters[J]. Global Biogeochemical Cycles, 2004, 18(1), doi: 10.1029/2003GB002140.
[82] Alleman L Y, Cardinal D, Cocquyt C, et al. Silicon isotopic fractionation in Lake Tanganyika and its main tributaries[J]. Journal of Great Lakes Research, 2005, 31(4): 509-519.
[83] Gao Jianfei, Ding Tiping, Tian Shihong, et al. Silicon isotope compositions of suspended matter in the Yellow River, China and its significance in geological environment[J]. Acta Geologica Sinica, 2011, 85(10): 1 613-1 628.
[高建飞, 丁悌平, 田世洪, 等. 黄河水及其悬浮物硅同位素组成的变化特征及其地质环境意义[J]. 地质学报, 2011, 85(10): 1 613-1 628.]
[84] Hughes H J, Sondag F, Cocquyt C, et al. Effect of seasonal biogenic silica variations on dissolved silicon fluxes and isotopic signatures in the Congo River[J]. Limnology and Oceanography, 2011, 56(2): 551-561.
[85] van Dokkum H P, Hulskotte J H, Kramer K J, et al. Emission, fate and effects of soluble silicates (waterglass) in the aquatic environment[J]. Environmental Science & Technology, 2004, 38(2): 515-521.
[86] Dìrr H H, Meybeck M, Hartmann J, et al. Global spatial distribution of natural riverine silica inputs to the coastal zone[J]. Biogeosciences, 2011, 8(3):597-620.
[87] Lerman A.Wheathering rates and major transport processes an introduction[J]. Physical and Chemical Weathering in Geochemical Cycles, 1988, 251:1-10.
[88] Hurd D C.Physical and chemical properties of siliceous skeletons[M]//Silicon Geochemistry and Biogeochemistry. London: Academic Press, 1983:187-244.
[89] Moulton K L, West J, Berner R A.Solute flux and mineral mass balance approaches to the quantification of plant effects on silicate weathering[J]. American Journal of Science, 2000, 300(7): 539-570.
[1] 常海钦,付亚龙,林鑫,张苗苗,孟刚刚. 流域盆地化学风化强度空间分布及控制因素研究:以长江和珠江为例[J]. 地球科学进展, 2019, 34(1): 93-102.
[2] 安艳玲, 吕婕梅, 罗进, 吴起鑫, 秦立. 赤水河流域岩石化学风化及其对大气CO 2的消耗[J]. 地球科学进展, 2018, 33(2): 179-188.
[3] 陶贞,张超,高全洲,李元. 陆地硅的生物地球化学循环研究进展[J]. 地球科学进展, 2012, 27(7): 725-732.
[4] 曾艳,陈敬安,朱正杰,李键. 湖泊沉积物Rb/Sr比值在古气候/古环境研究中的应用与展望[J]. 地球科学进展, 2011, 26(8): 805-810.
[5] 汪齐连,刘丛强,赵志琦,B.Chetelat,丁虎. 长江流域河水和悬浮物的锂同位素地球化学研究[J]. 地球科学进展, 2008, 23(9): 952-958.
[6] 徐则民,黄润秋,唐正光,费维水. 岩体化学风化的非连续性及其科学意义[J]. 地球科学进展, 2006, 21(7): 706-712.
[7] 韩贵琳;刘丛强. 贵州喀斯特地区河流的研究——碳酸盐岩溶解控制的水文地球化学特征[J]. 地球科学进展, 2005, 20(4): 394-406.
[8] 马英军;霍润科;徐志方;张辉;刘丛强. 化学风化作用中的稀土元素行为及其影响因素[J]. 地球科学进展, 2004, 19(1): 87-094.
[9] 李晶莹,张经. 流域盆地的风化作用与全球气候变化[J]. 地球科学进展, 2002, 17(3): 411-419.
[10] 李春雷,陈 骏,季峻峰. 青藏高原的隆起与海洋锶同位素组成的演化[J]. 地球科学进展, 1999, 14(6): 582-588.
阅读次数
全文


摘要