地球科学进展 ›› 2019, Vol. 34 ›› Issue (7): 679 -687. doi: 10.11867/j.issn.1001-8166.2019.07.0679

综述与评述 上一篇    下一篇

DRAINMOD模型研究与应用进展
李家科( ),刘周立,张蓓   
  1. 西安理工大学省部共建西北旱区生态水利国家重点实验室,陕西 西安 710048
  • 收稿日期:2019-01-27 修回日期:2019-05-15 出版日期:2019-07-10
  • 基金资助:
    国家自然科学基金项目“黄土地区海绵城市雨水径流集中入渗的影响过程与污染风险研究”(51879215);陕西省重点研发计划重点项目“海绵城市生物滞留技术高效渗滤介质研发及应用机理研究”(2017ZDXM-SF-073)

Research and Application Progress of DRAINMOD Model

Jiake Li( ),Zhouli Liu,Bei Zhang   

  1. State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology,Xi’an 710048, China
  • Received:2019-01-27 Revised:2019-05-15 Online:2019-07-10 Published:2019-07-29
  • About author:Li Jiake (1975-), male, Jinmen City, Hubei Province, Professor. Research areas include non-point source pollution and water resources protection. E-mail: xaut_ljk@163.com
  • Supported by:
    ect supported by the National Natural Science Foundation of China “Study on the influence process and pollution risk of concentrated rainwater infiltration in Sponge City in loess area”(51879215);The Key Research and Development Project of Shaanxi Province “Research on development and application mechanism of high efficiency percolation media for Sponge City bioretention technology”(2017ZDXM-SF-073)

建立有效的水文模型对指导小尺度排水系统设计具有重要意义。从水文特性、氮素运移、盐分运移和模型耦合4个方面总结DRAINMOD模型模拟原理及模型关键参数灵敏度,系统回顾了DRAINMOD模型及其耦合模型的国内外应用进展,并对模型存在的局限性和发展趋势进行探讨。指出DRAINMOD在农田排水、排氮和降渍领域模拟性能良好;在寒冷地区和城市雨洪调控方面的适用性还需要进一步检验和研究。研究认为DRAINMOD模型未来的重点研究方向可以概括为: 模拟磷素、有机微污染物和重金属元素等的运移状况和对土壤、作物的影响; 积雪融雪的机理研究及模型在寒冷地区的应用; 模型在城市雨洪调控设施建设中的应用。

Establishing an effective hydrological model is important for guiding the design of small-scale drainage systems. The simulation principle and the sensitivity of key parameters of DRAINMOD model were summarized from four aspects:Hydrological characteristics, nitrogen transport, salt transport and model cooperation. The research application progresses of DRAINMOD model and its coupled model at home and abroad were systematically reviewed, and the limitations and development trends of the model were discussed. It is pointed out that DRAINMOD model has good simulation performance in the fields of agricultural drainage, nitrogen removal and stain reduction. In the simulation of cold area or urban stormwater regulation, domestic research needs to reference from foreign research results. The research suggests that the key research directions of DRAINMOD model could be summarized as the following aspects: Simulating the migration of phosphorus, organic micro-pollutants and heavy metal elements and their impacts on soil and crops; Mechanism research on the freezing-thawing of snow and application in cold regions; Application in the construction of urban stormwater regulation facilities.

中图分类号: 

图1 DRAINMOD模型水量平衡
Fig.1 Suface and subsurface water balances using DRAINMOD
图2 DRAINMOD主要输入参数
Fig.2 The main input parameters of DRAINMOD
图3 DM-N模型计算运作流程图
Fig.3 A flow diagram of the daily computational process included in the DM-N model
图4 DRAINMOD-NII模型中的氮循环
Fig.4 The nitrogen cycle considered in DRAINMOD-NII
表1 DRAINMOD模型国内外应用进展
Table 1 Application of DRAINMOD Model at home and abroad
研究内容 试验场概况 模拟结果 研究意义

