地球科学进展 ›› 2006, Vol. 21 ›› Issue (7): 706 -712. doi: 10.11867/j.issn.1001-8166.2006.07.0706

学术论文 上一篇    下一篇

岩体化学风化的非连续性及其科学意义
徐则民 1,黄润秋 2,唐正光 1,费维水 1   
  1. 1. 昆明理工大学土木系,云南 昆明 650224;2. 成都理工大学工程地质研究所,四川 成都 610059
  • 收稿日期:2006-01-13 修回日期:2006-05-15 出版日期:2006-07-15
  • 通讯作者: 徐则民 E-mail:zeminxu@vip.km169.net; abc518@kmust.edu.cn
  • 基金资助:

    国家自然科学基金项目“滑坡灾害孕育过程中的水—岩化学作用机理”(编号:40572159);云南省自然科学基金项目“斜坡演化过程中的水—岩交换过程”(编号:2005D0016M)资助.

The Discontinuity of Rockmass Chemical Weathering and Its Scientific Significance

Xu Zemin 1,Huang Runqiu 2,Tang Zhengguang 1,Fei Weishui 1   

  1. 1.Department of Civil Engineering, Kunming University of Science and Technology, Kunming 650224, China;2.Engineering Geology Institute, Chengdu University of Technology, Chengdu 610059, China
  • Received:2006-01-13 Revised:2006-05-15 Online:2006-07-15 Published:2006-07-15

岩体化学风化在空间上具有高度的非连续性,这种非连续性广泛存在于从宏观、细观到微观的所有尺度。宏观结构面是化学风化最主要的发生场所;风化岩体内,新鲜岩块被沿结构面内法线方向发育的腐蚀带包围,呈斑点状分散于腐岩中。微缝等细观损伤普遍存在于各类岩石中;化学风化从岩块内不同空间位置的水力有效空隙向三维空间扩展,决定了细观尺度上化学风化的非连续性。矿物溶解是在晶体中具有过剩表面能的缺陷位置优先发生的,因而具有显著的微观非连续性。由于非连续特性,化学风化可增大水岩界面,提升矿物溶解反应的规模及速率。通过对既有损伤的扩展及在损伤空间堆积残余物,化学风化具有分离—裂化岩体、岩块及造岩矿物的重要作用,这种作用可使以新鲜岩石为主的岩体大规模脱离母岩,而堆积于坡脚的岩石块体在化学风化的继续作用下,可裂解为更小的岩屑或矿物碎屑,为向水体搬运创造条件,从而极大地促进斜坡夷平及地貌重塑进程。

Chemical weathering is highly discontinuous and the discontinuity exists at the macro-scale, meso-scale and micro-scale.Macro-fractures are the main places of chemical weathering occurring. In weathering rockmass fresh rock blocks are surrounded and separated by corrosion zones. Water-rock reaction in Meso-fractures and pores between mineral particles determine the discontinuity of chemical weathering at the meso-scale. Mineral dissolution occurs preferentially in crystal defects and is discontinuous at the micro-scale. Because of discontinuity, chemical weathering can add water-rock interface and raise mineral dissolution rate. By way of spreading existing damages and accumulating weathering residue, discontinuous chemical weathering has the efficiency of separating, cracking rockmass, rock blocks and forming minerals, which may cause the rockmass mainly made up of fresh rock breaking away from the parent rock on a large scale. Chemical weathering affects rock blocks piling up the slope foot and brings them to split smaller rock and mineral debris that can be carried way by surface runoff. So, chemical weathering can promote remarkably slope planation landform evolution course.

中图分类号: 

[1] Wilson M J. Chemical weathering of some primary rock-forming minerals[J]. Soil Science, 1975, 1 199(5): 349-355.

[2] Nesbitt H W, Young G M. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations[J]. Geochimica et Cosmochimica Acta,1984,48(7):1 523-1 534.

[3] Drever J I. The effect of land plants on weathering rates of silicate minerals[J]. Geochimica et Cosmochimica Acta,1994,58(10):2 325-2 332.

[4] Chigira M, Nakamoto M, Nakata E. Weathering mechanisms and their effects on the landsliding of ignimbrite subject to vapor-phase crystallization in the Shirakawa pyroclastic flow, northern Japan[J]. Engineering Geology,2002, 66(1/2): 111-125.

[5] Li Jingying, Zhang Jing. Chemical weathering processes and atmospheric CO2 consumption in the yellow river drainage basin[J]. Marine Geology & Quaternary Geology, 2003, 23(2): 43-49.[李晶莹,张经. 黄河流域化学风化作用与大气CO2的消耗[J].海洋地质与第四纪地质, 2003, 23(2): 43-49.]

