[1] |
Stevens V M, Baguette M.Importance of habitat quality and landscape connectivity for the persistence of endangered natterjack toads[J]. Conservation Biology, 2008, 22(5): 1 194-1 204.
doi: 10.1111/cbi.2008.22.issue-5
URL
|
|
Stevens V M, Baguette M.Importance of habitat quality and landscape connectivity for the persistence of endangered natterjack toads[J]. Conservation Biology, 2008, 22(5): 1 194-1 204.
doi: 10.1111/cbi.2008.22.issue-5
URL
|
[2] |
Bertrand G, Goldscheider N, Gobat J M, et al. Review: From multi-scale conceptualization to a classification system for inland groundwater-dependent ecosystems[J]. Hydrogeology Journal, 2012, 20(1): 5-25.
doi: 10.1007/s10040-011-0791-5
URL
|
|
Bertrand G, Goldscheider N, Gobat J M, et al. Review: From multi-scale conceptualization to a classification system for inland groundwater-dependent ecosystems[J]. Hydrogeology Journal, 2012, 20(1): 5-25.
doi: 10.1007/s10040-011-0791-5
URL
|
[3] |
Nath B, Lillicrap A M, Ellis L C, et al. Hydrological and chemical connectivity dynamics in a groundwater-dependent ecosystem impacted by acid sulfate soils[J]. Water Resources Research, 2013, 49(1): 441-457.
doi: 10.1029/2012WR012760
URL
|
|
Nath B, Lillicrap A M, Ellis L C, et al. Hydrological and chemical connectivity dynamics in a groundwater-dependent ecosystem impacted by acid sulfate soils[J]. Water Resources Research, 2013, 49(1): 441-457.
doi: 10.1029/2012WR012760
URL
|
[4] |
Mackay H.Protection and management of groundwater-dependent ecosystems: Emerging challenges and potential approaches for policy and management[J]. Australian Journal of Botany, 2006, 54(2): 231-237.
doi: 10.1071/BT05047
URL
|
|
Mackay H.Protection and management of groundwater-dependent ecosystems: Emerging challenges and potential approaches for policy and management[J]. Australian Journal of Botany, 2006, 54(2): 231-237.
doi: 10.1071/BT05047
URL
|
[5] |
Brand L A, Stromberg J C, Goodrich D C, et al. Projecting avian response to linked changes in groundwater and riparian floodplain vegetation along a dryland river: A scenario analysis[J]. Ecohydrology, 2011, 4(1): 130-142.
doi: 10.1002/eco.v4.1
URL
|
|
Brand L A, Stromberg J C, Goodrich D C, et al. Projecting avian response to linked changes in groundwater and riparian floodplain vegetation along a dryland river: A scenario analysis[J]. Ecohydrology, 2011, 4(1): 130-142.
doi: 10.1002/eco.v4.1
URL
|
[6] |
Orellana F, Verma P, Loheide S P, et al. Monitoring and modeling water-vegetation interactions in groundwater-dependent ecosystems[J]. Reviews of Geophysics, 2012, 50(RG3003): 1-24.
|
|
Orellana F, Verma P, Loheide S P, et al. Monitoring and modeling water-vegetation interactions in groundwater-dependent ecosystems[J]. Reviews of Geophysics, 2012, 50(RG3003): 1-24.
|
[7] |
Merritt D M, Bateman H L.Linking stream flow and groundwater to avian habitat in a desert riparian system[J]. Ecological Applications, 2012, 22(7): 1 973-1 988.
doi: 10.2307/41723108
URL
pmid: 23210313
|
|
Merritt D M, Bateman H L.Linking stream flow and groundwater to avian habitat in a desert riparian system[J]. Ecological Applications, 2012, 22(7): 1 973-1 988.
doi: 10.2307/41723108
URL
pmid: 23210313
|
[8] |
Vest K R, Elmore A J, Kaste J M, et al. Estimating total horizontal aeolian flux within shrub-invaded groundwater-dependent meadows using empirical and mechanistic models[J]. Journal of Geophysical Research-Earth Surface, 2013, 118(2): 1 132-1 146.
doi: 10.1002/jgrf.20048
URL
|
|
Vest K R, Elmore A J, Kaste J M, et al. Estimating total horizontal aeolian flux within shrub-invaded groundwater-dependent meadows using empirical and mechanistic models[J]. Journal of Geophysical Research-Earth Surface, 2013, 118(2): 1 132-1 146.
doi: 10.1002/jgrf.20048
URL
|
[9] |
Meinzer O E. The Occurrence of Ground Water in the United States: With A Discussion of Principles[R]. Washington DC:U.S. Government Printing office, 1923.
|
|
Meinzer O E. The Occurrence of Ground Water in the United States: With A Discussion of Principles[R]. Washington DC:U.S. Government Printing office, 1923.
|
[10] |
Lewis J.The application of ecohydrological groundwater indicators to hydrogeological conceptual models[J]. Ground Water, 2012, 50(5): 679-689.
doi: 10.1111/j.1745-6584.2011.00899.x
URL
pmid: 22150517
|
|
Lewis J.The application of ecohydrological groundwater indicators to hydrogeological conceptual models[J]. Ground Water, 2012, 50(5): 679-689.
doi: 10.1111/j.1745-6584.2011.00899.x
URL
pmid: 22150517
|
[11] |
Sommer B, Froend R.Resilience of phreatophytic vegetation to groundwater drawdown: Is recovery possible under a drying climate?[J]. Ecohydrology, 2011, 4(1): 67-82.
doi: 10.1002/eco.v4.1
URL
|
|
Sommer B, Froend R.Resilience of phreatophytic vegetation to groundwater drawdown: Is recovery possible under a drying climate?[J]. Ecohydrology, 2011, 4(1): 67-82.
doi: 10.1002/eco.v4.1
URL
|
[12] |
Krause S, Hannah D M, Sadler J P, et al. Ecohydrology on the edge: Interactions across the interfaces of wetland, riparian and groundwater-based ecosystems Preface[J]. Ecohydrology, 2011, 4(4): 477-480.
doi: 10.1002/eco.240
URL
|
|
Krause S, Hannah D M, Sadler J P, et al. Ecohydrology on the edge: Interactions across the interfaces of wetland, riparian and groundwater-based ecosystems Preface[J]. Ecohydrology, 2011, 4(4): 477-480.
doi: 10.1002/eco.240
URL
|
[13] |
Yuan Xingzhong, Luo Guyuan.A brief review for ecological studies on hyporheic zone of stream ecosystem[J]. Acta Ecologica Sinica, 2003, 23(5): 956-964.
doi: 10.3321/j.issn:1000-0933.2003.05.017
URL
|
|
Yuan Xingzhong, Luo Guyuan.A brief review for ecological studies on hyporheic zone of stream ecosystem[J]. Acta Ecologica Sinica, 2003, 23(5): 956-964.
|
|
[袁兴中, 罗固源. 溪流生态系统潜流带生态学研究概述[J]. 生态学报, 2003, 23(5): 956-964.]
doi: 10.3321/j.issn:1000-0933.2003.05.017
URL
|
|
[袁兴中, 罗固源. 溪流生态系统潜流带生态学研究概述[J]. 生态学报, 2003, 23(5): 956-964.]
doi: 10.3321/j.issn:1000-0933.2003.05.017
URL
|
[14] |
Lü J, Wang X S, Zhou Y, et al. Groundwater-dependent distribution of vegetation in Hailiutu River catchment, a semi-arid region in China[J]. Ecohydrology, 2013, 6(1): 142-149.
doi: 10.1002/eco.v6.1
URL
|
|
Lü J, Wang X S, Zhou Y, et al. Groundwater-dependent distribution of vegetation in Hailiutu River catchment, a semi-arid region in China[J]. Ecohydrology, 2013, 6(1): 142-149.
