地球科学进展 ›› 2018, Vol. 33 ›› Issue (7): 741 -750. doi: 10.11867/j.issn.1001-8166.2018.07.0741

综述与评述 上一篇    下一篇

地下水依赖型生态系统生态水文研究进展
刘鹄 1, 2( ), 赵文智 1, 2, *( ), 李中恺 1, 2, 3   
  1. 1.中国科学院西北生态环境资源研究院,中国生态系统研究网络临泽内陆河流域研究站, 甘肃兰州 730000
    2.中国科学院内陆河流域生态水文重点实验室, 甘肃 兰州 730000
    3.中国科学院大学资源与环境学院,北京 100049
  • 收稿日期:2018-01-09 修回日期:2018-05-15 出版日期:2018-07-20
  • 通讯作者: 赵文智 E-mail:lhayz@lzb.ac.cn;zhaowzh@lzb.ac.cn
  • 基金资助:
    *国家自然科学基金重点项目“荒漠绿洲非饱和带土壤水分运移及对地下水补给作用”(编号:41630861)资助.

Ecohydrology of Groundwater Dependent Ecosystems: A Review

Hu Liu 1, 2( ), Wenzhi Zhao 1, 2, *( ), Zhongkai Li 1, 2, 3   

  1. 1.Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Linze Inland River Basin Research Station, Chinese Ecosystem Research Network, Lanzhou 730000, China
    2.Key Laboratory of Ecohydrology of Inland River Basin, Lanzhou 730000, China
    3.College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2018-01-09 Revised:2018-05-15 Online:2018-07-20 Published:2018-08-30
  • Contact: Wenzhi Zhao E-mail:lhayz@lzb.ac.cn;zhaowzh@lzb.ac.cn
  • About author:

    First author:Liu Hu (1980-), male, Lanzhou City, Gansu Province, Associate professor. Research areas include ecohydrology and hydropedology in water-limited environments. E-mail:lhayz@lzb.ac.cn

  • Supported by:
    Project supported by the National Natural Science Foundation of China “Moisture migration in the Vadose Zone of desert oasis and recharge effects on groundwater dynamic” (No.41630861).

地下水依赖型生态系统(GDEs)中植被动态和土壤水盐平衡受地下水影响显著。从地下水与植被、土壤水、地表水和盐分动态关系、气候变化与人类干扰下的GDEs响应、GDEs模型与管理等方面综述了GDEs生态水文研究进展。指出在地下水环境变化后GDEs植被如何响应、GDEs功能是否发生突变、发生突变的生态阈值等是其可持续管理亟待回答的问题,其关键和难点是如何刻画地下水到地表土壤介质中的生态水文过程,加强相应的观测与模拟研究是未来的重要方向。此外,实现GDEs可持续管理还需要明确4个问题:①如何界定GDEs的范围,哪些物种和生境依靠地下水存在?②GDEs可持续发展需要何种地下水条件?③在社会资源有限的情况下如何管理地下水资源;④观测哪些生态参数来体现GDEs管理措施的有效性?

Groundwater Dependent Ecosystems (GDEs) are ecosystems that must have access to groundwater to maintain their ecological structure and function. In other words, the vegetation dynamics moisture dynamics, and water-salt balance in GDEs are significantly affected by and directly related to the groundwater. This work reviews the most recent research advances in the ecohydrology of GDEs from: ①the interactions between groundwater and vegetation, ②the interactions between groundwater and soil moisture dynamics in the vadose zone, the interactions between ground and ③surface-water systems, ④the interactions between groundwater and salt accumulation dynamics, ⑤the responses of GDEs to climate changes and human disturbances, and ⑥the ecohydrological modeling works toward sustainable management of GDEs. It is pointed out that several issues need to be taken into account in the managements of GDEs, i.e., how does the vegetation of GDEs response to fluctuations and decreases in the groundwater level, whether there is a catastrophic loss of the functions of GDEs, and what is the threshold value below which such a catastrophe may occur. The key to solving those issues lies in how to delineate the different ecohydrological processes occurred in the soil medium from the top of the ground surface to the water table. Therefore, observation and modeling efforts are needed and will be important research priorities in the future, especially for GDEs in arid environments. We also argued that four more difficulties should be addressed towards sustainable management of GDEs in future: ①how to identify GDEs in the field, and determine which habitats and species are reliant on groundwater for their persistence in the landscape, ②what groundwater regime is required to sustain the existence of GDEs, ③how to manage GDEs with limited social resources, and ④what measures of ecosystem function can be monitored to determine that management is effective?