参考

文献

地点 时间 尺度

温湿

状况

植被
设计最优地下排水系统 明尼苏达州沃西卡市 1915—2005年 寒带,干旱区 玉米 “深宽型”排水系统的排水系数高,经济效益好,推荐采用埋深135 cm,间距46 m为研究区最优地下排水系统的布置方式 为设计经济和环境双目标的排水系统提供理论依据 [ 47 ]
土壤耕作方式对水文和氮素淋失的影响 渥太华绿地研究农场 1960—1990年和2015—2095年 寒温带,干旱区 玉米 免耕法较传统耕作法,其地下排水量和氮素淋溶量都稍大,模拟结果显示,随着时间的增长,这种差异会扩大 为农场选择耕作方式提供理论依据 [ 48 ]
排水系统布设对农田降渍的影响 江苏沿海滩涂 1953—2015年 温带,湿润区 棉花 推荐采用埋深120~150 cm,间距15~20 m为研究区最优地下排水系统布置 为沿海滩涂农业排水设计提供理论依据 [ 44 ]
城市化土地利用对降雨径流的影响与调控 西安市主城区 1951—2005年 温带,半湿润区 对城市径流深度的模拟LID措施对连阴雨产生的地表径流削减效果较好,对短历时暴雨的削减作用有限 指导城市建设规划 [ 16 ]
雨水花园运行效果影响因素研究 西安市某高校试验场 1951—2007年 温带,半湿润区 黑眼 苏珊 雨水花园蓄水层深度超过某一临界值后对其滞留效果不再提高;设置内部蓄水区后,排水量下降19.2%,径流削减率可达33.5% 为雨水花园类LID设施建设提供可续依据 [ 18 ]
表2 DRAINMOD耦合模型的应用进展
Table 2 Application of integrated DRAINMOD model at home and abroad
研究内容 试验场概况 模拟结果 研究意义 参考文献
地点 时间 尺度 温湿状况 植被
DM-D模型对农田排水中水文水质特性及作物生长情况的预测研究 爱荷华州 1996—2005年 寒带,湿润区 大豆和玉米 DF-D模型模拟地下排水的年纳什效率系数(Nash-Sutcliffe Efficiency coefficient, NSE)为0.95,硝态氮NSE为0.87以上,作物产量模拟值与观测值的百分误差在8%以下 验证DM-D模型对水文、水质和作物产量模拟的可行性 [ 31 ]
控制排水对地下排水量和氮素淋失量以及作物产量的影响 爱荷华州 2006—2009年 寒带,湿润区 大豆和玉米 DM-D模型在自由排水下对地下排水量和氮素淋溶量的模拟精度较控制排水条件下的高,DM-D模型对玉米和大豆相对产量的预测百分误差分别在1.3%和12.6%以下 评估DM-D模型在控制排水下对排水径流、氮素淋失和作物生长的模拟效果 [ 52 ]
评估DM-F模型对林地水文水质特性及植被生长情况的模拟效果 北卡莱罗纳州 1988—2008年 亚热带,旱区 火炬松 模型精确地预测了排水量和排水中硝态氮含量,NSE均在0.75以上,林区地表及地下有机物时空变化的模拟精度较优 验证DM-F模型对林区水文特性及碳氮运移模拟的可行性 [ 53 ]
评估DM-F模型对林地蒸散量的预测精度 北卡莱罗纳州 2005—2013年 亚热带,旱区 火炬松 对排水速率和地下水位率定后,DM-F模型捕捉到了松林蒸散量控制机制的关键,但低估了非生长季的树冠传导率,且在干旱条件下不能准确模拟出蒸散量的季节性变化 为DM-F模型发展指明方向,如细化植被参数及模型结构 [ 54 ]
1 ChenCheng, LuoWan, TangShuangcheng, et al. Drainage layout in paddy fields meeting machinery harvest requirement based on DRAINMOD model [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(14):86-93.
陈诚,罗纨,唐双成,等. 满足机械收割农艺条件下稻田排水暗管布局DRAINMOD模型模拟[J]. 农业工程学报,2018, 34(14):86-93.
2 PrasherS O, MadaniA, ClementeR S, et al. Evaluation of two water table management models for Atlantic Canada[J]. Agricultural Water Management, 1996, 32(1):49-69.
3 JiaZhonghua, LuoWan, ZhouXiaoxia, et al. Study on hydrological dynamics and formation criteria of wetlands[J]. Journal of Hydraulic Engineering,2004, 35(6):27-32.
贾忠华, 罗纨, 周晓夏,等. 干旱与半干旱地区湿地水文及临界条件的模拟研究[J]. 水利学报, 2004, 35(6):27-32.
4 KalitaP K, WardA D, KanwarR S, et al. Simulation of pesticide concentrations in groundwater using Agricultural Drainage and Pesticide Transport (ADAPT) model 1[J]. Agricultural Water Management, 1998, 36(1):23-44.
5 Darzi-NaftchaliA, MirlatifiS M, ShahnazariA, et al. Effect of subsurface drainage on water balance and water table in poorly drained paddy fields[J]. Agricultural Water Management, 2013, 130(4):61-68.