doi: 10.1002/eco.v6.1
URL
|
[15] |
Munch Z, Conrad J.Remote sensing and GIS based determination of groundwater dependent ecosystems in the Western Cape, South Africa[J]. Hydrogeology Journal, 2007, 15(1): 19-28.
doi: 10.1007/s10040-006-0125-1
URL
|
|
Munch Z, Conrad J.Remote sensing and GIS based determination of groundwater dependent ecosystems in the Western Cape, South Africa[J]. Hydrogeology Journal, 2007, 15(1): 19-28.
doi: 10.1007/s10040-006-0125-1
URL
|
[16] |
Meinzer O E.Plants as indicators of ground water[J]. Journal of the Washington Academy of Science, 1926, 16(21): 553-564.
doi: 10.1086/623671
URL
|
|
Meinzer O E.Plants as indicators of ground water[J]. Journal of the Washington Academy of Science, 1926, 16(21): 553-564.
doi: 10.1086/623671
URL
|
[17] |
Zhu J, Yu J, Wang P, et al. Interpreting the groundwater attributes influencing the distribution patterns of groundwater-dependent vegetation in northwestern China[J]. Ecohydrology, 2012, 5(5): 628-636.
doi: 10.1002/eco.249
URL
|
|
Zhu J, Yu J, Wang P, et al. Interpreting the groundwater attributes influencing the distribution patterns of groundwater-dependent vegetation in northwestern China[J]. Ecohydrology, 2012, 5(5): 628-636.
doi: 10.1002/eco.249
URL
|
[18] |
Jin Xiaomei.Quantitative relationship between the desert vegetation and groundwater depth in Ejina Oasis, the Heihe River Basin[J]. Earth Science Frontiers, 2010, 17(6): 181-186.
URL
|
|
Jin Xiaomei.Quantitative relationship between the desert vegetation and groundwater depth in Ejina Oasis, the Heihe River Basin[J]. Earth Science Frontiers, 2010, 17(6): 181-186.
|
|
[金晓媚. 黑河下游额济纳绿洲荒漠植被与地下水位埋深的定量关系[J]. 地学前缘, 2010,17(6):181-186.]
URL
|
|
[金晓媚. 黑河下游额济纳绿洲荒漠植被与地下水位埋深的定量关系[J]. 地学前缘, 2010,17(6):181-186.]
URL
|
[19] |
Chen Weitao, Sun Ziyong, Wang Yanxin, et al. Major scientific issures on water demand studying for groundwater dependent vegetation ecosystems in inland arid regions[J]. Earth Science — Journal of China University of Geosciences, 2014(9):1 340-1 348.
|
|
Chen Weitao, Sun Ziyong, Wang Yanxin, et al. Major scientific issures on water demand studying for groundwater dependent vegetation ecosystems in inland arid regions[J]. Earth Science — Journal of China University of Geosciences, 2014(9):1 340-1 348.
|
|
[陈伟涛, 孙自永, 王焰新,等. 论内陆干旱区依赖地下水的植被生态需水量研究关键科学问题[J]. 地球科学——中国地质大学学报, 2014(9):1 340-1 348.]
|
|
[陈伟涛, 孙自永, 王焰新,等. 论内陆干旱区依赖地下水的植被生态需水量研究关键科学问题[J]. 地球科学——中国地质大学学报, 2014(9):1 340-1 348.]
|
[20] |
Wang P, Zhang Y, Yu J, et al. Vegetation dynamics induced by groundwater fluctuations in the lower Heihe River Basin, Northwestern China[J]. Journal of Plant Ecology, 2011, 4(1/2): 77-90.
doi: 10.1093/jpe/rtr002
URL
|
|
Wang P, Zhang Y, Yu J, et al. Vegetation dynamics induced by groundwater fluctuations in the lower Heihe River Basin, Northwestern China[J]. Journal of Plant Ecology, 2011, 4(1/2): 77-90.
doi: 10.1093/jpe/rtr002
URL
|
[21] |
Rhymes J, Wallace H, Fenner N, et al. Evidence for sensitivity of dune wetlands to groundwater nutrients[J]. The Science of the Total Environment, 2014, 490: 106-113.
doi: 10.1016/j.scitotenv.2014.04.029
URL
pmid: 24846404
|
|
Rhymes J, Wallace H, Fenner N, et al. Evidence for sensitivity of dune wetlands to groundwater nutrients[J]. The Science of the Total Environment, 2014, 490: 106-113.
doi: 10.1016/j.scitotenv.2014.04.029
URL
pmid: 24846404
|
[22] |
Peters J. Ecohydrology of wetlands: Monitoring and Modelling Interactions between Groundwater, Soil and Vegetation[D]. Ghent, Belgium:Ghent University, 2008.
|
|
Peters J. Ecohydrology of wetlands: Monitoring and Modelling Interactions between Groundwater, Soil and Vegetation[D]. Ghent, Belgium:Ghent University, 2008.
|
[23] |
Baattrup-Pedersen A, Hoffmann C C, Audet J, et al. Groundwater nitrogen and the distribution of groundwater-dependent vegetation in riparian areas in agricultural catchments[J]. Ecological Engineering, 2014, 66(1): 111-119.
doi: 10.1016/j.ecoleng.2013.07.047
URL
|
|
Baattrup-Pedersen A, Hoffmann C C, Audet J, et al. Groundwater nitrogen and the distribution of groundwater-dependent vegetation in riparian areas in agricultural catchments[J]. Ecological Engineering, 2014, 66(1): 111-119.
doi: 10.1016/j.ecoleng.2013.07.047
URL
|
[24] |
Howard J, Merrifield M.Mapping groundwater dependent ecosystems in California[J]. PLoS ONE, 2010, 5(6): e11249.
doi: 10.1371/journal.pone.0011249
URL
pmid: 20585640
|
|
Howard J, Merrifield M.Mapping groundwater dependent ecosystems in California[J]. PLoS ONE, 2010, 5(6): e11249.
doi: 10.1371/journal.pone.0011249
URL
pmid: 20585640
|
[25] |
Peters J, De Baets B, Samson R, et al. Modelling groundwater-dependent vegetation patterns using ensemble learning[J]. Hydrology & Earth System Sciences, 2008, 12(2): 603-613.
doi: 10.5194/hess-12-603-2008
URL
|
|
Peters J, De Baets B, Samson R, et al. Modelling groundwater-dependent vegetation patterns using ensemble learning[J]. Hydrology & Earth System Sciences, 2008, 12(2): 603-613.
doi: 10.5194/hess-12-603-2008
URL
|
[26] |
Eamus D, Froend R.Groundwater-dependent ecosystems: The where, what and why of GDEs[J]. Australian Journal of Botany, 2006, 54(2): 91-96.
doi: 10.1071/BT06029
URL
|
|
Eamus D, Froend R.Groundwater-dependent ecosystems: The where, what and why of GDEs[J]. Australian Journal of Botany, 2006, 54(2): 91-96.
doi: 10.1071/BT06029
URL
|
[27] |
Lv J, Wang X S, Zhou Y, et al. Groundwater-dependent distribution of vegetation in Hailiutu River catchment, a semi-arid region in China[J]. Ecohydrology, 2013, 6(1): 142-149.
doi: 10.1002/eco.v6.1
URL
|
|
Lv J, Wang X S, Zhou Y, et al. Groundwater-dependent distribution of vegetation in Hailiutu River catchment, a semi-arid region in China[J]. Ecohydrology, 2013, 6(1): 142-149.
doi: 10.1002/eco.v6.1
URL
|
[28] |
Eamus D, Froend R, Loomes R, et al. A functional methodology for determining the groundwater regime needed to maintain the health of groundwater-dependent vegetation[J]. Australian Journal of Botany, 2006, 54(2): 97-114.
doi: 10.1071/BT05031
URL
|
|
Eamus D, Froend R, Loomes R, et al. A functional methodology for determining the groundwater regime needed to maintain the health of groundwater-dependent vegetation[J]. Australian Journal of Botany, 2006, 54(2): 97-114.