中图分类号: 

[1] Stevens V M, Baguette M.Importance of habitat quality and landscape connectivity for the persistence of endangered natterjack toads[J]. Conservation Biology, 2008, 22(5): 1 194-1 204.
doi: 10.1111/cbi.2008.22.issue-5     URL    
Stevens V M, Baguette M.Importance of habitat quality and landscape connectivity for the persistence of endangered natterjack toads[J]. Conservation Biology, 2008, 22(5): 1 194-1 204.
doi: 10.1111/cbi.2008.22.issue-5     URL    
[2] Bertrand G, Goldscheider N, Gobat J M, et al. Review: From multi-scale conceptualization to a classification system for inland groundwater-dependent ecosystems[J]. Hydrogeology Journal, 2012, 20(1): 5-25.
doi: 10.1007/s10040-011-0791-5     URL    
Bertrand G, Goldscheider N, Gobat J M, et al. Review: From multi-scale conceptualization to a classification system for inland groundwater-dependent ecosystems[J]. Hydrogeology Journal, 2012, 20(1): 5-25.
doi: 10.1007/s10040-011-0791-5     URL    
[3] Nath B, Lillicrap A M, Ellis L C, et al. Hydrological and chemical connectivity dynamics in a groundwater-dependent ecosystem impacted by acid sulfate soils[J]. Water Resources Research, 2013, 49(1): 441-457.
doi: 10.1029/2012WR012760     URL    
Nath B, Lillicrap A M, Ellis L C, et al. Hydrological and chemical connectivity dynamics in a groundwater-dependent ecosystem impacted by acid sulfate soils[J]. Water Resources Research, 2013, 49(1): 441-457.
doi: 10.1029/2012WR012760     URL    
[4] Mackay H.Protection and management of groundwater-dependent ecosystems: Emerging challenges and potential approaches for policy and management[J]. Australian Journal of Botany, 2006, 54(2): 231-237.
doi: 10.1071/BT05047     URL    
Mackay H.Protection and management of groundwater-dependent ecosystems: Emerging challenges and potential approaches for policy and management[J]. Australian Journal of Botany, 2006, 54(2): 231-237.
doi: 10.1071/BT05047     URL    
[5] Brand L A, Stromberg J C, Goodrich D C, et al. Projecting avian response to linked changes in groundwater and riparian floodplain vegetation along a dryland river: A scenario analysis[J]. Ecohydrology, 2011, 4(1): 130-142.
doi: 10.1002/eco.v4.1     URL    
Brand L A, Stromberg J C, Goodrich D C, et al. Projecting avian response to linked changes in groundwater and riparian floodplain vegetation along a dryland river: A scenario analysis[J]. Ecohydrology, 2011, 4(1): 130-142.
doi: 10.1002/eco.v4.1     URL    
[6] Orellana F, Verma P, Loheide S P, et al. Monitoring and modeling water-vegetation interactions in groundwater-dependent ecosystems[J]. Reviews of Geophysics, 2012, 50(RG3003): 1-24.
Orellana F, Verma P, Loheide S P, et al. Monitoring and modeling water-vegetation interactions in groundwater-dependent ecosystems[J]. Reviews of Geophysics, 2012, 50(RG3003): 1-24.
[7] Merritt D M, Bateman H L.Linking stream flow and groundwater to avian habitat in a desert riparian system[J]. Ecological Applications, 2012, 22(7): 1 973-1 988.
doi: 10.2307/41723108     URL     pmid: 23210313
Merritt D M, Bateman H L.Linking stream flow and groundwater to avian habitat in a desert riparian system[J]. Ecological Applications, 2012, 22(7): 1 973-1 988.
doi: 10.2307/41723108     URL     pmid: 23210313
