地球科学进展 ›› 2017, Vol. 32 ›› Issue (3): 319 -330. doi: 10.11867/j.issn.1001-8166.2017.03.0319

上一篇    

无人机低空摄影测量在黄土滑坡调查评估中的应用
彭大雷( ), 许强 *( ), 董秀军, 巨袁臻, 亓星, 陶叶青   
  1. 成都理工大学地质灾害防治与地质环境保护国家重点实验室,四川 成都 610059
  • 收稿日期:2016-10-31 修回日期:2017-01-12 出版日期:2017-03-20
  • 通讯作者: 许强 E-mail:pdlhbsz@126.com;xq@cdut.edu.cn
  • 基金资助:
    国家重点基础研究发展计划项目“黄土重大灾害超前判识、临灾预警与风险控制”(编号:2014CB744703);国家创新研究群体科学基金资助项目“西部地区重大地质灾害潜在隐患早期识别与监测预警”(编号:41521002)资助

Application of Unmanned Aerial Vehicles Low-altitude Photogrammetry in Investigation and Evaluation of Loess Landslide

Dalei Peng( ), Qiang Xu *( ), Xiujun Dong, Yuanzhen Ju, Xing Qi, Yeqing Tao   

  1. State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China
  • Received:2016-10-31 Revised:2017-01-12 Online:2017-03-20 Published:2017-03-20
  • Contact: Qiang Xu E-mail:pdlhbsz@126.com;xq@cdut.edu.cn
  • About author:

    First author:Peng Dalei(1986-), male, Suizhou City, Hubei Province, Ph.D student. Research areas include rock and soil stability and engineering effect.E-mail:pdlhbsz@126.com

  • Supported by:
    Project supported by the State Key Development Program for Basic Research of China “Advanced detection, early warning and risk control for catastrophic loess hazards”(No.2014CB744703);The Funds for Creative Research Groups of China “Early recognition and warning system for potentially catastrophic geohazards in West China”(No.41521002)

无人机低空摄影测量技术是继遥感和三维激光扫面之后,在三维空间数据领域中又一个可用于大面积、高精度和快速获取三维点云数据的技术方法。随着摄影测量算法的改进和商品化发展,目前该项新技术在国内外广泛应用于各个领域,在地质灾害防治领域的应用也处于不断尝试阶段。结合利用无人机低空摄影测量技术调查甘肃黑方台地区黄土滑坡实例,在简要介绍低空摄影测量的基本原理和数据获取方法的基础上,阐述了该技术在区域黄土滑坡调查(面积为36 km2)和单体黄土滑坡调查方面的应用效果。结果表明:在区域滑坡调查方面,可以很好地认识其空间分布规律和发育特征;在单体滑坡方面,通过滑坡前后两期低空摄影测量数据分析,很好地认识滑坡的滑前变形迹象和成灾过程。由此可见,低空摄影测量技术在地质灾害防治领域具有广阔应用前景和一定科研价值。

The new technology of UAVs low-altitude photogrammetry is a new three-dimensional space technology after radar remote sensing and 3D laser scanning. This technology has many advantages in the aspect of acquiring 3D point cloud data, such as large area operation, high-accuracy and capturing 3D geographical information quickly. With the algorithm improvement and commercialization development of low-altitude photogrammetry, this new technology is widely used in various fields in foreign countries. This new technology shows a tendency of rapid development in China, especially in the field of surveying and mapping, but in the geological and geotechnical engineering field is at a tentative stage. Based on briefly introducing the new technology of the basic principle and 3D data acquisition method, combined with an example about loess landslide investigation at Heifangtai tableland in Gansu Province, this paper described the application effect of the new technology in the regional landslide investigation and individual landslide investigation. The results showed as follows: ①We could greatly understand the regional spatial distribution of loess landslide in the regional landslide investigation. ②We learned the development characteristics and disaster process of the landslide by means of analyzing pre-sliding and post-sliding low-altitude photogrammetry datum in individual landslide investigation. Thus, UAVs low-altitude photogrammetry technology has broad prospects and research value in the field of geotechnical engineering and geological engineering application.