doi: 10.1071/BT05031
URL
|
[29] |
Naumburg E, Mata-Gonzalez R, Hunter R G, et al. Phreatophytic vegetation and groundwater fluctuations: A review of current research and application of ecosystem response modeling with an emphasis on Great Basin vegetation[J]. Environmental Management, 2005, 35(6): 726-740.
doi: 10.1007/s00267-004-0194-7
URL
|
|
Naumburg E, Mata-Gonzalez R, Hunter R G, et al. Phreatophytic vegetation and groundwater fluctuations: A review of current research and application of ecosystem response modeling with an emphasis on Great Basin vegetation[J]. Environmental Management, 2005, 35(6): 726-740.
doi: 10.1007/s00267-004-0194-7
URL
|
[30] |
Zencich S J, Froend R H, Turner J V, et al. Influence of groundwater depth on the seasonal sources of water accessed by Banksia tree species on a shallow, sandy coastal aquifer[J]. Oecologia, 2002, 131(1): 8-19.
doi: 10.1007/s00442-001-0855-7
URL
|
|
Zencich S J, Froend R H, Turner J V, et al. Influence of groundwater depth on the seasonal sources of water accessed by Banksia tree species on a shallow, sandy coastal aquifer[J]. Oecologia, 2002, 131(1): 8-19.
doi: 10.1007/s00442-001-0855-7
URL
|
[31] |
Miller G R, Chen X Y, Rubin Y, et al. Groundwater uptake by woody vegetation in a semiarid oak savanna[J]. Water Resources Research, 2010, 46(10): 2 290-2 296.
doi: 10.1029/2009WR008902
URL
|
|
Miller G R, Chen X Y, Rubin Y, et al. Groundwater uptake by woody vegetation in a semiarid oak savanna[J]. Water Resources Research, 2010, 46(10): 2 290-2 296.
doi: 10.1029/2009WR008902
URL
|
[32] |
Vervoort R W, Van Der Zee S. Simulating the effect of capillary flux on the soil water balance in a stochastic ecohydrological framework[J]. Water Resources Research, 2008, 44(8): W08425.DOI:10.1029/2008WR06889.
|
|
Vervoort R W, Van Der Zee S. Simulating the effect of capillary flux on the soil water balance in a stochastic ecohydrological framework[J]. Water Resources Research, 2008, 44(8): W08425.DOI:10.1029/2008WR06889.
|
[33] |
Teuling A J, Hupet F, Troch P A, et al. Climate variability effects on spatial soil moisture dynamics[J]. Geophysical Research Letters, 2007, 34(6): 125-141.
doi: 10.1029/2006GL029080
URL
|
|
Teuling A J, Hupet F, Troch P A, et al. Climate variability effects on spatial soil moisture dynamics[J]. Geophysical Research Letters, 2007, 34(6): 125-141.
doi: 10.1029/2006GL029080
URL
|
[34] |
Zhuang L, Chen Y N.Physiological responses of three contrasting plant species to groundwater level changes in an arid environment[J]. Journal of Integrative Plant Biology, 2006, 48(5): 520-526.
doi: 10.1111/jipb.2006.48.issue-5
URL
|
|
Zhuang L, Chen Y N.Physiological responses of three contrasting plant species to groundwater level changes in an arid environment[J]. Journal of Integrative Plant Biology, 2006, 48(5): 520-526.
doi: 10.1111/jipb.2006.48.issue-5
URL
|
[35] |
Li J, Yu B, Zhao C, et al. Physiological and morphological responses of Tamarix ramosissima and Populus euphratica to altered groundwater availability[J]. Tree Physiology, 2013, 33(1): 57-68.
doi: 10.1093/treephys/tps120
URL
|
|
Li J, Yu B, Zhao C, et al. Physiological and morphological responses of Tamarix ramosissima and Populus euphratica to altered groundwater availability[J]. Tree Physiology, 2013, 33(1): 57-68.
doi: 10.1093/treephys/tps120
URL
|
[36] |
Shi Z, Cheng R, Liu S, et al. Carbon assimilation, 13C and water relations of Elaeagnus angustifolia grown at two groundwater depths in the Minqin desert, China[J]. Plant Biosystems, 2008, 142(3): 525-532.
doi: 10.1080/11263500802410876
URL
|
|
Shi Z, Cheng R, Liu S, et al. Carbon assimilation, 13C and water relations of Elaeagnus angustifolia grown at two groundwater depths in the Minqin desert, China[J]. Plant Biosystems, 2008, 142(3): 525-532.
doi: 10.1080/11263500802410876
URL
|
[37] |
Chen Yaning, Chen Yapeng, Li Weihong, et al. Response of ABA content of Populus euphratica to groundwater depth changes in lower Tarim River[J]. Chinese Science Bulletin, 2003, 48(9): 958-961.
|
|
Chen Yaning, Chen Yapeng, Li Weihong, et al. Response of ABA content of Populus euphratica to groundwater depth changes in lower Tarim River[J]. Chinese Science Bulletin, 2003, 48(9): 958-961.
|
|
[陈亚宁, 陈亚鹏, 李卫红,等. 塔里木河下游胡杨脯氨酸累积对地下水位变化的响应[J]. 科学通报, 2003, 48(9): 958-961.]
|
|
[陈亚宁, 陈亚鹏, 李卫红,等. 塔里木河下游胡杨脯氨酸累积对地下水位变化的响应[J]. 科学通报, 2003, 48(9): 958-961.]
|
[38] |
Zhang Pei, Yuan Guofu, Zhuang Wei, et al. Ecophysiological responses and adaptation of Tamarix ramosissima to changes in groundwater depth in the Heihe River Basin[J]. Acta Ecologica Sinica, 2011, 31(22): 6 677-6 687.
URL
|
|
Zhang Pei, Yuan Guofu, Zhuang Wei, et al. Ecophysiological responses and adaptation of Tamarix ramosissima to changes in groundwater depth in the Heihe River Basin[J]. Acta Ecologica Sinica, 2011, 31(22): 6 677-6 687.
|
|
[张佩, 袁国富, 庄伟, 等. 黑河中游荒漠绿洲过渡带多枝柽柳对地下水位变化的生理生态响应与适应[J]. 生态学报, 2011, 31(22): 6 677-6 687.]
URL
|
|
[张佩, 袁国富, 庄伟, 等. 黑河中游荒漠绿洲过渡带多枝柽柳对地下水位变化的生理生态响应与适应[J]. 生态学报, 2011, 31(22): 6 677-6 687.]
URL
|
[39] |
Horton J L, Kolb T E, Hart S C.Physiological response to groundwater depth varies among species and with river flow Regulation[J]. Ecological Applications, 2001, 11(4): 1 046-1 059.
doi: 10.2307/3061011
URL
|
|
Horton J L, Kolb T E, Hart S C.Physiological response to groundwater depth varies among species and with river flow Regulation[J]. Ecological Applications, 2001, 11(4): 1 046-1 059.
doi: 10.2307/3061011
URL
|
[40] |
Li Jianguo, Wang Wenchao, Pu Lijie, et al. Coastal reclamation and saltmarsh carbon budget: Advances and prospects[J]. Advances in Earth Science, 2017, 32(6): 599-614.
doi: 10.11867/j.issn.1001-8166.2017.06.0599
URL
|
|
Li Jianguo, Wang Wenchao, Pu Lijie, et al. Coastal reclamation and saltmarsh carbon budget: Advances and prospects[J]. Advances in Earth Science, 2017, 32(6): 599-614.
|
|
[李建国, 王文超, 濮励杰, 等. 滩涂围垦对盐沼湿地碳收支的影响研究进展[J]. 地球科学进展, 2017, 32(6): 599-614.]
doi: 10.11867/j.issn.1001-8166.2017.06.0599
URL
|
|
[李建国, 王文超, 濮励杰, 等. 滩涂围垦对盐沼湿地碳收支的影响研究进展[J]. 地球科学进展, 2017, 32(6): 599-614.]
