地球科学进展 ›› 2019, Vol. 34 ›› Issue (7): 671 -678. doi: 10.11867/j.issn.1001-8166.2019.07.0671

国家重点研发计划项目    下一篇

近海台风立体协同观测科学试验
雷小途 1, 2( ),张雪芬 3,段晚锁 4,李泓 1,高志球 5,钱传海 6,赵兵科 1,汤杰 1   
  1. 1. 中国气象局上海台风研究所,上海 200030
    2. 上海市气象局,上海 200030
    3. 中国气象局气象探测 中心,北京 100081
    4. 中国科学院大气物理研究所,北京 100029
    5. 南京信息工程大学,江苏 南京 210044
    6. 中国气象局国家气象中心,北京 100081
  • 收稿日期:2019-05-06 修回日期:2019-06-10 出版日期:2019-07-10
  • 基金资助:
    国家重点研发计划项目“近海台风立体协同观测科学试验”(2018 YFC1506400)

Experiment on Coordinated Observation of Offshore Typhoon in China

Xiaotu Lei 1, 2( ),Xuefen Zhang 3,Wansuo Duan 4,Hong Li 1,Zhiqiu Gao 5,Chuanhai Qian 6,Bingke Zhao 1,Jie Tang 1   

  1. 1. Shanghai Typhoon Institute, China Meteorological Administration, Shanghai 200030,China
    2. Shanghai Meteorological Service, Shanghai 200030, China
    3. Meteorological Observation Centre, China Meteorological Administration, Beijing 100081, China
    4. The Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
    5. Nanjing University of Information Science & Technology, Nanjing 210044, China
    6. National Meteorological Center,China Meteorological Administration, Beijing 100081, China
  • Received:2019-05-06 Revised:2019-06-10 Online:2019-07-10 Published:2019-07-29
  • Supported by:
    ect supported by the National Key Research and Development Program of China "Experiment on coordinated observation of offshore typhoon in China"(2018YFC1506400)

缺乏足够的台风精细结构的直接观测资料,是当前制约我国台风学科发展和预报能力进一步提升的主要瓶颈。简要介绍了2019年初启动的国家重点研发计划项目“近海台风立体协同观测科学试验”的基本情况,首先围绕国家防台减灾需求说明项目的重要性和必要性,然后从物理机制和预报关键技术研制及改进出发,说明外场协同观测是当前台风学科发展的难点和前沿,接着从台风直接观测平台和设备、外场观测试验及台风模式物理过程参数化改进等方面阐述相关国内外研究进展,最后给出了项目的关键科学技术问题和主要研究内容。

The lack of sufficient direct observation data of typhoon fine structure is the main bottleneck that restricts the further development of typhoon discipline and forecasting. This paper briefly introduced the basic information of the National Key R&D Program of China, entitled “Experiment on Coordinated Observation of Offshore Typhoon in China”, which started in early 2019. Firstly, the importance and necessity of the program around the national needs on typhoon-related disaster reduction and prevention were explained. Then, the coordinated observation difficulties and frontiers in the current typhoon discipline situation from the development and improvement of the physical mechanism and key forecasting technologies were shown. The overview of the direct observation instrument and platform, the field campaign and the parameterization techniques related to physical process in typhoon numerical modeling was provided. Finally, the key scientific and technical issues and main research contents of the program were given.

中图分类号: 