中图分类号: 

表1 Microdrones md4-1000四旋翼无人机相关参数
Table 1 Related parameters of Microdrones md4-1000 four rotor UAVs related parameters
图1 无人机摄影测量工作流程
(a)现场调查和基准点静态测量;(b)布设相控点;(c)四旋翼无人机;(d)规划航线;(e)无人机现场采集照片;(f)相控点测量;(g)室内工作流程;(h)空中三角测量;(i)三角纹理立体图
Fig.1 UAV photogrammetry workflow
(a)Site investigation and primary contril points measurement;(b)Layout ground control points; (c)Four rotor UAVs;(d)Planning route;(e)Pictures collection onsite;(f)GCPs measurement;(g)Manipulation data inside;(h)Aerial triangulation;(i)3D triangle texture graph
图2 研究区黑方台的位置
(a) 黑方台在中国地图中的位置(中国DEM图);(b) 黑方台交通区位概图
Fig.2 Position of Heifangtai tableland
(a)Position of study area in China map(DEM map of China); (b) Traffic map of Heifangtai
图3 基于无人机低空摄影测量的黑方台三维影像图
Fig.3 A three-dimensional image of Heifangtai tableland based on UAVs low-altitude altitude photogrammetry
图4 黑方台黄土滑坡发育特征
(a)黑方台黄土滑坡分布规律;(b) 4类滑坡的个数和比例
Fig.4 Development characteristics of loess landslide at Heifangtai tableland
(a) Distribution pattern of loess landslide at Heifangtai tableland; (b) The number and proportion of four types landslides
图5 典型无人机低空摄影测量影像
(a) 典型黄土—基岩型影像;(b) 典型浅层—基岩型影像;(c)典型黄土—泥流型影像;(d)典型静态液化型影像
Fig.5 Typical images of UAVs low-altitude photogrammetry
(a)Typical image of loess-bedrock landslide; (b) Typical image of shallow loess slides; (c) Typical image of loess-flow landslide; (d) Typical image of static liquefaction landslide
表2 黄土滑坡无人机低空摄影测量人工判识方法
Table 2 UAVs low-altitude photogrammetry artificial recognition method for loess landslide
图6 滑坡前后的正摄影像图对比图
(a)滑坡前正射影像图;(b)滑坡后正射影像图;(c)滑后全貌图
Fig.6 The compared of digital orthophoto map from pre-sliding to post-sliding
(a) The digital orthophoto map of the pre-sliding;(b)The digital orthophoto map of the post-sliding;(c) The overview of the post-sliding
图7 党川滑坡2#滑源区前后地貌对比图及党川2#滑坡前后裂缝落水洞的分布
(a) 滑坡前滑源区正射影像图;(b) 滑坡后滑源区正射影像图;(c) 滑坡前滑源区地形图和裂缝土洞分布图;(d)滑坡后滑源区地形图和裂缝土洞分布图
Fig.7 The compared of Digital Orthophoto Map (DOM) and distribution map of cracks & sinkholes at source zone from pre-sliding to post-sliding
(a) DOM of source area of pre-sliding landslide;(b)DOM of source area of post-sliding landslide;(c)Distribution map of cracks and sinkholes of pre-sliding;(d) Distribution map of cracks and sinkholes of post-sliding
图8 无人机低空摄影测量调查分析结果
(a):1.滑坡分区,2.滑坡分区中的子分区,3.滑动方向,4.滑坡分区的代码,5.探孔的位置,6.被毁坏的房屋和工厂,7.居民点;(b):Ⅰ.第一次滑动,Ⅱ-1.第二次滑动的第一轮滑动,Ⅱ-2.第二次滑动的第二轮滑动,Ⅱ-3.第二次滑动的第三轮滑动;A.滑源区,A1.崩滑滑源区,A2.主滑源区,A3.滑塌滑源区;B.堆积区,B 1.流通堆积区,B 2.铲卷堆积区,B 3.挤压堆积区,B 4.二次堆积区,B 5.粉末堆积区
(a)党川2#滑坡工程地质平面图;(b)党川2#滑坡分区图及运动路径;(c)滑坡滑动前后高程差值
Fig.8 Results of UAVs close-range photogrammetry survey
(a) Engineering geological map of Dangchuan 2# landslide;(b) The movement route of dangchuan 2# landslide by orthogonal projection intage;(c) The height difference between pre-sliding and post-sliding
[1] Peng Jianbing, Lin Hongzhou, Wang Qiyao, et al.The critical issues and creative concepts in mitigation research of loess geological hazards[J]. Journal of Engineering Geology,2014, 22(4): 684-691.
[彭建兵,林鸿州,王启耀,等. 黄土地质灾害研究中的关键问题与创新思路[J]. 工程地质学报, 2014, 22(4): 684-691.]
[2] Tang Yaming, Feng Wei, Li Zhengguo.A review of the study of loess slump[J]. Advances in Earth Science,2015, 30(1): 26-36.
[唐亚明,冯卫,李政国. 黄土滑塌研究进展[J]. 地球科学进展, 2015, 30(1): 26-36.]
[3] Zhang Maosheng, Lei Xuewu, Xiao Peixi, et al.Application of remote sensing in detailed survey of geological hazards in Loess Plateau[J]. Northwestern Geology,2007, 40(3): 92-97.
[张茂省,雷学武,校培喜,等. 遥感技术在黄土高原区地质灾害详细调查中的应用[J]. 西北地质, 2007, 40(3): 92-97.]
[4] Jaboyedoff M, Oppikofer T, Abelln A, et al.Use of LIDAR in landslide investigations: A review[J]. Natural Hazards, 2012, 61(1): 5-28.
[5] Huang R Q, Dong X J.Application of three-dimensional laser scanning and surveying in geological investigation of high rock slope[J]. Journal of China University of Geosciences, 2008, 19(2): 184-190.