doi: 10.11867/j.issn.1001-8166.2017.06.0599
URL
|
[41] |
Luan Junwei, Cui Lijuan, Song Hongtao, et al. Foreign research progress on carbon cycle in wetland ecosystems[J]. Wetland Science, 2012, 10(2): 235-242.
|
|
Luan Junwei, Cui Lijuan, Song Hongtao, et al. Foreign research progress on carbon cycle in wetland ecosystems[J]. Wetland Science, 2012, 10(2): 235-242.
|
|
[栾军伟, 崔丽娟, 宋洪涛, 等. 国外湿地生态系统碳循环研究进展[J]. 湿地科学, 2012, 10(2): 235-242.]
|
|
[栾军伟, 崔丽娟, 宋洪涛, 等. 国外湿地生态系统碳循环研究进展[J]. 湿地科学, 2012, 10(2): 235-242.]
|
[42] |
Zhang Y, Li C, Trettin C C, ,et al. An integrated model of soil. An integrated model of soil, hydrology, vegetation for carbon dynamics in wetland ecosystems[J]. Global Biogeochemical Cycles, 2002, 16(4): 9-1-9-17.
|
|
Zhang Y, Li C, Trettin C C, ,et al. An integrated model of soil. An integrated model of soil, hydrology, vegetation for carbon dynamics in wetland ecosystems[J]. Global Biogeochemical Cycles, 2002, 16(4): 9-1-9-17.
|
[43] |
Frolking S, Roulet N T, Moore T R, et al. Modeling northern peatland decomposition and peat accumulation[J]. Ecosystems, 2001, 4(5): 479-498.
doi: 10.1007/s10021-001-0105-1
URL
|
|
Frolking S, Roulet N T, Moore T R, et al. Modeling northern peatland decomposition and peat accumulation[J]. Ecosystems, 2001, 4(5): 479-498.
doi: 10.1007/s10021-001-0105-1
URL
|
[44] |
An Peijun, Zhang Zhiqiang, Wang Liwei.Review of Earth critical zone research[J]. Advances in Earth Science, 2016, 31(12): 1 228-1 234.
doi: 10.11867/j.issn.1001-8166.2016.12.1228
URL
|
|
An Peijun, Zhang Zhiqiang, Wang Liwei.Review of Earth critical zone research[J]. Advances in Earth Science, 2016, 31(12): 1 228-1 234.
|
|
[安培浚, 张志强, 王立伟. 地球关键带的研究进展[J].地球科学进展, 2016, 31(12): 1 228-1 234.]
doi: 10.11867/j.issn.1001-8166.2016.12.1228
URL
|
|
[安培浚, 张志强, 王立伟. 地球关键带的研究进展[J].地球科学进展, 2016, 31(12): 1 228-1 234.]
doi: 10.11867/j.issn.1001-8166.2016.12.1228
URL
|
[45] |
Zhao Wenzhi, Zhou Hong, Liu Hu.Advances in moisture migration in vadose zone of dryland and recharge effects on groundwater dynamics[J]. Advances in Earth Science, 2017, 32(9): 899-909.
doi: 10.11867/j.issn.1001-8166.2017.09.0908
URL
|
|
Zhao Wenzhi, Zhou Hong, Liu Hu.Advances in moisture migration in vadose zone of dryland and recharge effects on groundwater dynamics[J]. Advances in Earth Science, 2017, 32(9): 899-909.
|
|
[赵文智, 周宏, 刘鹄.干旱区包气带土壤水分运移及其对地下水补给研究进展[J]. 地球科学进展, 2017, 32(9): 899-909.]
doi: 10.11867/j.issn.1001-8166.2017.09.0908
URL
|
|
[赵文智, 周宏, 刘鹄.干旱区包气带土壤水分运移及其对地下水补给研究进展[J]. 地球科学进展, 2017, 32(9): 899-909.]
doi: 10.11867/j.issn.1001-8166.2017.09.0908
URL
|
[46] |
Chen Yaning, Li Weihong, Xu Hailiang, et al. The influence of groundwater on vegetation in the lower reaches of Tarim River, China[J]. Acta Geographica Sinica, 2003, 58(4): 542-549.
|
|
Chen Yaning, Li Weihong, Xu Hailiang, et al. The influence of groundwater on vegetation in the lower reaches of Tarim River, China[J]. Acta Geographica Sinica, 2003, 58(4): 542-549.
|
|
[陈亚宁, 李卫红, 徐海量,等. 塔里木河下游地下水位对植被的影响[J]. 地理学报, 2003, 58(4):542-549.]
|
|
[陈亚宁, 李卫红, 徐海量,等. 塔里木河下游地下水位对植被的影响[J]. 地理学报, 2003, 58(4):542-549.]
|
[47] |
Zhao Wenzhi, Liu Hu.Recent advances in desert vegetation response to groundwater table changes[J]. Acta Ecologica Sinica, 2006, 26(8): 2 703-2 708.
doi: 10.3321/j.issn:1000-0933.2006.08.037
URL
|
|
Zhao Wenzhi, Liu Hu.Recent advances in desert vegetation response to groundwater table changes[J]. Acta Ecologica Sinica, 2006, 26(8): 2 703-2 708.
|
|
[赵文智, 刘鹄. 荒漠区植被对地下水埋深响应研究进展[J]. 生态学报, 2006, 26(8): 2 703-2 708].
doi: 10.3321/j.issn:1000-0933.2006.08.037
URL
|
|
[赵文智, 刘鹄. 荒漠区植被对地下水埋深响应研究进展[J]. 生态学报, 2006, 26(8): 2 703-2 708].
doi: 10.3321/j.issn:1000-0933.2006.08.037
URL
|
[48] |
Dwire K A, Kauffman J B, Baham J E.Plant species distribution in relation to water-table depth and soil redox potential in montane riparian meadows[J]. Wetlands, 2006, 26(1): 131-146.
doi: 10.1672/0277-5212(2006)26[131:PSDIRT]2.0.CO;2
URL
|
|
Dwire K A, Kauffman J B, Baham J E.Plant species distribution in relation to water-table depth and soil redox potential in montane riparian meadows[J]. Wetlands, 2006, 26(1): 131-146.
doi: 10.1672/0277-5212(2006)26[131:PSDIRT]2.0.CO;2
URL
|
[49] |
Famiglietti J S.The global groundwater crisis[J]. Nature Climate Change, 2014, 4(11): 945.
doi: 10.1038/nclimate2425
URL
|
|
Famiglietti J S.The global groundwater crisis[J]. Nature Climate Change, 2014, 4(11): 945.
doi: 10.1038/nclimate2425
URL
|
[50] |
Guderle M, Hildebrandt A.Using measured soil water contents to estimate evapotranspiration and root water uptake profiles—A comparative study[J]. Hydrology & Earth System Sciences, 2015, 19(1): 409-425.
|
|
Guderle M, Hildebrandt A.Using measured soil water contents to estimate evapotranspiration and root water uptake profiles—A comparative study[J]. Hydrology & Earth System Sciences, 2015, 19(1): 409-425.
|
[51] |
Rahgozar M, Shah N, Ross M.Estimation of evapotranspiration and water budget components using concurrent soil moisture and water table monitoring[J]. Isrn Soil Science, 2012, (1/4): 119-142.
|
|
Rahgozar M, Shah N, Ross M.Estimation of evapotranspiration and water budget components using concurrent soil moisture and water table monitoring[J]. Isrn Soil Science, 2012, (1/4): 119-142.
|
[52] |
Liu H, Lin H.Frequency and control of subsurface preferential flow: From pedon to catchment scales[J]. Soil Science Society of America Journal, 2015, 79(2): 362.