[8] Vest K R, Elmore A J, Kaste J M, et al. Estimating total horizontal aeolian flux within shrub-invaded groundwater-dependent meadows using empirical and mechanistic models[J]. Journal of Geophysical Research-Earth Surface, 2013, 118(2): 1 132-1 146.
doi: 10.1002/jgrf.20048     URL    
Vest K R, Elmore A J, Kaste J M, et al. Estimating total horizontal aeolian flux within shrub-invaded groundwater-dependent meadows using empirical and mechanistic models[J]. Journal of Geophysical Research-Earth Surface, 2013, 118(2): 1 132-1 146.
doi: 10.1002/jgrf.20048     URL    
[9] Meinzer O E. The Occurrence of Ground Water in the United States: With A Discussion of Principles[R]. Washington DC:U.S. Government Printing office, 1923.
Meinzer O E. The Occurrence of Ground Water in the United States: With A Discussion of Principles[R]. Washington DC:U.S. Government Printing office, 1923.
[10] Lewis J.The application of ecohydrological groundwater indicators to hydrogeological conceptual models[J]. Ground Water, 2012, 50(5): 679-689.
doi: 10.1111/j.1745-6584.2011.00899.x     URL     pmid: 22150517
Lewis J.The application of ecohydrological groundwater indicators to hydrogeological conceptual models[J]. Ground Water, 2012, 50(5): 679-689.
doi: 10.1111/j.1745-6584.2011.00899.x     URL     pmid: 22150517
[11] Sommer B, Froend R.Resilience of phreatophytic vegetation to groundwater drawdown: Is recovery possible under a drying climate?[J]. Ecohydrology, 2011, 4(1): 67-82.
doi: 10.1002/eco.v4.1     URL    
Sommer B, Froend R.Resilience of phreatophytic vegetation to groundwater drawdown: Is recovery possible under a drying climate?[J]. Ecohydrology, 2011, 4(1): 67-82.
doi: 10.1002/eco.v4.1     URL    
[12] Krause S, Hannah D M, Sadler J P, et al. Ecohydrology on the edge: Interactions across the interfaces of wetland, riparian and groundwater-based ecosystems Preface[J]. Ecohydrology, 2011, 4(4): 477-480.
doi: 10.1002/eco.240     URL    
Krause S, Hannah D M, Sadler J P, et al. Ecohydrology on the edge: Interactions across the interfaces of wetland, riparian and groundwater-based ecosystems Preface[J]. Ecohydrology, 2011, 4(4): 477-480.
doi: 10.1002/eco.240     URL    
[13] Yuan Xingzhong, Luo Guyuan.A brief review for ecological studies on hyporheic zone of stream ecosystem[J]. Acta Ecologica Sinica, 2003, 23(5): 956-964.
doi: 10.3321/j.issn:1000-0933.2003.05.017     URL    
Yuan Xingzhong, Luo Guyuan.A brief review for ecological studies on hyporheic zone of stream ecosystem[J]. Acta Ecologica Sinica, 2003, 23(5): 956-964.
[袁兴中, 罗固源. 溪流生态系统潜流带生态学研究概述[J]. 生态学报, 2003, 23(5): 956-964.]
doi: 10.3321/j.issn:1000-0933.2003.05.017     URL    
[袁兴中, 罗固源. 溪流生态系统潜流带生态学研究概述[J]. 生态学报, 2003, 23(5): 956-964.]
doi: 10.3321/j.issn:1000-0933.2003.05.017     URL    
[14] Lü J, Wang X S, Zhou Y, et al. Groundwater-dependent distribution of vegetation in Hailiutu River catchment, a semi-arid region in China[J]. Ecohydrology, 2013, 6(1): 142-149.
doi: 10.1002/eco.v6.1     URL    
Lü J, Wang X S, Zhou Y, et al. Groundwater-dependent distribution of vegetation in Hailiutu River catchment, a semi-arid region in China[J]. Ecohydrology, 2013, 6(1): 142-149.
doi: 10.1002/eco.v6.1     URL    