[6] Zhang Kecun, An Zhishan, Qu Jianjun, et al.Application of 3D laser scanning technology in the evaluation of aeolian sand engineering along the Qinghai-Tibet railway[J]. Advances in Earth Science,2014, 29(10): 1 197-1 203.
[张克存,安志山,屈建军,等. 基于三维激光扫描仪的青藏铁路风沙工程效益评价[J]. 地球科学进展, 2014, 29(10): 1 197-1 203.]
[7] Xue Y T, Meng X M, Guo P, et al.The correlation of spatial distribution between surface deformation and landslides by SBAS-InSAR and spatial analysis in Longnan Region, China[J]. The Open Civil Engineering Journal, 2015, 9(1): 867-876.
[8] Monserrat O, Crosetto M, Luzi G.A review of ground-based SAR interferometry for deformation measurement[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 93(7):40-48.
[9] Westoby M J, Brasington J, Glasser N F, et al.‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications[J]. Geomorphology, 2012, 179:300-314.
[10] Colomina I, Molina P.Unmanned aerial systems for photogrammetry and remote sensing: A review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 92(2):79-97.
[11] Fraser C S, Cronk S.A hybrid measurement approach for close-range photogrammetry[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2009, 64(3): 328-333.
[12] Fernndez-Hernandez J,Gonzlez-Aguilera D,Rodríguez-Gonzlvez P, et al.Image-Based modelling from Unmanned Aerial Vehicle (UAV) Photogrammetry: An effective, low-cost tool for archaeological applications[J]. Archaeometry, 2015, 57(1): 128-145.
[13] Aydin C C.Designing building façades for the urban rebuilt environment with integration of digital close-range photogrammetry and geographical information systems[J]. Automation in Construction, 2014, 43:38-48.
[14] Soni A, Robson S, Gleeson B.Structural monitoring for the rail industry using conventional survey, laser scanning and photogrammetry[J]. Applied Geomatics, 2015, 7(2): 123-138.
[15] Upgupta S, Singh S, Tiwari P S.Estimation of aboveground phytomass of plantations using digital photogrammetry and high resolution remote sensing data[J]. Journal of the Indian Society of Remote Sensing, 2015, 43(2): 311-323.
[16] Neves S M V, Nicolau R A, Filho A L M M, et al. Digital photogrammetry and histomorphometric assessment of the effect of non-coherent light (light-emitting diode) therapy (λ640±20 nm) on the repair of third-degree burns in rats[J]. Lasers in Medical Science, 2014, 29(1): 203-212.
[17] Zhang C S.Mine laneway 3D reconstruction based on photogrammetry[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(Suppl.3):686-691.
[18] Ahmed M, Haas C T, Haas R.Using digital photogrammetry for pipe-works progress tracking[J]. Canadian Journal of Civil Engineering, 2012, 39(9): 1 062-1 071.
[19] Capolupo A, Pindozzi S, Okello C, et al.Photogrammetry for environmental monitoring: The use of drones and hydrological models for detection of soil contaminated by copper[J]. Science of The Total Environment, 2015, 514:298-306.
[20] Lei Xiaotu.Progress of unmanned aerial vehicles and their application to detection of tropical cyclone[J]. Advances in Earth Science,2015, 30(2): 276-283.
[雷小途. 无人飞机在台风探测中的应用进展[J]. 地球科学进展, 2015, 30(2): 276-283.]
[21] Shen H O, Zheng F L, Wen L L, et al.An experimental study of rill erosion and morphology[J]. Geomorphology, 2015, 231:193-201.
[22] Gonçalves J A, Henriques R.UAV photogrammetry for topographic monitoring of coastal areas[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 104:101-111.
[23] Shevchenko A V, Dvigalo V N, Svirid I Y.Airborne photogrammetry and geomorphological analysis of the 2001-2012 exogenous dome growth at Molodoy Shiveluch Volcano, Kamchatka[J]. Journal of Volcanology and Geothermal Research, 2015, 304:94-107.