doi: 10.2136/sssaj2014.08.0330
URL
|
|
Liu H, Lin H.Frequency and control of subsurface preferential flow: From pedon to catchment scales[J]. Soil Science Society of America Journal, 2015, 79(2): 362.
doi: 10.2136/sssaj2014.08.0330
URL
|
[53] |
Turkeltaub T, Kurtzman D, Dahan O.Real-time monitoring of nitrate transport in the deep vadose zone under a crop field-implications for groundwater protection[J]. Hydrology & Earth System Sciences Discussions, 2016, 20(8): 3 099-3 108.
|
|
Turkeltaub T, Kurtzman D, Dahan O.Real-time monitoring of nitrate transport in the deep vadose zone under a crop field-implications for groundwater protection[J]. Hydrology & Earth System Sciences Discussions, 2016, 20(8): 3 099-3 108.
|
[54] |
Jin Rui, Li Xin, Yan Baoping, et al. Introduction of eco’hydrological wireless sensor network in the Heihe River Basin[J]. Advances in Earth Science, 2012, 27(9): 993-1 005.
doi: 10.11867/j.issn.1001-8166.2012.09.0993
URL
|
|
Jin Rui, Li Xin, Yan Baoping, et al. Introduction of eco’hydrological wireless sensor network in the Heihe River Basin[J]. Advances in Earth Science, 2012, 27(9): 993-1 005.
|
|
[晋锐, 李新, 阎保平,等. 黑河流域生态水文传感器网络设计[J]. 地球科学进展, 2012, 27(9):993-1 005.]
doi: 10.11867/j.issn.1001-8166.2012.09.0993
URL
|
|
[晋锐, 李新, 阎保平,等. 黑河流域生态水文传感器网络设计[J]. 地球科学进展, 2012, 27(9):993-1 005.]
doi: 10.11867/j.issn.1001-8166.2012.09.0993
URL
|
[55] |
Schelde K, Ringgaard R, Herbst M, et al. Comparing evapotranspiration rates estimated from atmospheric flux and TDR soil moisture measurements[J]. Vadose Zone Journal, 2011, 10(1): 78-83.
doi: 10.2136/vzj2010.0060
URL
|
|
Schelde K, Ringgaard R, Herbst M, et al. Comparing evapotranspiration rates estimated from atmospheric flux and TDR soil moisture measurements[J]. Vadose Zone Journal, 2011, 10(1): 78-83.
doi: 10.2136/vzj2010.0060
URL
|
[56] |
Shah N, Ross M, Trout K.Using soil moisture data to estimate evapotranspiration and development of a physically based root water uptake model[M]//Evapotranspiration-Remote Sensing and Modeling. InTech, 2012.DOI:10.5772/18040.
|
|
Shah N, Ross M, Trout K.Using soil moisture data to estimate evapotranspiration and development of a physically based root water uptake model[M]//Evapotranspiration-Remote Sensing and Modeling. InTech, 2012.DOI:10.5772/18040.
|
[57] |
Mould D, Frahm E, Salzmann T, et al. Evaluating the use of diurnal groundwater fluctuations for estimating evapotranspiration in wetland environments: Case studies in southeast England and northeast Germany[J]. Ecohydrology, 2010, 3(3): 294-305.
doi: 10.1002/eco.v3:3
URL
|
|
Mould D, Frahm E, Salzmann T, et al. Evaluating the use of diurnal groundwater fluctuations for estimating evapotranspiration in wetland environments: Case studies in southeast England and northeast Germany[J]. Ecohydrology, 2010, 3(3): 294-305.
doi: 10.1002/eco.v3:3
URL
|
[58] |
Mazur M L C, Wiley M J, Wilcox D A. Estimating evapotranspiration and groundwater flow from water-table fluctuations for a general wetland scenario[J]. Ecohydrology, 2014, 7(2): 378-390.
doi: 10.1002/eco.v7.2
URL
|
|
Mazur M L C, Wiley M J, Wilcox D A. Estimating evapotranspiration and groundwater flow from water-table fluctuations for a general wetland scenario[J]. Ecohydrology, 2014, 7(2): 378-390.
doi: 10.1002/eco.v7.2
URL
|
[59] |
Jobbagy E G, Nosetto M D, Villagra P E, et al. Water subsidies from mountains to deserts: Their role in sustaining groundwater-fed oases in a sandy landscape[J]. Ecological Applications, 2011, 21(3): 678-694.
doi: 10.1890/09-1427.1
URL
|
|
Jobbagy E G, Nosetto M D, Villagra P E, et al. Water subsidies from mountains to deserts: Their role in sustaining groundwater-fed oases in a sandy landscape[J]. Ecological Applications, 2011, 21(3): 678-694.
doi: 10.1890/09-1427.1
URL
|
[60] |
Chen X, Zhang Z C, Zhang X N, et al. Estimation of groundwater recharge from precipitation and evapotranspiration by lysimeter measurement and soil moisture model[J]. Journal of Hydrologic Engineering, 2008, 13(5): 333-340.
doi: 10.1061/(ASCE)1084-0699(2008)13:5(333)
URL
|
|
Chen X, Zhang Z C, Zhang X N, et al. Estimation of groundwater recharge from precipitation and evapotranspiration by lysimeter measurement and soil moisture model[J]. Journal of Hydrologic Engineering, 2008, 13(5): 333-340.
doi: 10.1061/(ASCE)1084-0699(2008)13:5(333)
URL
|
[61] |
Brooksbank K, Veneklaas E J, White D A, et al. The fate of hydraulically redistributed water in a semi-arid zone eucalyptus species[J]. Tree Physiology, 2011, 31(6): 649-658.
doi: 10.1093/treephys/tpr052
URL
pmid: 21743058
|
|
Brooksbank K, Veneklaas E J, White D A, et al. The fate of hydraulically redistributed water in a semi-arid zone eucalyptus species[J]. Tree Physiology, 2011, 31(6): 649-658.
doi: 10.1093/treephys/tpr052
URL
pmid: 21743058
|
[62] |
Baird K J, Stromberg J C, Maddock T.Linking riparian dynamics and groundwater: An ecohydrologic approach to modeling groundwater and riparian vegetation[J]. Environmental Management, 2005, 36(4): 551-564.
doi: 10.1007/s00267-004-0181-z
URL
|
|
Baird K J, Stromberg J C, Maddock T.Linking riparian dynamics and groundwater: An ecohydrologic approach to modeling groundwater and riparian vegetation[J]. Environmental Management, 2005, 36(4): 551-564.
doi: 10.1007/s00267-004-0181-z
URL
|
[63] |
Jiménez-Martínez J, Candela L, Molinero J, et al. Groundwater recharge in irrigated semi-arid areas: Quantitative hydrological modelling and sensitivity analysis[J]. Hydrogeology Journal, 2010, 18(8): 1 811-1 824.
doi: 10.1007/s10040-010-0658-1
URL
|
|
Jiménez-Martínez J, Candela L, Molinero J, et al. Groundwater recharge in irrigated semi-arid areas: Quantitative hydrological modelling and sensitivity analysis[J]. Hydrogeology Journal, 2010, 18(8): 1 811-1 824.
doi: 10.1007/s10040-010-0658-1
URL
|
[64] |
Ajami H, Meixner T, Maddock T, et al. Impact of land-surface elevation and riparian evapotranspiration seasonality on groundwater budget in MODFLOW models[J]. Hydrogeology Journal, 2011, 19(6): 1 181-1 188.
doi: 10.1007/s10040-011-0743-0
URL
|
|
Ajami H, Meixner T, Maddock T, et al. Impact of land-surface elevation and riparian evapotranspiration seasonality on groundwater budget in MODFLOW models[J]. Hydrogeology Journal, 2011, 19(6): 1 181-1 188.
doi: 10.1007/s10040-011-0743-0
URL
|
[65] |
Soylu M E, Istanbulluoglu E, Lenters J D, et al. Quantifying the impact of groundwater depth on evapotranspiration in a semi-arid grassland region[J]. Hydrology & Earth System Sciences, 2011, 15(3): 787-806.