图1 台风多平台协同观测科学试验及其示范应用研究任务示意图
Fig 1 The schematic diagram of typhoon multi-platform collaborative campaign and demonstration research task
1 Lei Xiaotu , Chen Peiyan , Yang Yuhua , et al . Characters and objective assessment of disasters caused by typhoons in China [J]. Acta Meteorologica Sinica, 2009,67(5):875-883.
雷小途,陈佩燕, 杨玉华,等, 中国台风灾情特征及其灾害客观评估方法[J].气象学报, 2009,67(5):875-883.
2 Lei X T , Zhou X . Summary of retired typhoons in the Western North Pacific ocean[J]. Tropical Cyclone Research and Review, 2010,1(1):23-32.
3 Liu J P , Yu J X . The chronicle of events of the ESCAP/WMO Typhoon Committee from 1968 to 2017 [J]. Tropical Cyclone Research and Review, 2018,7(1):65-76.
4 Wu Ying , Chen Peiyan , Lei Xiaotu . A preliminary study on the benefit assessment of track and intensity forecast of landfall tropical cyclones [J]. Journal of Tropical Meteorology, 2017, 33(5):675-682.
吴影, 陈佩燕, 雷小途 .登陆热带气旋路径和强度预报的效益评估初步研究[J]. 热带气象学报, 2017,33(5):675-682.
5 Wang Qian , Qian Chuanhai , Zhang Ling . The characteristics and impact of typhoon activities over western North Pacific and the South China Sea[J]. Journal of Marine Meteorology, 2018, 38(2):1-11.
王皘, 钱传海, 张玲 . 2017年西北太平洋和南海台风活动概述[J]. 海洋气象学报, 2018, 38(2):1-11.
6 Chen G M , Zhang X P , Chen P Y , et al . Performance of tropical cyclone forecast in Western North Pacific in 2016 [J]. Tropical Cyclone Research and Review, 2017, 6(1/2):13-25.
7 Reynolds C A , Peng M S , Chen J H . Recurving tropical cyclones: Singular vector sensitivity and downstream impacts [J]. Monthly Weather Review, 2009,137(4):1 320-1 337.
8 Emanuel K , Zhang F Q . On the predictability and error sources of tropical cyclone intensity forecasts [J]. Journal of the Atmospheric Sciences, 2016,73(9):3 739-3 747.
9 Burpee R W , Franklin J L , Lord S J , et al . The impact of omega dropwindsondes on operational hurricane track forecast models [J]. Bulletin of the American Meteorological Society, 1996,77(5):925-934.
10 Chou K H , Wu C C , Lin P H , et al . The impact of dropwindsonde observations on typhoon track forecasts in DOTSTAR and T-PARC [J]. Monthly Weather Review, 2011,139(6):1 728-1 743.
11 Qian Chuanhai , Li Zechun , Zhang Fuqing , et al . Review on international aircraft reconnaissance of tropical cyclones [J]. Advances in Meteorological Science and Technology, 2012,2(6):6-16.
钱传海, 李泽椿, 张福青,等 .国际热带气旋飞机观测综述[J]. 气象科技进展,2012,2(6):6-16.
12 Langland R H . Observation impact during the North Atlantic TReC-2003 [J]. Monthly Weather Review, 2005, 133(8):2 297-2 309.
13 Wu C C , Chou K H , Lin P H , et al . The impact of dropwindsonde data on typhoon track forecasts in DOTSTAR [J]. Weather and Forecasting, 2007,22(6):1 157-1 176.
14 Lei Xiaotu , Lei Ming , Zhao Bingke , et al . New technology and experiment of rocket dropsondes for typhoon observation [J]. Chinese Science Bulletin, 2017,62(32):3 789-3 796.
雷小途,雷明,赵兵科,等 . 火箭弹下投探测台风气象参数新技术及初步试验[J]. 科学通报,2017,62(32):3 789-3 796.
15 Lei Xiaotu . Progress of unmanned aerial vehicles and their application to detection of tropical cyclone [J]. Advances in Earth Science, 2015, 30(2):276-283.
雷小途 .无人飞机在台风探测中的应用进展[J].地球科学进展,2015,30(2):276-283.
16 Chen Lianshou , Ding Yihui . Introduction to Typhoon over the Western Pacific Ocean [M]. Beijing: Science Press, 1979.
陈联寿, 丁一汇 . 西太平洋台风概论[M].北京:科学出版社,1979.
17 Ma Leiming . Research progress on China typhoon numerical prediction models and associated major techniques [J]. Progress in Geophysics, 2014,29(3):1 013-1 022.
马雷鸣 . 国内台风数值预报模式及其关键技术研究进展[J].地球物理学进展,2014,29(3):1 013-1 022.