6 BechtoldI, K?hneS, YoussefM A, et al. Simulating nitrogen leaching and turnover in a subsurface-drained grassland receiving animal manure in Northern Germany using DRAINMOD-N II[J]. Agricultural Water Management, 2007, 93(1):30-44.
7 BreveM A, SkaggsR W, ParsonsJ E, et al. Using the DRAINMOD-N model to study effects of drainage system design and management on crop productivity, profitability and NO3--N losses in drainage water[J]. Agricultural Water Management, 1998, 35(3):227-243.
8 BreveM A, SkaggsR W, GilliamJ W, et al. Field testing of drainmod-N[J]. Transactions of the Asae, 1997, 40(4):1 077-1 085.
9 WangShaoli, PrasherS O, YangChun-chieh, et al. Field evaluation of DRAINMOD-N model for surface runoff subsurface drainage and nitrogen loss [J]. Journal of Hydraulic Engineering,2004, 35(9):111-117.
王少丽, PrasherS O, YangChun-chieh,等. 排水氮运移模型对地表和地下排水量和硝态氮损失的模拟评价[J]. 水利学报, 2004, 35(9):111-117.
10 YoussefM A, SkaggsR W. The nitrogen simulation model, DRAINMOD-N II: Field testing and model application for contrasting soil types and climatological conditions[C]// World Environmental and Water Resources Congress. 2014:1-11.
11 LuoW, SandsG R, YoussefM, et al. Modeling the impact of alternative drainage practices in the northern Corn-belt with DRAINMOD-NII[J]. Agricultural Water Management, 2010, 97(3):389-398.
12 DuXuan, FengHao, HelmersM J, et al. Simulating effects of winter rye cover on subsurface drainage and NO3--N loss based on DRAINMOD-N II [J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(12):153-161.
杜璇, 冯浩,HelmersM J,等. DRAINMOD-NⅡ模拟冬季长期覆盖黑麦对地下排水及NO3--N流失的影响[J]. 农业工程学报, 2017, 33(12):153-161.
13 KandilH M, SkaggsR W, DayemS A, et al. DRAINMOD-S: Water management model for irrigated arid lands, crop yield and applications[J]. Irrigation & Drainage Systems, 1995, 9(3):239-258.
14 LiShan, LuoWan, JiaZhonghua, et al. An analytical model for studying the effect of rainfall on salt leaching under controlled drainage in subhumid irrigation areas [J]. Journal of Hydraulic Engineering, 2015, 46(2):127-137.
李山, 罗纨, 贾忠华,等. 半湿润灌区控制排水条件下降雨洗盐计算模型研究[J]. 水利学报, 2015, 46(2):127-137.
15 ZhangZhanyu, ZhangYuezhen, ZhangJie, et al. Simulating subsurface pipe drainage in saline-alkali farmland along coastlines using the DRAINMOD-S model [J]. Advances in Water Science, 2012, 23(6):782-788.
张展羽, 张月珍, 张洁,等. 基于DRAINMOD-S模型的滨海盐碱地农田暗管排水模拟[J]. 水科学进展, 2012, 23(6):782-788.
16 QuanQuan, LuoWan, ShenBing, et al. Rainfall-runoff reduction measures by land use patterns of Xi’an [J]. Journal of Soil and Water Conservation, 2013,(1):46-50.
权全, 罗纨, 沈冰,等. 城市化土地利用对降雨径流的影响与调控[J]. 水土保持学报, 2013,(1):46-50.
17 BrownR A, SkaggsR W, IiiW F H. Calibration and validation of DRAINMOD to model bioretention hydrology[J]. Journal of Hydrology, 2013, 486:430-442.