|
|
Soylu M E, Istanbulluoglu E, Lenters J D, et al. Quantifying the impact of groundwater depth on evapotranspiration in a semi-arid grassland region[J]. Hydrology & Earth System Sciences, 2011, 15(3): 787-806.
|
[66] |
Vervoort R W, van der Zee S E. Stochastic soil water dynamics of phreatophyte vegetation with dimorphic root systems[J]. Water Resources Research, 2009, 45(10): W10439.DOI.10.1029/2008WR007245.
doi: 10.1029/2010WR009373
URL
|
|
Vervoort R W, van der Zee S E. Stochastic soil water dynamics of phreatophyte vegetation with dimorphic root systems[J]. Water Resources Research, 2009, 45(10): W10439.DOI.10.1029/2008WR007245.
doi: 10.1029/2010WR009373
URL
|
[67] |
Kelly B F J, Timms W A, Andersen M S, et al. Aquifer heterogeneity and response time: The challenge for groundwater management[J]. Crop & Pasture Science, 2013, 64(11/12): 1 141-1 154.
doi: 10.1071/CP13084
URL
|
|
Kelly B F J, Timms W A, Andersen M S, et al. Aquifer heterogeneity and response time: The challenge for groundwater management[J]. Crop & Pasture Science, 2013, 64(11/12): 1 141-1 154.
doi: 10.1071/CP13084
URL
|
[68] |
Yuce G.The vulnerability of groundwater dependent ecosystems: A study on the Porsuk River Basin (Turkey) as a typical example[M]//Baba A, Howard K W F, Gunduz O, eds. Groundwater and Ecosystems. Netherland: Springer, 2006: 295-310.
|
|
Yuce G.The vulnerability of groundwater dependent ecosystems: A study on the Porsuk River Basin (Turkey) as a typical example[M]//Baba A, Howard K W F, Gunduz O, eds. Groundwater and Ecosystems. Netherland: Springer, 2006: 295-310.
|
[69] |
Lamontagne S, Taylor A R, Cook P G, et al. Field assessment of surface water-groundwater connectivity in a semi-arid river basin (Murray-Darling, Australia)[J]. Hydrological Processes, 2014, 28(4): 1 561-1 572.
doi: 10.1002/hyp.9691
URL
|
|
Lamontagne S, Taylor A R, Cook P G, et al. Field assessment of surface water-groundwater connectivity in a semi-arid river basin (Murray-Darling, Australia)[J]. Hydrological Processes, 2014, 28(4): 1 561-1 572.
doi: 10.1002/hyp.9691
URL
|
[70] |
Kaplan D, Munoz-Carpena R.Complementary effects of surface water and groundwater on soil moisture dynamics in a degraded coastal floodplain forest[J]. Journal of Hydrology, 2011, 398(3/4): 221-234.
doi: 10.1016/j.jhydrol.2010.12.019
URL
|
|
Kaplan D, Munoz-Carpena R.Complementary effects of surface water and groundwater on soil moisture dynamics in a degraded coastal floodplain forest[J]. Journal of Hydrology, 2011, 398(3/4): 221-234.
doi: 10.1016/j.jhydrol.2010.12.019
URL
|
[71] |
Smith J W N, Bonell M, Gibert J, et al. Groundwater-surface water interactions, nutrient fluxes and ecological response in river corridors: Translating science into effective environmental management[J]. Hydrological Processes, 2008, 22(1): 151-157.
doi: 10.1002/(ISSN)1099-1085
URL
|
|
Smith J W N, Bonell M, Gibert J, et al. Groundwater-surface water interactions, nutrient fluxes and ecological response in river corridors: Translating science into effective environmental management[J]. Hydrological Processes, 2008, 22(1): 151-157.
doi: 10.1002/(ISSN)1099-1085
URL
|
[72] |
Aguilera H, Casta?o S, Moreno L, et al. Model of hydrological behaviour of the anthropized semiarid wetland of Las Tablas de Daimiel National Park (Spain) based on surface water-groundwater interactions[J]. Hydrogeology Journal, 2013, 21(3): 623-641.
doi: 10.1007/s10040-012-0950-3
URL
|
|
Aguilera H, Castaño S, Moreno L, et al. Model of hydrological behaviour of the anthropized semiarid wetland of Las Tablas de Daimiel National Park (Spain) based on surface water-groundwater interactions[J]. Hydrogeology Journal, 2013, 21(3): 623-641.
doi: 10.1007/s10040-012-0950-3
URL
|
[73] |
Gu Hongbiao, Chi Baoming, Wang He, et al. Relationship between surface water and groundwater in the Liujiang Basin—Hydrochemical constrains[J]. Advances in Earth Science, 2017, 32(8): 789-799.
doi: 10.11867/j.issn.1001-8166.2017.08.0789
URL
|
|
Gu Hongbiao, Chi Baoming, Wang He, et al. Relationship between surface water and groundwater in the Liujiang Basin—Hydrochemical constrains[J]. Advances in Earth Science, 2017, 32(8): 789-799.
|
|
[谷洪彪, 迟宝明, 王贺, 等. 柳江盆地地表水与地下水转化关系的氢氧稳定同位素和水化学证据[J]. 地球科学进展, 2017, 32(8): 789-799.]
doi: 10.11867/j.issn.1001-8166.2017.08.0789
URL
|
|
[谷洪彪, 迟宝明, 王贺, 等. 柳江盆地地表水与地下水转化关系的氢氧稳定同位素和水化学证据[J]. 地球科学进展, 2017, 32(8): 789-799.]
doi: 10.11867/j.issn.1001-8166.2017.08.0789
URL
|
[74] |
Huang T, Pang Z.Estimating groundwater recharge following land-use change using chloride mass balance of soil profiles: A case study at Guyuan and Xifeng in the Loess Plateau of China[J]. Hydrogeology Journal, 2011, 19(1): 177-186.
doi: 10.1007/s10040-010-0643-8
URL
|
|
Huang T, Pang Z.Estimating groundwater recharge following land-use change using chloride mass balance of soil profiles: A case study at Guyuan and Xifeng in the Loess Plateau of China[J]. Hydrogeology Journal, 2011, 19(1): 177-186.
doi: 10.1007/s10040-010-0643-8
URL
|
[75] |
Krause S, Hannah D, Fleckenstein J.Hyporheic hydrology: Interactions at the groundwater-surface water interface[J]. Hydrological Processes, 2009, 23(15): 2 103-2 107.
doi: 10.1002/hyp.7366
URL
|
|
Krause S, Hannah D, Fleckenstein J.Hyporheic hydrology: Interactions at the groundwater-surface water interface[J]. Hydrological Processes, 2009, 23(15): 2 103-2 107.
doi: 10.1002/hyp.7366
URL
|
[76] |
Foglia L, Mcnally A, Harter T.Coupling a spatiotemporally distributed soil water budget with stream-depletion functions to inform stakeholder-driven management of groundwater-dependent ecosystems[J]. Water Resources Research, 2013, 49(11): 7 292-7 310.
doi: 10.1002/wrcr.20555
URL
|
|
Foglia L, Mcnally A, Harter T.Coupling a spatiotemporally distributed soil water budget with stream-depletion functions to inform stakeholder-driven management of groundwater-dependent ecosystems[J]. Water Resources Research, 2013, 49(11): 7 292-7 310.
doi: 10.1002/wrcr.20555
URL
|
[77] |
Mcfarlane D J, Williamson D R.An overview of water logging and salinity in southwestern Australia as related to the ‘Ucarro’experimental catchment[J]. Agricultural Water Management, 2002, 53(1): 5-29.
doi: 10.1016/S0378-3774(01)00153-6
URL
|
|
Mcfarlane D J, Williamson D R.An overview of water logging and salinity in southwestern Australia as related to the ‘Ucarro’experimental catchment[J]. Agricultural Water Management, 2002, 53(1): 5-29.