[24] Lewis A, Hilley G E, Lewicki J L.Integrated thermal infrared imaging and structure-from-motion photogrammetry to map apparent temperature and radiant hydrothermal heat flux at Mammoth Mountain, CA, USA[J]. Journal of Volcanology and Geothermal Research, 2015, 303:16-24.
[25] Kim D H, Gratchev I, Berends J, et al.Calibration of restitution coefficients using rockfall simulations based on 3D photogrammetry model: A case study[J]. Natural Hazards, 2015, 78(3): 1 931-1 946.
[26] Zhang X, Li L, Chen G, et al.A photogrammetry-based method to measure total and local volume changes of unsaturated soils during triaxial testing[J]. Acta Geotechnica, 2015, 10(1): 55-82.
[27] Vasuki Y, Holden E, Kovesi P, et al.Semi-automatic mapping of geological Structures using UAV-based photogrammetric data: An image analysis approach[J]. Computers & Geosciences, 2014, 69:22-32.
[28] Assali P, Grussenmeyer P, Villemin T, et al.Surveying and modeling of rock discontinuities by terrestrial laser scanning and photogrammetry: Semi-automatic approaches for linear outcrop inspection[J]. Journal of Structural Geology, 2014, 66:102-114.
[29] Siebert S, Teizer J.Mobile 3D mapping for surveying earthwork projects using an Unmanned Aerial Vehicle (UAV) system[J]. Automation in Construction, 2014, 41:1-14.
[30] Kim D H, Gratchev I, Balasubramaniam A.Back analysis of a natural jointed rock slope based on the photogrammetry method[J]. Landslides, 2015, 12(1): 147-154.
[31] Curtaz M, Ferrero A M, Roncella R, et al.Terrestrial photogrammetry and numerical modelling for the stability analysis of rock slopes in high mountain areas: Aiguilles Marbrées case[J]. Rock Mechanics and Rock Engineering, 2014, 47(2): 605-620.
[32] Salgueiro P R.Landslide investigation by means of photogrammetry[J]. Photogrammetria, 1965, 20(3): 107-114.
[33] Stumpf A, Malet J P, Allemand P, et al.Ground-based multi-view photogrammetry for the monitoring of landslide deformation and erosion[J]. Geomorphology, 2015, 231:130-145.
[34] Necsoiu M, Mcginnis R N, Hooper D M.New insights on the Salmon Falls Creek Canyon landslide complex based on geomorphological analysis and multitemporal satellite InSAR techniques[J]. Landslides, 2014, 11(6): 1 141-1 153.
[35] Gong Tao.A scheme for distribution of control points in close-range photogrammetry[J]. Journal of Southwest Jiaotong University,1997, 32(3): 98-103.
[龚涛. 近景摄影测量控制点布设方案的研究[J]. 西南交通大学学报, 1997, 32(3): 98-103.]
[36] Wang Zhirong,Wang Nianqin.A summary of present study on loess landslides[J]. Soil and Water Conservation in China,2004, (11): 20-22.
[王志荣,王念秦. 黄土滑坡研究现状综述[J]. 中国水土保持, 2004, (11): 20-22.]
[37] Wu Weijiang,Wang Nianqin.Basic types and active features of loess landslide[J]. The Chinese Journal of Geological Hazard and Control,2002, 13(2): 38-42.
[吴玮江,王念秦. 黄土滑坡的基本类型与活动特征[J]. 中国地质灾害与防治学报, 2002, 13(2): 38-42.]
[38] Xu L, Dai F C, Tu X B, et al.Landslides in a loess platform, North-West China[J]. Landslides, 2014, 11(6): 993-1 005.
[39] Meng X M, Derbyshire E.Landslides and their control in the Chinese Loess Plateau: Models and case studies from Gansu Province, China[J]. Geological Society, London, Engineering Geology Special Publications, 1998, 15(1): 141-153.
[40] Xu Qiang, Peng Dalei, Qi Xing, et al.The Dangchuan 2# landslide of April 29, 2015 in Heifangtai Gansu Province: Characteristics and failure mechanism[J]. Journal of Engineering Geology,2016, 24(2): 167-180.
[许强,彭大雷,亓星,等. 2015年4.29甘肃黑方台党川2#滑坡基本特征与成因机理研究[J]. 工程地质学报, 2016, 24(2): 167-180.]
[1] 孙义博,苏德,全占军,商豪律,耿冰,林兴稳,荆平平,包扬,赵艳华,杨巍. 无人机涡动相关通量观测技术研究综述[J]. 地球科学进展, 2019, 34(8): 842-854.
[2] 白龙, 路紫, 杜欣儒, 郜方. 城市区域(超)低空空域无人机活动通道划设规则与方法[J]. 地球科学进展, 2016, 31(11): 1197-1204.
[3] 李杨,马舒庆,王国荣,孙兆滨. 无人机探测“海鸥”台风中心附近的资料初步分析[J]. 地球科学进展, 2009, 24(6): 675-679.
[4] 许领,戴福初,闵 弘. 黄土滑坡研究现状与设想[J]. 地球科学进展, 2008, 23(3): 236-242.
阅读次数
全文


摘要