18 TangShuangcheng, LuoWan, XuQing, et al. Factors affecting rain garden operation based on DRAINMOD simulations [J]. Advances in Water Science, 2018, 29(3):407-414.
唐双成, 罗纨, 许青,等. 基于DRAINMOD模型的雨水花园运行效果影响因素研究[J]. 水科学进展, 2018, 29(3):407-414.
19 MohammadighavamS, Kl?veB. Evaluation of DRAINMOD 6.1 for hydrological simulations of peat extraction areas in Northern Finland[J]. Journal of Irrigation & Drainage Engineering, 2016, 142(11). DOI:10.1061/(ASE)IR.1943-4774.0001086.
doi: 10.1061/    
20 GreenH, AmptG A. Studies on soil physics Part I—The flow of air and water through soils[J]. Journal of Agricultural Science, 1912, 4(1):1-24.
21 JensenM E, BurmanR D, AllenR G. Evapotranspiration and Irrigation Water Requirements: A Manual[M]. New York:American Society of Civil Engineers, 1990.
22 ThornthwaiteC W. An approach toward a rational classification of climate[J]. Geographical Review, 1948, 38(1):55-94.
23 AmatyaD M, SkaggsR W, GregoryJ D. Comparison of methods for estimating REF-ET[J]. Journal of Irrigation & Drainage Engineering, 1995, 121(6):427-435.
24 BouwerH, SchilfgaardeJ V. Simplified method of predicting fall of water table in drained land[J]. Transactions of the Asae, 1963, 6(4):288-291.
25 SkaggsR W, YoussefM A, ChescheirG M. DRAINMOD: Model use, calibration, and validation[J]. Transactions of the Asabe, 2012, 55(4):1 509-1 522.
26 WangX, FrankenbergerJ R, KladivkoE J. Uncertainties in DRAINMOD predictions of subsurface drain flow for an Indiana silt loam using the GLUE methodology[J]. Hydrological Processes, 2010, 20(14):3 069-3 084.
27 WorkmanS R, SkaqqsR W. Sensitivity of water management models to approaches for determining soil hydraulic properties[J]. Transactions of the Asae, 1994, 37(1):95-102.
28 BrevéM A, SkaggsR W, ParsonsJ E, et al. DRAINMOD-N, a nitrogen model for artificially drained soil[J]. Transactions of the Asae, 1997, 40(4):1 067-1 075.
29 PartonW J, SchimelD S, ColeC V,et al. Analysis of factors controlling soil organic matter levels in great Plains Grasslands[J]. Soil Science Society of America Journal, 1987, 51(5):1 173-1 179.
30 KeyuFa, LeiGuangchun, ZhangYuqing, et al. Carbon exchange process between atmosphere and soil in desert soils[J].Advances in Earth Science, 2018, 33 (5): 464-472.
法科宇, 雷光春, 张宇清, 等. 荒漠地区大气—土壤的碳交换过程[J]. 地球科学进展, 2018, 33 (5): 464-472.
31 NegmL M, YoussefM A, SkaggsR W, et al. DRAINMOD-DSSAT model for simulating hydrology, soil carbon and nitrogen dynamics, and crop growth for drained crop land[J]. Agricultural Water Management, 2014, 137(5):30-45.
32 LiRuihong, HongLin. Characteristics of nitrogen and phosphorus leaching losses from farmland in Zhanghe irrigation district [J]. Engineering Journal of Wuhan University, 2010, 43(5):566-570.