[6] Holdren G R J R, Speyer P M. pH dependent changes in the rates and stoichiometry of dissolution of an alkali feldspar at room temperature[J]. American Journal of Science,1985, 285(10): 994-1 026.

[7] Velbel M A. Influence of temperature and mineral surface characteristics on feldspar weathering in natural and artificial systems: A first approximation[J]. Water Resourie Research,1990,26(12): 3 049-3 054.

[8] Wogelius R A, Walther J V. Olivine dissolution at 25: Effects of pH, CO2 and organic acids[J]. Geochimica et Cosmochimica Acta,1991,55(4):943-954.

[9] Casey W H, Sposito G. On the temperature dependence of mineral dissolution rates[J]. Geochimica et Cosmochimica Acta,1992, 56(10):3 825-3 830.

[10] Harrison W J, Thyne G D. Prediction of diagenetic reactions in the presence of organic acids[J]. Geochimica et Cosmochimica Acta,1992, 56(2): 565-586.

[11] Brady P V, Carroll S A. Direct effects of CO2 and temperature on silicate weathering: Possible implications for climate control[J]. Geochimica et Cosmochimica Acta,1994,58(8):1 853-1 856.

[12] Xu Zemin, Huang Runqiu, Tang Zhengguang. Kinetics of silicate mineral dissolution and implications for landslide studies[J]. Chinese Journal of Rock Mechanics and Engineering,2005, 24(9):1 479-1 491.[徐则民, 黄润秋, 唐正光. 硅酸盐矿物溶解动力学及其对滑坡研究的意义[J]. 岩石力学与工程学报, 2005, 24(9):1 479-1 491.]

[13] Jing L. A review of techniques, advances and outstanding issues in numerical modeling for rock mechanics and rock engineering[J]. In ternational Journal of Rock Mechanics & Mining Sciences, 2003, 40(3): 283-353.

[14] Cai Meifeng, He Manchao, Liu Dongyan. Rock Mechanics and Engineering[M]. Beijing: Science Press, 2002: 453.[蔡美峰,何满潮,刘东燕. 岩石力学与工程[M].北京: 科学出版社, 2002: 453.]

[15] Xu Zemin, Huang Runqiu, Tang Zhengguang, et al. Clay minerals and failure of slopes[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(5): 729-740.[徐则民, 黄润秋, 唐正光, . 粘土矿物与斜坡失稳[J].岩石力学与工程学报, 2005, 24(5):729-740.]

[16] LaFleur R G. Geomorphic aspects of groundwater flow[J]. Hydrogeology Journal,1999,7(1): 78-93.

[17] Velbel M A. Geochemical mass balances and weathering rates in forested watersheds of the southern Blue Ridge[J]. American Journal of Science,1985,285(10): 904-930.

[18] Sun Qinghe, He Xi, Li Changlu. The effects of microfractures for development the lowest permeability reservior in water injection[J]. Acta Petrolet Sinica, 2000, 21(4): 52-57.[孙庆和, 何玺, 李长禄.特低渗透储层微缝特征及对注水开发效果得影响[J]. 石油学报,2000, 21(4): 52-57.]

[19] Su Jian. A study on reservoir characteristics of Yanhewan region[J]. Dishentou Youqitian, 2002, 7(1): 13-15.[苏坚. 沿河湾地区浅油层储层特征研究[J].低渗透油气田,2002,7(1):13-15.]

[20] Xiao Luchuan, Zhen Li, Zheng Yan. Non-darcy seepage flow characteristic in ultra-low permeable reservoirs[J]. Petroleum Geology & Oilfield Development in Daqing, 2000,19(5): 27-28, 30.[肖鲁川,甄力,郑岩.特低渗透储层非达西渗流特征研究[J].大庆石油地质与开发, 2000,19(5): 27-28, 30.]

[21] Zhang Li, Yang Yajuan, Yue Leping, et al. Characteristics of micro-fractures and their influence on waterflooding in aershan reservoir,Hanan oilfield[J]. Oil Gas Geology, 2001, 22(2): 158-160,193.[张莉, 杨亚娟, 岳乐平,. 哈南阿尔善油藏微裂缝特征及其对开发的影响[J].石油与天然气地质, 2001, 22(2): 158-160, 193.]

[22] Tian Kaiming. Low permeable media in hydrogeology[J]. Hydrogeology and Engineering Geology, 2000, (2): 27-28.[田开铭.开展对低渗透介质的水文地质学研究[J].水文地质工程地质, 2000, (2): 27-28.]

