地球科学进展 ›› 2009, Vol. 24 ›› Issue (6): 675 -679. doi: 10.11867/j.issn.1001-8166.2009.06.0675

研究简报 上一篇    

无人机探测“海鸥”台风中心附近的资料初步分析
李杨 1,马舒庆 1,王国荣 2,孙兆滨 1   
  1. 1.中国气象局气象探测中心,北京100081;               2.北京市气象台,北京100089
  • 收稿日期:2009-02-10 修回日期:2009-05-12 出版日期:2009-06-10
  • 通讯作者: 李杨 E-mail:liyang@cma.gov.cn
  • 基金资助:

    中国气象局台风专项“全球气候持续变暖背景下台风(飓风)的形势变化及我国应对策略”资助.

Preliminary Analysis of Typhoon “Kalmaegi” Observed by Using Unmanned Aerial Vehicle

Li Yang 1, Ma Shuqing 1, Wang Guorong 2, Sun Zhaobin 1   

  1. 1. Meteorological Observation Centre, CMA, Beijing 100081,China;
    2.Beijing Meteorological Observatory,Beijing 100089,China
  • Received:2009-02-10 Revised:2009-05-12 Online:2009-06-10 Published:2009-06-10

2008年7月18日和19日,在中国大陆首次利用无人机探测手段对台风“海鸥”(0807号)进行了探测,根据19日台风减弱为热带风暴过程中的飞行探测资料,初步分析结果如下:飞行高度500 m,飞行时间近3小时,距离台风中心最近距离约为100 km,获取了探测期间的全部气象要素数据(温度、相对湿度、气压和风速),数据获取率达到90%以上。探测期间内的气压平均值为949.1±9.7 hPa,温度平均值为24.2±1.3℃,探测期间内,无人机基本处于降水云系中,故相对湿度较高,平均值为(88.4±6.1)%。通过对探测数据的初步分析,说明这种小型无人机具有探测台风边界层气象要素的能力。

Observation of typhoon “Kalmaegi”(NO.0807) by using unmanned aerial vehicle (UAV) was carried out on 18 and 19 July, 2008 for the first time in China mainland. According to the UAV-observing data during the weakening process of typhoon to tropical storm on 19 July, 2008, some preliminary analysis was presented in this paper. The preliminary results show that: (1)the UAV′s cruising altitude was about 500 m and the nearest distance to the typhoon centre was about 100 km. All the meteorological elements data (temperature, relative humidity, pressure, wind direction, and wind speed) were obtained during observation period and the data acquisition rate exceeded 90%. (2)The average value of pressure was 949.1±9.7 hPa, and temperature was 24.2±1.3℃. (3)During the observation period, UAV was almost within the precipitation cloud, and the average of relative humidity was about (88.4±6.1)%. The preliminary analysis suggests that this model UAV has the capability to observe the typhoon boundary layer.

中图分类号: 