李瑞鸿, 洪林. 漳河灌区农田氮磷淋失特性[J]. 武汉大学学报:工学版, 2010, 43(5):566-570.
33 LeiZhidong, YangShixiu, XieSenchuan. Soil Hydrodynamics [M]. Beijing: Tsinghua University Press,1988.
雷志栋, 杨诗秀,谢森传.土壤水动力学[M]. 北京:清华大学出版社, 1988.
34 FrankenbergerJ R, WangX, AtwoodJ D, et al. Sensitivity analyses of the nitrogen simulation model, DRAINMOD-N II[J]. Transactions of the Asae, 2005, 48(6): 2 205-2 212.
35 SkaggsR W. Field evaluation of a water management simulation model [DRAINMOD: North Carolina][J]. Transactions of the Asae, 1982, 25(3):666-674.
36 SunJianshu, YuMei. Simulation and evaluation of soil salt movement under different irrigation and drainage conditions [J]. Agricultural Research in the Arid Areas, 2011, 29(4):157-163.
孙建书, 余美. 不同灌排模式下土壤盐分动态模拟与评价[J]. 干旱地区农业研究, 2011, 29(4):157-163.
37 YuShuang’en, WangNing, YuZhiheng, et al. Global sensitivity analysis of parameters in DRAINMOD-S [J]. Advances in Water Science, 2015,26(2):271-278.
俞双恩, 王宁, 于智恒,等. DRAINMOD-S模型参数的全局灵敏度分析[J]. 水科学进展, 2015,26(2):271-278.
38 FoussJ L, BengstonR L, CarterC E. Simulating subsurface drainage in the lower Mississippi Valley with DRAINMOD[J]. Transactions of the Asae American Society of Agricultural Engineers, 1987, 30(6):1 679-1 688.
39 WahbaM A S, El-GanainyM, Abdel-DayemM S, et al. Controlled drainage effects on water quality under semi‐arid conditions in the western delta of Egypt[J]. Irrigation & Drainage, 2001, 50(4):295-308.
40 CoxJ W, McfarlaneD J, SkaggsR W. Field-evaluation of DRAINMOD for predicting waterlogging intensity and drain performance in South-Western Australia[J]. Soil Research, 1994, 32(4):653-671.
41 NagareR M, SchincariolR A, QuintonW L, et al. Effects of freezing on soil temperature, frost propagation and moisture redistribution in peat: Laboratory investigations[J]. Hydrology & Earth System Sciences Discussions, 2011, 8:5 387-5 426.
42 GaoXuerui, DongBin, QinDayong, et al. Simulation of drainage process and nitrogen loss in paddy field using DrainMOD [J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(6):52-58.
高学睿, 董斌, 秦大庸,等. 用DrainMOD模型模拟稻田排水与氮素流失[J]. 农业工程学报, 2011, 27(6):52-58.
43 AleS, GowdaP H, MullaD J, et al. Comparison of the performances of DRAINMOD-NII and ADAPT models in simulating nitrate losses from subsurface drainage systems[J]. Agricultural Water Management, 2013, 129:21-30.
44 ChenCheng, LuoWan, JiaZhonghua, et al. Subsurface drainage system layout to meet high assurance rate of waterlogging control in coastal mud-flat farmlands in Jiangsu[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(12):122-129.
陈诚, 罗纨, 贾忠华,等.江苏沿海滩涂农田高降渍保证率暗管排水系统布局[J].农业工程学报, 2017, 33(12):122-129.