doi: 10.1016/S0378-3774(01)00153-6
URL
|
[78] |
Runyan C W, D’odorico P.Ecohydrological feedbacks between salt accumulation and vegetation dynamics: Role of vegetation-groundwater interactions[J]. Water Resources Research, 2010, 46(11): W11561.DOI:10.1029/2010WR009464
|
|
Runyan C W, D’odorico P.Ecohydrological feedbacks between salt accumulation and vegetation dynamics: Role of vegetation-groundwater interactions[J]. Water Resources Research, 2010, 46(11): W11561.DOI:10.1029/2010WR009464
|
[79] |
Antonellini M, Mollema P N.Impact of groundwater salinity on vegetation species richness in the coastal pine forests and wetlands of Ravenna, Italy[J]. Ecological Engineering, 2010, 36(9): 1 201-1 211.
doi: 10.1016/j.ecoleng.2009.12.007
URL
|
|
Antonellini M, Mollema P N.Impact of groundwater salinity on vegetation species richness in the coastal pine forests and wetlands of Ravenna, Italy[J]. Ecological Engineering, 2010, 36(9): 1 201-1 211.
doi: 10.1016/j.ecoleng.2009.12.007
URL
|
[80] |
Shah N, Nachabe M, Ross M.Extinction depth and evapotranspiration from ground water under selected land covers[J]. Groundwater, 2007, 45(3): 329-338.
doi: 10.1111/gwat.2007.45.issue-3
URL
|
|
Shah N, Nachabe M, Ross M.Extinction depth and evapotranspiration from ground water under selected land covers[J]. Groundwater, 2007, 45(3): 329-338.
doi: 10.1111/gwat.2007.45.issue-3
URL
|
[81] |
Huang T M, Pang Z H, Chen Y N, et al. Groundwater circulation relative to water quality and vegetation in an arid transitional zone linking oasis, desert and river[J]. Chinese Science Bulletin, 2013, 58(25): 3 088-3 097.
doi: 10.1007/s11434-013-5948-2
URL
|
|
Huang T M, Pang Z H, Chen Y N, et al. Groundwater circulation relative to water quality and vegetation in an arid transitional zone linking oasis, desert and river[J]. Chinese Science Bulletin, 2013, 58(25): 3 088-3 097.
doi: 10.1007/s11434-013-5948-2
URL
|
[82] |
Anderies J M.Minimal models and agroecological policy at the regional scale: An application to salinity problems in southeastern Australia[J]. Regional Environmental Change, 2005, 5(1): 1-17.
doi: 10.1007/s10113-004-0081-z
URL
|
|
Anderies J M.Minimal models and agroecological policy at the regional scale: An application to salinity problems in southeastern Australia[J]. Regional Environmental Change, 2005, 5(1): 1-17.
doi: 10.1007/s10113-004-0081-z
URL
|
[83] |
Chui T F M, Low S Y, Liong S Y. An ecohydrological model for studying groundwater-vegetation interactions in wetlands[J]. Journal of Hydrology, 2011, 409(1/2): 291-304.
doi: 10.1016/j.jhydrol.2011.08.039
URL
|
|
Chui T F M, Low S Y, Liong S Y. An ecohydrological model for studying groundwater-vegetation interactions in wetlands[J]. Journal of Hydrology, 2011, 409(1/2): 291-304.
doi: 10.1016/j.jhydrol.2011.08.039
URL
|
[84] |
Barron O, Silberstein R, Ali R, et al. Climate change effects on water-dependent ecosystems in south-western Australia (Reprinted from J. Hydrol., vol 434, pg 95-109, 2012)[J]. Journal of Hydrology, 2012, 475:473-487.
doi: 10.1016/j.jhydrol.2012.02.049
URL
|
|
Barron O, Silberstein R, Ali R, et al. Climate change effects on water-dependent ecosystems in south-western Australia (Reprinted from J. Hydrol., vol 434, pg 95-109, 2012)[J]. Journal of Hydrology, 2012, 475:473-487.
doi: 10.1016/j.jhydrol.2012.02.049
URL
|
[85] |
Barron O, Froend R, Hodgson G, et al. Projected risks to groundwater-dependent terrestrial vegetation caused by changing climate and groundwater abstraction in the Central Perth Basin, Western Australia[J]. Hydrological Processes, 2014, 28(22): 5 513-5 529.
doi: 10.1002/hyp.10014
URL
|
|
Barron O, Froend R, Hodgson G, et al. Projected risks to groundwater-dependent terrestrial vegetation caused by changing climate and groundwater abstraction in the Central Perth Basin, Western Australia[J]. Hydrological Processes, 2014, 28(22): 5 513-5 529.
doi: 10.1002/hyp.10014
URL
|
[86] |
Gowing J, Parkin G, Forsythe N, et al. Shallow groundwater in sub-Saharan Africa: Neglected opportunity for sustainable intensification of small-scale agriculture?[J]. Hydrology & Earth System Sciences Discussions, 2016, 10: 519-549.
|
|
Gowing J, Parkin G, Forsythe N, et al. Shallow groundwater in sub-Saharan Africa: Neglected opportunity for sustainable intensification of small-scale agriculture?[J]. Hydrology & Earth System Sciences Discussions, 2016, 10: 519-549.
|
[87] |
Tomlinson M, Boulton A J.Ecology and management of subsurface groundwater dependent ecosystems in Australia—A review[J]. Marine and Freshwater Research, 2010, 61(8): 936-949.
doi: 10.1071/MF09267
URL
|
|
Tomlinson M, Boulton A J.Ecology and management of subsurface groundwater dependent ecosystems in Australia—A review[J]. Marine and Freshwater Research, 2010, 61(8): 936-949.
doi: 10.1071/MF09267
URL
|
[88] |
Wilby R L, Dessai S.Robust adaptation to climate change[J]. Weather, 2010, 65(7): 180-185.
doi: 10.1002/wea.543
URL
|
|
Wilby R L, Dessai S.Robust adaptation to climate change[J]. Weather, 2010, 65(7): 180-185.
doi: 10.1002/wea.543
URL
|
[89] |
Ficklin D L, Luedeling E, Zhang M H.Sensitivity of groundwater recharge under irrigated agriculture to changes in climate, CO2 concentrations and canopy structure[J]. Agricultural Water Management, 2010, 97(7): 1 039-1 050.
doi: 10.1016/j.agwat.2010.02.009
URL
|
|
Ficklin D L, Luedeling E, Zhang M H.Sensitivity of groundwater recharge under irrigated agriculture to changes in climate, CO2 concentrations and canopy structure[J]. Agricultural Water Management, 2010, 97(7): 1 039-1 050.
doi: 10.1016/j.agwat.2010.02.009
URL
|
[90] |
Brolsma R J, Van Vliet M T H, Bierkens M F P. Climate change impact on a groundwater-influenced hillslope ecosystem[J]. Water Resources Research, 2010, 46(11): W11503.DOI:10.1029/2009WR008782.
doi: 10.1029/2009WR008782
URL
|
|
Brolsma R J, Van Vliet M T H, Bierkens M F P. Climate change impact on a groundwater-influenced hillslope ecosystem[J]. Water Resources Research, 2010, 46(11): W11503.DOI:10.1029/2009WR008782.
doi: 10.1029/2009WR008782
URL
|
[91] |
Jolly I D, Mcewan K L, Holland K L.A review of groundwater-surface water interactions in arid/semi-arid wetlands and the consequences of salinity for wetland ecology[J]. Ecohydrology, 2008, 1(1): 43-58.
doi: 10.1002/eco.6
URL
|
|
Jolly I D, Mcewan K L, Holland K L.A review of groundwater-surface water interactions in arid/semi-arid wetlands and the consequences of salinity for wetland ecology[J]. Ecohydrology, 2008, 1(1): 43-58.
