地球科学进展 ›› 2016, Vol. 31 ›› Issue (11): 1197 -1204. doi: 10.11867/j.issn.1001-8166.2016.11.1197

上一篇    下一篇

城市区域(超)低空空域无人机活动通道划设规则与方法
白龙 1( ), 路紫 2,,A; *( ), 杜欣儒 1, 郜方 1   
  1. 1.河北师范大学资源与环境科学学院,河北 石家庄 050024
    2.河北师范大学旅游学院,河北 石家庄 050024
  • 收稿日期:2016-07-21 修回日期:2016-10-10 出版日期:2016-11-20
  • 通讯作者: 路紫 E-mail:bailong051234@163.com;luzi1960@126.com
  • 基金资助:
    国家自然科学基金项目“数据通信支持的空域资源配置模型与机制”(编号:41671121)资助

Rules and Methods of UAV Activities’ Aerial Lanes Design for (Ultra) Low Airspace in Regional Areas

Long Bai 1( ), Zi Lu 2, *( ), Xinru Du 1, Fang Gao 1   

  1. 1.School of Resource and Environment Sciences,Hebei Normal University,Shijiazhuang 050024,China
    2.School of Tourism,Hebei Normal University,Shijiazhuang 050024,China
  • Received:2016-07-21 Revised:2016-10-10 Online:2016-11-20 Published:2016-11-20
  • Contact: Zi Lu E-mail:bailong051234@163.com;luzi1960@126.com
  • About author:

    First author:Bai Long (1991-), male, Shijiazhuang City, Hebei Province, Master student. Research areas include regional development.E-mail:bailong051234@163.com

  • Supported by:
    Project supported by the National Natural Science Foundation of China “The model and mechanisms of airspace configuration supported by data communication” (No.41671121)

(超)低空空域已成为空域资源充分开发利用的重要组成部分并得到各国广泛关注,无人机活动是其重要形式并显现出巨大的社会经济前景。首先分析了(超)低空空域资源开发利用的时代背景和城市区域(超)低空空域无人机活动面临的挑战,并综述了国内外无人机活动的法律体系保障和通道划设研究进展;其次归纳总结了城市区域(超)低空空域无人机活动高度—密度规则、覆盖区规则和隔离区规则的存在形式及其优化方案;最后在构建无人机(群)空中网络的基础上,针对不同无人机活动类型对空中通道的需求,展望了从3D城市模型基础方法到最优函数地图方法的演进。研究认为:无人机活动通道划设中既包括高度—密度一般规则,也包括覆盖区、隔离区特殊规则,在3D城市模型基础上应用最优函数地图方法有助于最优活动通道的选择;依据城市区域地面建筑与居民实际情况确立的通道划设规则与方法对于(超)低空空域资源开发以及协调空地矛盾,乃至国家空域系统的实施都具有重要作用。

The exploitation of (ultra) low airspace resource has become an important component of optimizing the utilization of airspace and has received worldwide attention. It is the major form for UAV activity, which reveals great socioeconomic prospects. Firstly, the background of exploiting (ultra) low airspace resource and challenge for UAV activities were analyzed in regional areas. Then, legal rights for UAV activities and routes design in overseas and domestic research were reviewed. Second, the forms of regional rules for UAV activities in (ultra) low airspace were summarized, which included height-density rule, coverage area rule and isolation area of rule. Third, based on the air network of UAV(s) and aiming at the demand of aerial lanes for different requirements, the development from the method of 3D city model to the Cost-to-go was prospected. The findings are as follows: UAV activities’ aerial lanes design includes high-density as general rules and coverage area rule, isolation area rule as special rules. On the basis of 3D city model, improved method of Cost-to-go is applied to the choice of the optimal aerial lanes; based on ground buildings and residents’ actual conditions in regional area, the rules and methods are good for the (ultra) low airspace resources development and better solve the problem of UAV activities coordination. Furthermore, the rules and methods play an important role even in the implementation of the national airspace system.

中图分类号: 