[23] Schott J, Berner R A, Sjoberg E L. Mechanism of pyroxene and amphibole weathering.. Experimental studies of iron-free minerals[J]. Geochimica et Cosmochimica Acta,1981,45(11):2 123-2 135.

[24] Banfield J F, Barker W W. Direct observation of reactant-product interfaces formed in natural weathering of exsolved defective amphibole to smectite: Evidence for episodic, isovolumetric reaction involving structural inheritance[J]. Geochimica et Cosmochimica Acta,1994, 58(5): 1 419-1 429.

[25] Holdren G R J R, Speyer P M. Reaction-rate surface area relationships for an alkali feldspar during the early stages of weathering,. Initial observations[J]. Geochimica et Cosmochimica Acta,1985,49(3): 675-681.

[26] Holdren G R J R, Speyer P M. Reaction-rate surface area relationships during the early stages of weathering.. Date on eight additional feldspars[J]. Geochimica et Cosmochimica Acta,1987, 51(9):2 311-2 318.

[27] Liu Xiangwen, Chen Jiawei, Bao Zhengyu. The relation between dissolution kinetics of some minerals and crystal defects[J]. Journal of Chinese Electron Microscopy Society,2002, 21(5): 751-752.[刘祥文, 陈家玮, 鲍征宇. 几种矿物溶解热动力学与晶体缺陷的关系[J].电子显微学报,2002,21(5): 751-752.]

[28] Anbeek C. Surface roughness of minerals and implications for dissolution studies[J]. Geochimica et Cosmochimica Acta,1992, 56(4):1 461-1 469.

[29] Helgeson H C, Murphy W M, Aagaard P. Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions.. Rate constant, effective surface area, and the hydrolysis of feldspar[J]. Geochimica et Cosmochimica Acta,1984, 48(12):2 405-2 432.

[1] 张永双, 吴瑞安, 郭长宝, 王立朝, 姚鑫, 杨志华. 古滑坡复活问题研究进展与展望[J]. 地球科学进展, 2018, 33(7): 728-740.
[2] 彭大雷, 许强, 董秀军, 巨袁臻, 亓星, 陶叶青. 无人机低空摄影测量在黄土滑坡调查评估中的应用[J]. 地球科学进展, 2017, 32(3): 319-330.
[3] 刘希林, 庙成, 田春山, 邱锦安. 十年跨度中国滑坡和泥石流灾害风险评价对比分析[J]. 地球科学进展, 2016, 31(9): 926-936.
[4] 范留明, 耿鹏超. 突变理论在边坡工程应用的研究进展[J]. 地球科学进展, 2015, 30(11): 1268-1277.
[5] 徐则民,黄润秋. 山区流域高盖度斜坡对极端降雨事件的地下水响应[J]. 地球科学进展, 2011, 26(6): 598-607.
[6] 吴玮江,叶伟林,孟兴民,王宗礼. 武都汉林沟流域古滑坡年龄的 14C厘定[J]. 地球科学进展, 2011, 26(12): 1276-1281.
[7] 安培浚,李栎,张志强. 国际滑坡、泥石流研究文献计量分析[J]. 地球科学进展, 2011, 26(10): 1116-1124.
[8] 周创兵,李典庆. 暴雨诱发滑坡致灾机理与减灾方法研究进展[J]. 地球科学进展, 2009, 24(5): 477-487.
[9] 许领,戴福初,闵 弘. 黄土滑坡研究现状与设想[J]. 地球科学进展, 2008, 23(3): 236-242.
[10] 张帆宇,刘高,谌文武,梁收运,韩文峰. 基于要素分析和二元统计模型的区域滑坡危险等级制图——以国道212线陇南段为例[J]. 地球科学进展, 2008, 23(10): 1037-1042.
[11] 刘高,邓建丽,梁昌玉. 有限体积法在滑坡滑动过程模拟中的应用[J]. 地球科学进展, 2007, 22(11): 1129-1133.
[12] 黄润秋. 中国西部地区典型岩质滑坡机理研究[J]. 地球科学进展, 2004, 19(3): 443-450.
[13] 许强;黄润秋;李秀珍. 滑坡时间预测预报研究进展[J]. 地球科学进展, 2004, 19(3): 478-483.
[14] 汪华斌,李江风,吴树仁. 滑坡灾害系统非线性研究进展[J]. 地球科学进展, 2000, 15(3): 271-276.
阅读次数
全文


摘要