doi: 10.1002/eco.6
URL
|
[92] |
Rodriguez-Iturbe I, D’odorico P, Laio F, et al. Challenges in humid land ecohydrology: Interactions of water table and unsaturated zone with climate, soil, and vegetation[J]. Water Resources Research, 2007, 43(9): W09301.DOI:10.1029/2007WR006073.
|
|
Rodriguez-Iturbe I, D’odorico P, Laio F, et al. Challenges in humid land ecohydrology: Interactions of water table and unsaturated zone with climate, soil, and vegetation[J]. Water Resources Research, 2007, 43(9): W09301.DOI:10.1029/2007WR006073.
|
[93] |
Laio F, Tamea S, Ridolfi L, et al. Ecohydrology of groundwater-dependent ecosystems: 1. Stochastic water table dynamics[J]. Water Resources Research, 2009, 45(5):W05419.DOI:10.1029/2008WR007292.
|
|
Laio F, Tamea S, Ridolfi L, et al. Ecohydrology of groundwater-dependent ecosystems: 1. Stochastic water table dynamics[J]. Water Resources Research, 2009, 45(5):W05419.DOI:10.1029/2008WR007292.
|
[94] |
Pumo D, Tamea S, Noto L V, et al. Modeling belowground water table fluctuations in the Everglades[J]. Water Resources Research, 2010, 46(11): W11557. DOI: 10.1029/2009WR008911.
doi: 10.1029/2009WR008911
URL
|
|
Pumo D, Tamea S, Noto L V, et al. Modeling belowground water table fluctuations in the Everglades[J]. Water Resources Research, 2010, 46(11): W11557. DOI: 10.1029/2009WR008911.
doi: 10.1029/2009WR008911
URL
|
[95] |
Borgogno F, D'odorico P, Laio F, et al. Stochastic resonance and coherence resonance in groundwater-dependent plant ecosystems[J]. Journal of Theoretical Biology, 2012, 293(1): 65-73.
doi: 10.1016/j.jtbi.2011.09.015
URL
pmid: 21968441
|
|
Borgogno F, D'odorico P, Laio F, et al. Stochastic resonance and coherence resonance in groundwater-dependent plant ecosystems[J]. Journal of Theoretical Biology, 2012, 293(1): 65-73.
doi: 10.1016/j.jtbi.2011.09.015
URL
pmid: 21968441
|
[96] |
Vereecken H, Huisman J A, Bogena H, ,et al. On the value of soil moisture measurements in vadose zone hydrology: A review[J]. Water Resources Research, 2008, 44(4): W00D06.DOI:10.1029/2008WR006829.
doi: 10.1029/2008WR006829
URL
|
|
Vereecken H, Huisman J A, Bogena H, ,et al. On the value of soil moisture measurements in vadose zone hydrology: A review[J]. Water Resources Research, 2008, 44(4): W00D06.DOI:10.1029/2008WR006829.
doi: 10.1029/2008WR006829
URL
|
[97] |
Mekki I, Jacob F, Marlet S, et al. Management of groundwater resources in relation to oasis sustainability: The case of the Nefzawa region in Tunisia[J]. Journal of Environmental Management, 2013, 121(7): 142-151.
|
|
Mekki I, Jacob F, Marlet S, et al. Management of groundwater resources in relation to oasis sustainability: The case of the Nefzawa region in Tunisia[J]. Journal of Environmental Management, 2013, 121(7): 142-151.
|
[98] |
Brolsma R, Karssenberg D, Bierkens M.Vegetation competition model for water and light limitation. I: Model description, one-dimensional competition and the influence of groundwater[J]. Ecological Modelling, 2010, 221(10): 1 348-1 363.
doi: 10.1016/j.ecolmodel.2010.02.012
URL
|
|
Brolsma R, Karssenberg D, Bierkens M.Vegetation competition model for water and light limitation. I: Model description, one-dimensional competition and the influence of groundwater[J]. Ecological Modelling, 2010, 221(10): 1 348-1 363.
doi: 10.1016/j.ecolmodel.2010.02.012
URL
|
[99] |
Elmore A, Kaste J, Okin G, et al. Groundwater influences on atmospheric dust generation in deserts[J]. Journal of Arid Environments, 2008, 72(10): 1 753-1 765.
doi: 10.1016/j.jaridenv.2008.05.008
URL
|
|
Elmore A, Kaste J, Okin G, et al. Groundwater influences on atmospheric dust generation in deserts[J]. Journal of Arid Environments, 2008, 72(10): 1 753-1 765.
doi: 10.1016/j.jaridenv.2008.05.008
URL
|
[100] |
Murray B R, Hose G C, Eamus D, et al. Valuation of groundwater-dependent ecosystems: A functional methodology incorporating ecosystem services[J]. Australian Journal of Botany, 2006, 54(2): 221-229.
doi: 10.1071/BT05018
URL
|
|
Murray B R, Hose G C, Eamus D, et al. Valuation of groundwater-dependent ecosystems: A functional methodology incorporating ecosystem services[J]. Australian Journal of Botany, 2006, 54(2): 221-229.
doi: 10.1071/BT05018
URL
|
[101] |
Aldous A R, Bach L B.Hydro-ecology of groundwater-dependent ecosystems: Applying basic science to groundwater management[J]. Hydrological Sciences Journal, 2014, 59(3/4): 530-544.
doi: 10.1080/02626667.2014.889296
URL
|
|
Aldous A R, Bach L B.Hydro-ecology of groundwater-dependent ecosystems: Applying basic science to groundwater management[J]. Hydrological Sciences Journal, 2014, 59(3/4): 530-544.
doi: 10.1080/02626667.2014.889296
URL
|
[102] |
Krause S, Heathwaite A L, Miller F, et al. Groundwater-dependent wetlands in the UK and Ireland: Controls, functioning and assessing the likelihood of damage from human activities[J]. Water Resources Management, 2007, 21(12): 2 015-2 025.
doi: 10.1007/s11269-007-9192-x
URL
|
|
Krause S, Heathwaite A L, Miller F, et al. Groundwater-dependent wetlands in the UK and Ireland: Controls, functioning and assessing the likelihood of damage from human activities[J]. Water Resources Management, 2007, 21(12): 2 015-2 025.
doi: 10.1007/s11269-007-9192-x
URL
|
[103] |
Thomas F M, Arndt S K, Bruelheide H, et al. Ecological basis for a sustainable management of the indigenous vegetation in a Central-Asian Desert: Presentation and first results[J]. Journal of Applied Botany, 2000, 74(5/6): 212-219.
|
|
Thomas F M, Arndt S K, Bruelheide H, et al. Ecological basis for a sustainable management of the indigenous vegetation in a Central-Asian Desert: Presentation and first results[J]. Journal of Applied Botany, 2000, 74(5/6): 212-219.
|
[104] |
Chen Guodong, Xiao Honglang, Xu Zhongmin, et al. Water issue and its countermeasure in the inland river basins of Northwest China—A case study in Heihe River Basin[J]. Journal of Glaciology and Geocryology, 2006, 28(3): 407-413.
doi: 10.3969/j.issn.1000-0240.2006.03.017
URL
|
|
Chen Guodong, Xiao Honglang, Xu Zhongmin, et al. Water issue and its countermeasure in the inland river basins of Northwest China—A case study in Heihe River Basin[J]. Journal of Glaciology and Geocryology, 2006, 28(3): 407-413.
|
|
[程国栋, 肖洪浪, 徐中民,等. 中国西北内陆河水问题及其应对策略——以黑河流域为例[J]. 冰川冻土, 2006, 28(3):407-413.]
doi: 10.3969/j.issn.1000-0240.2006.03.017
URL
|
|
[程国栋, 肖洪浪, 徐中民,等. 中国西北内陆河水问题及其应对策略——以黑河流域为例[J]. 冰川冻土, 2006, 28(3):407-413.]
doi: 10.3969/j.issn.1000-0240.2006.03.017
URL
|