图1 美国不同高度层可能存在的无人机最大密度示意图(据参考文献[13]修改)
Fig.1 Diagram of possibility of maximize UAV in different levels in UAS (modified after reference [13])
图2 空中交通覆盖区划设示意图(据参考文献[14]修改)
Fig.2 Diagram of coverage area of air traffic (modified after reference [14])
图3 美国联邦政府和地方政府划设的孟菲斯城无人机空中交通隔离区示意图
Fig.3 Isolation areas of UAV delimited by federal government and local government in Memphis
图4 城市区域无人机活动3D城市模型障碍栅格图(据参考文献[22]修改)
Fig.4 UAV obstacle raster map based on 3D city model in regional areas (modified after reference [22])
图5 基于最优函数地图方法的无人机活动通道选择示意图(据参考文献[22]修改)
Fig.5 UAV activities’ aerial lanes selection based on the method of cost-to-go model (modified after reference [22])
[1] Lu Zi, Li Zhiyong, Zhang Qiuluan, et al.Introduction to Airspace[M]. Beijing: Higher Education Press, 2016.
[路紫, 李志勇, 张秋娈, 等. 空域学概论[M]. 北京: 高等教育出版社, 2016.]
[2] Lu Zi, Du Xinru.The theoretical sources,innovation of methodologies and practice of the exploitation and utilization of airspace in western countries[J]. Advances in Earth Science, 2015, 30(11): 1 260-1 267.
[路紫, 杜欣儒. 国外空域资源开发利用的理论基础、方法论变革与实践[J]. 地球科学进展, 2015, 30(11): 1 260-1 267.]
[3] Du Xinru, Lu Zi, Gao Fang,et al.Design method, application and time alternetive mechanism of flexible use of airspace[J]. Advances in Earth Science, 2016, 31(6): 643-649.
[杜欣儒, 路紫, 郜方, 等. 灵活空域使用的设计方法与应用及其时间替代机制[J]. 地球科学进展, 2016, 31(6): 643-649.]
[4] Ma Xiaoxiao, Wang Baoshan, Li Changchun,et al.Research on information extraction of unmanned aerial vehicle images SVM with diverse AdaBoost[J]. Geography and Geo-Information Science, 2014, 30(1): 13-17.
[马潇潇, 王宝山, 李长春, 等. 基于Diverse AdaBoost改进SVM算法的无人机影像信息提取[J]. 地理与地理信息科学, 2014, 30(1): 13-17.]
[5] Du Xinru, Lu Zi.The application of ICTs in airspace management and collaborative decision-making—Analyzing the risk avoidance in the condition of risky weather as an example[J].Advances in Earth Science, 2016, 31(3): 269-276.
[杜欣儒, 路紫. 信息通信技术在空域协同管理决策中的应用——以危险天气条件下风险规避分析为例[J]. 地球科学进展, 2016, 31(3): 269-276.]
[6] Lu Zi, Shen Hejiang, Lei Pinghua,et al.Public Management of Aviation[M]. Beijing: Higher Education Press, 2016.
[路紫, 沈和江, 雷平化, 等. 航空公共管理[M]. 北京:高等教育出版社, 2016.]
[7] Lei Xiaotu.Progress of unmanned aerial vehicles and their application to detection of tropical cyclone[J].Advances in Earth Science, 2015, 30(2): 276-283.
[雷小途. 无人飞机在台风探测中的应用进展[J]. 地球科学进展, 2015, 30(2): 276-283.]
[8] Dai Dawei, Long Haiying.Development and application of unmanned aerial vehicle[J].Command Information System and Technology, 2013, 4(4): 7-10.
[戴大伟, 龙海英. 无人机发展与应用[J]. 指挥信息系统与技术, 2013, 4(4): 7-10.]
[9] Karaboga D.An Idea Based on Honey Bee Swarm for Numerical Optimization[R]. Technical Report-tr06, Erciyes University, Engineering Faculty, Computer Engineering Department, 2005.
[10] Clothier R A, Williams B P, Fulton N L.Structuring the safety case for unmanned aircraft system operations in non-segregated airspace[J].Safety Science, 2015, 79(11): 213-228.
[11] Zhang Qirui, Wei Ruixuan, He Renke,et al.Path planning for unmanned aerial vehicle in urban space crowded with irregular obstacles[J]. Control Theory & Applications, 2015, 32(10): 1 407-1 413.
[张启瑞, 魏瑞轩, 何仁珂, 等.城市密集不规则障碍空间无人机航路规划[J]. 控制理论与应用, 2015, 32(10): 1 407-1 413.]
[12] Kim J, Crassidis J L.UAV path planning for maximum visibility of ground targets in an urban area[C]∥Information Fusion (FUSION), 13th Conference on. IEEE, 2010.
[13] Dalamagkidis K, Valavanis K P, Piegl L A.On unmanned aircraft systems issues, challenges and operational restrictions preventing integration into the National Airspace System[J].Progress in Aerospace Sciences, 2008, 44(7): 503-519.
[14] Havan S. Three-Dimensional Spatial Analytics and Modeling is Now SOP for the City of Fort Worth, ARCNEWS(Fall2012)[EB/OL].2016[2016-06-10].
URL    
[15] Chauhan A, Singla M R.A detail review on unmanned aeronautical ad-hoc networks[J].International Journal of Science, Engineering and Technology Research, 2016, 5(5):1 351-1 360.
[16] Yonggang W, Mengmeng F A N. Airworthiness management of Light Sport Aircraft (LSA) in the situation of opening low-altitude airspace[J].Procedia Engineering,2011,17: 369-374,doi:10.1016/j.proeng.2011.10.042.
[17] Li Y, St-Hilaire M, Kunz T.Improving routing in networks of UAVs via scoped flooding and mobility prediction[C]∥Wireless Days (WD), 2012.
[18] Han Z, Swindlehurst A L, Liu K J R. Optimization of MANET connectivity via smart deployment/movement of unmanned air vehicles[J].IEEE Transactions on Vehicular Technology, 2009, 58(7): 3 533-3 546.
[19] Baindur D, Viegas J M.An agent based model concept for assessing modal share in inter-regional freight transport markets[J]. Journal of Transport Geography, 2011, 19(6): 1 093-1 105.
[20] Lenhart D, Hinz S, Leitloff J, et al.Automatic traffic monitoring based on aerial image sequences[J]. Pattern Recognition & Image Analysis, 2008, 18(3): 400-405.
[21] Yang Junyan, Ma Ben.Analysis on measurement and type of urban sky view[J].Planning Studies, 2015, 39(3): 54-58.
[杨俊宴, 马奔. 城市天空可视域的测度技术与类型解析[J]. 城市规划, 2015, 39(3): 54-58.]
[22] Kong Z, Mettler B.Evaluation of guidance performance in urban terrains for different UAV types and performance criteria using spatial CTG maps[J]. Journal of Intelligent & Robotic Systems, 2011, 61(1/4): 135-156.
[1] 周纪,陈云浩,李京,马伟,占文凤. 城市区域热辐射方向性研究进展[J]. 地球科学进展, 2009, 24(5): 497-505.
阅读次数
全文


摘要