18 Rogers R , Aberson S , Aksoy A , et al . NOAA’s hurricane intensity forecasting experiment: A progress report [J]. Bulletin of the American Meteorological Society, 2013,94(6):859-882.
19 Duan Yihong . Monitoring and forecasting of finescale structure and impact assessment of landfalling typhoons [J]. Advances in Earth Science, 2015,30(8):847-854.
端义宏 . 登陆台风精细结构的观测、预报与影响评估[J].地球科学进展,2015,30(8):847-854.
20 Zou X , Xiao Q . Studies on the initialization and simulation of a mature hurricane using a variational bogus data assimilation scheme [J]. Journal of the Atmospheric Sciences, 2000, 57:836-860.
21 Liang X D , Wang B , Chan J C L , et al . Tropical cyclone forecasting with model-constrained 3D-Var I: Description [J]. Quarterly Journal of the Royal Meteorological Society, 2007,133(622):147.
22 Zhang J A , Rogers R F , Nolan D S , et al . On the characteristic height scales of the hurricane boundary layer [J]. Monthly Weather Review, 2011,139(2):522-535.
23 Davolio S , Buzzi A . A nudging scheme for the assimilation of precipitation data into a mesoscale model [J]. Weather and Forecasting, 2004, 19(2):855-871.
24 Orlandi E , Fierli F , Davolio S , et al . A nudging scheme to assimilate satellite brightness temperature in a meteorological model: Impact on representation of African mesoscale convective systems [J]. Quarterly Journal of the Royal Meteorological Society, 2010, 136(2):462-474.
25 Kain J S , Fritsch J M . Convective parameterization for mesoscale models: The Kain-Fritsch scheme:The representation of cumulus convection in numerical models [J]. Meteorological Monographs, 1993,46:165-170.
26 Yu X , Lee T Y . Role of convective parameterization in simulations of a convection band at grey-zone resolutions [J]. Tellus, 2010,62(5):617-632.
27 Moon I J , Ginis I , Hara T . Effect of surface waves on air-sea momentum exchange. Part II: Behavior of drag coefficient under tropical cyclones [J]. Journal of the Atmospheric Sciences, 2004,61:2 334-2 348.
28 Moon I J , Ginis I , Hara T , et al . Physics-based parameterization of air-sea momentum flux at high wind speeds and its impact on hurricane intensity predictions [J]. Monthly Weather Review, 2007,135:2 869-2 878.
29 Ma L M . Research progress on China typhoon numerical prediction models and associated major techniques [J]. Progress in Geophysics, 2014,29(3):1 013-1 022.
[1] 刘德强,冯杰,丁瑞强,李建平. 台风目标观测研究进展回顾[J]. 地球科学进展, 2021, 36(6): 564-578.
[2] 谢彦君, 任福民, 李国平, 王铭杨, 杨慧. 影响中国双台风活动气候特征研究[J]. 地球科学进展, 2020, 35(1): 101-108.
[3] 尹碧文, 任福民, 李国平. 1951—2014年西北太平洋双台风活动气候特征研究[J]. 地球科学进展, 2017, 32(6): 643-650.
[4] 陈华, 霍也. 台风变性过程中下游环流发展的个例对比研究[J]. 地球科学进展, 2016, 31(4): 409-421.
[5] 端义宏. 登陆台风精细结构的观测、预报与影响评估[J]. 地球科学进展, 2015, 30(8): 847-854.
[6] 雷小途. 无人飞机在台风探测中的应用进展[J]. 地球科学进展, 2015, 30(2): 276-283.
[7] 张朝林,宋长青. “复杂构型涡旋移动动力学的研究”研究成果介绍[J]. 地球科学进展, 2013, 28(9): 1062-1063.
[8] 王晨稀. 边界层参数化影响“梅花”台风的敏感性试验[J]. 地球科学进展, 2013, 28(2): 197-208.
[9] 陈大可,雷小途,王伟,王桂华,韩桂军,周磊. 上层海洋对台风的响应和调制机理[J]. 地球科学进展, 2013, 28(10): 1077-1086.
[10] 赵兵科,鲁小琴,万日金,张维. 0608号超强台风“桑美”强度变化位涡诊断分析[J]. 地球科学进展, 2011, 26(5): 528-537.
[11] 詹奕哲,王振会,官莉, 张蕾. 卫星导风在台风路径预报中的应用进展[J]. 地球科学进展, 2011, 26(4): 386-393.
[12] 赵兵科,邵德民,鲁小琴,徐同,翁永元. 多通道地基微波辐射计在0713号“韦帕”台风登陆前后探测性能及特征分析[J]. 地球科学进展, 2009, 24(9): 1001-1008.
[13] 李杨,马舒庆,王国荣,孙兆滨. 无人机探测“海鸥”台风中心附近的资料初步分析[J]. 地球科学进展, 2009, 24(6): 675-679.
[14] 张强,王胜,张杰,王润元,刘宏宜,李岩瑛. 干旱区陆面过程和大气边界层研究进展[J]. 地球科学进展, 2009, 24(11): 1185-1194.
[15] 王东海,钟水新,刘 英,李 俊,胡开喜,杨 帅,张春喜,孙 力,高枞亭. 东北暴雨的研究[J]. 地球科学进展, 2007, 22(6): 549-560.
阅读次数
全文


摘要