[1] Cione J J, Black P G, Houston S H. Surface observations in the hurricane environment[J].Monthly Weather Review, 2000, 128:1 550-1 561.
[2] May P T, Holland G J. The role of potential vorticity generation in tropical cyclone rainbands[J].Journal of the Atmospheric Sciences, 1999, 56:1 224-1 228.
[3] http://www.aerosonde.com/html/Products/products.html.
[4] http://www.aerosonde.com/html/Products/product_dev_history.html.
[5] Lin P H , Lee C S. The eyewall-penetration reconnaissance observation of typhoon Longwang (2005) with Unmanned Aerial Vehicle, Aerosonde[J].Journal of Atmospheric and Oceanic Technology,2008,38, doi:10.1175/2007jtecha914.1.
[6] Ma Shuqing,Wang Gai, Pan Yi. Preliminary experiment of sounding system on unmanned aerial vehicle[J]. Journal of Nanjing Institute of Meteorology,1997, 20(2):171-177.[马舒庆, 汪改, 潘毅.微型无人驾驶飞机探空初步试验研究[J]. 南京气象学院学报, 1997, 20(2):171-177.]
[7] Ma Shuqing, Wang Gai, Pan Yi, et al. An analysis method for wind measurements by a mini-aircraft[J]. Chinese Journal of Atmospheric Science,1999,23(3):377-384.[马舒庆,汪改,潘毅,等.微型探空飞机解析测风方法[J]. 大气科学, 1999, 23(3):377-384.]
[8] Ma Shuqing, Zheng Guoguang, Wang Gai,et al. The study of miniature robot aircraft for weather modification[J].Advances in Earth Science,2006, 21(5): 545-550.[马舒庆, 郑国光, 汪改,等.一种人工影响天气微型无人驾驶飞机及初步试验[J]. 地球科学进展, 2006, 21(5):545-550.]
[9] Joseph J C, Peter G B,Samuel H H. Surface observations in the hurricane environment[J].Monthly Weather Review,2000, 128: 1 550-1 561.
[10] Powell M D. Boundary-layer structure and dynamics in outer hurricane rainbands. Part II: Downdraft modification and mixed layer recovery[J].Monthly Weather Review,1990,118:918-938.
[11] Li Yang,Ma Shuqing, Wang Guorong, et al.Time-space characteristics of meteorological elements of Typhoon “Kalmaegi” by using unmanned aerial vehicle[J].Journa of Applied Meteorological Science,2009(in press).[李杨, 马舒庆, 王国荣,等.无人机探测台风“海鸥”的基本气象要素的时空变化特征[J].应用气象学报, 2009,待刊.]

[1] 刘德强,冯杰,丁瑞强,李建平. 台风目标观测研究进展回顾[J]. 地球科学进展, 2021, 36(6): 564-578.
[2] 栾威, 申文斌. 地球内核平动振荡模研究进展[J]. 地球科学进展, 2021, 36(5): 461-471.
[3] 董治宝,吕萍,李超. 火星风沙地貌研究方法[J]. 地球科学进展, 2020, 35(8): 771-788.
[4] 谢彦君, 任福民, 李国平, 王铭杨, 杨慧. 影响中国双台风活动气候特征研究[J]. 地球科学进展, 2020, 35(1): 101-108.
[5] 孙义博,苏德,全占军,商豪律,耿冰,林兴稳,荆平平,包扬,赵艳华,杨巍. 无人机涡动相关通量观测技术研究综述[J]. 地球科学进展, 2019, 34(8): 842-854.
[6] 雷小途,张雪芬,段晚锁,李泓,高志球,钱传海,赵兵科,汤杰. 近海台风立体协同观测科学试验[J]. 地球科学进展, 2019, 34(7): 671-678.
[7] 董治宝,吕萍. 深空探测时代的风沙地貌学[J]. 地球科学进展, 2019, 34(10): 1001-1014.
[8] 刘西川, 高太长, 贺彬晟, 刘磊, 印敏, 宋堃. 智能手机参与大气探测的研究进展与展望 *[J]. 地球科学进展, 2018, 33(12): 1223-1236.
[9] 尹碧文, 任福民, 李国平. 1951—2014年西北太平洋双台风活动气候特征研究[J]. 地球科学进展, 2017, 32(6): 643-650.
[10] 彭大雷, 许强, 董秀军, 巨袁臻, 亓星, 陶叶青. 无人机低空摄影测量在黄土滑坡调查评估中的应用[J]. 地球科学进展, 2017, 32(3): 319-330.
[11] 陈华, 霍也. 台风变性过程中下游环流发展的个例对比研究[J]. 地球科学进展, 2016, 31(4): 409-421.
[12] 白龙, 路紫, 杜欣儒, 郜方. 城市区域(超)低空空域无人机活动通道划设规则与方法[J]. 地球科学进展, 2016, 31(11): 1197-1204.
[13] 端义宏. 登陆台风精细结构的观测、预报与影响评估[J]. 地球科学进展, 2015, 30(8): 847-854.
[14] 雷小途. 无人飞机在台风探测中的应用进展[J]. 地球科学进展, 2015, 30(2): 276-283.
[15] 崔月菊, 李静, 王燕艳, 刘永梅, 陈志, 杜建国. 遥感气体探测技术在地震监测中的应用[J]. 地球科学进展, 2015, 30(2): 284-294.
阅读次数
全文


摘要