45 LongHualou, QuYi, TuShuangshuang, et al. Land use transitions under urbanization and their environmental effects in the farming areas of China:Research progress and prospect[J]. Advances in Earth Science, 2018, 33(5):455-463.
龙花楼,曲艺, 屠爽爽,等.城镇化背景下中国农区土地利用转型及其环境效应研究:进展与展望[J]. 地球科学进展, 2018,33(5):455-463.
46 BrownR A. Evaluation of bioretention hydrology and pollutant removal in the upper coastal plain of North Carolina with development of a Bioretention Modeling application in DRAINMOD[C]//International Workshop on MIDDLEWARE for Grid Computing. ACM, 2011:20.
47 SandsG R, CanelonD, TalbotM. Developing optimum subsurface drainage design procedures[J]. Acta Agriculturae Scandinavica, 2015, 65(Suppl.1):121-127.
48 GolmohammadiG, RudraR P, PrasherS O, et al. Modeling the impacts of tillage practices on water table depth, drain outflow and nitrogen losses using DRAINMOD[J]. Computers & Electronics in Agriculture, 2016, 124(C):73-83.
49 XiaJun, ZuoQiting, HanChunhui. Disciplinary system and development strategy for eco-hydrology[J]. Advances in Earth Science, 2018, 33(7): 665-674.
夏军, 左其亭, 韩春辉. 生态水文学学科体系及学科发展战略[J]. 地球科学进展, 2018, 33(7): 665-674.
50 ZouYinhong, ZhangRunyu, ChenJing’an, et al. Research advance in the application of clay minerals to phosphorus pollution control in eutrophic water bodies and sediments[J]. Advances in Earth Science, 2018, 33(6): 578-589.
邹银洪, 张润宇, 陈敬安, 等. 黏土矿物在富营养化水体和底泥磷污染控制中的应用研究进展[J]. 地球科学进展, 2018, 33(6): 578-589.
51 LandsbergJ J, WaringR H. A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning[J]. Forest Ecology & Management, 1997, 95(3):209-228.
52 NegmL M, YoussefM A, DanB J. Evaluation of DRAINMOD-DSSAT simulated effects of controlled drainage on crop yield, water balance, and water quality for a corn-soybean cropping system in central Iowa[J]. Agricultural Water Management, 2017, 187:57-68.
53 TianS, YoussefM A, SkaggsR W, et al. DRAINMOD-FOREST: Integrated modeling of hydrology, soil carbon and nitrogen dynamics, and plant growth for drained forests[J]. Journal of Environmental Quality, 2012, 41(3):764.
54 TianS, YoussefM A, SunG, et al. Testing DRAINMOD-FOREST for predicting evapotranspiration in a mid-rotation pine plantation[J]. Forest Ecology & Management, 2015, 355(2):37-47.
[1] 刘鹄, 赵文智, 李中恺. 地下水依赖型生态系统生态水文研究进展[J]. 地球科学进展, 2018, 33(7): 741-750.
[2] 洪义国. 硝酸盐氮氧稳定同位素分馏过程记录的海洋氮循环研究进展[J]. 地球科学进展, 2013, 28(7): 751-764.
[3] 夏立忠,卜兆宏,张祖兴,杨林章,杨晓勇,姜小三. 土壤与养分流失综合监测方法在密云水库流域的应用[J]. 地球科学进展, 2007, 22(3): 241-248.
[4] 张国明,顾卫,吴之正,史培军. 渤海湾风暴潮倒灌对沿岸农田土壤盐分的影响[J]. 地球科学进展, 2006, 21(2): 157-160.
[5] 宋长春;张金波;张丽华. 氮素输入影响下淡水湿地碳过程变化[J]. 地球科学进展, 2005, 20(11): 1249-1255.
阅读次数
全文


摘要