[15] Munch Z, Conrad J.Remote sensing and GIS based determination of groundwater dependent ecosystems in the Western Cape, South Africa[J]. Hydrogeology Journal, 2007, 15(1): 19-28.
doi: 10.1007/s10040-006-0125-1     URL    
Munch Z, Conrad J.Remote sensing and GIS based determination of groundwater dependent ecosystems in the Western Cape, South Africa[J]. Hydrogeology Journal, 2007, 15(1): 19-28.
doi: 10.1007/s10040-006-0125-1     URL    
[16] Meinzer O E.Plants as indicators of ground water[J]. Journal of the Washington Academy of Science, 1926, 16(21): 553-564.
doi: 10.1086/623671     URL    
Meinzer O E.Plants as indicators of ground water[J]. Journal of the Washington Academy of Science, 1926, 16(21): 553-564.
doi: 10.1086/623671     URL    
[17] Zhu J, Yu J, Wang P, et al. Interpreting the groundwater attributes influencing the distribution patterns of groundwater-dependent vegetation in northwestern China[J]. Ecohydrology, 2012, 5(5): 628-636.
doi: 10.1002/eco.249     URL    
Zhu J, Yu J, Wang P, et al. Interpreting the groundwater attributes influencing the distribution patterns of groundwater-dependent vegetation in northwestern China[J]. Ecohydrology, 2012, 5(5): 628-636.
doi: 10.1002/eco.249     URL    
[18] Jin Xiaomei.Quantitative relationship between the desert vegetation and groundwater depth in Ejina Oasis, the Heihe River Basin[J]. Earth Science Frontiers, 2010, 17(6): 181-186.
URL    
Jin Xiaomei.Quantitative relationship between the desert vegetation and groundwater depth in Ejina Oasis, the Heihe River Basin[J]. Earth Science Frontiers, 2010, 17(6): 181-186.
[金晓媚. 黑河下游额济纳绿洲荒漠植被与地下水位埋深的定量关系[J]. 地学前缘, 2010,17(6):181-186.]
URL    
[金晓媚. 黑河下游额济纳绿洲荒漠植被与地下水位埋深的定量关系[J]. 地学前缘, 2010,17(6):181-186.]
URL    
[19] Chen Weitao, Sun Ziyong, Wang Yanxin, et al. Major scientific issures on water demand studying for groundwater dependent vegetation ecosystems in inland arid regions[J]. Earth Science — Journal of China University of Geosciences, 2014(9):1 340-1 348.
Chen Weitao, Sun Ziyong, Wang Yanxin, et al. Major scientific issures on water demand studying for groundwater dependent vegetation ecosystems in inland arid regions[J]. Earth Science — Journal of China University of Geosciences, 2014(9):1 340-1 348.
[陈伟涛, 孙自永, 王焰新,等. 论内陆干旱区依赖地下水的植被生态需水量研究关键科学问题[J]. 地球科学——中国地质大学学报, 2014(9):1 340-1 348.]
[陈伟涛, 孙自永, 王焰新,等. 论内陆干旱区依赖地下水的植被生态需水量研究关键科学问题[J]. 地球科学——中国地质大学学报, 2014(9):1 340-1 348.]
[20] Wang P, Zhang Y, Yu J, et al. Vegetation dynamics induced by groundwater fluctuations in the lower Heihe River Basin, Northwestern China[J]. Journal of Plant Ecology, 2011, 4(1/2): 77-90.
doi: 10.1093/jpe/rtr002     URL    
Wang P, Zhang Y, Yu J, et al. Vegetation dynamics induced by groundwater fluctuations in the lower Heihe River Basin, Northwestern China[J]. Journal of Plant Ecology, 2011, 4(1/2): 77-90.
doi: 10.1093/jpe/rtr002     URL    
[21] Rhymes J, Wallace H, Fenner N, et al. Evidence for sensitivity of dune wetlands to groundwater nutrients[J]. The Science of the Total Environment, 2014, 490: 106-113.
doi: 10.1016/j.scitotenv.2014.04.029     URL     pmid: 24846404
Rhymes J, Wallace H, Fenner N, et al. Evidence for sensitivity of dune wetlands to groundwater nutrients[J]. The Science of the Total Environment, 2014, 490: 106-113.
doi: 10.1016/j.scitotenv.2014.04.029     URL     pmid: 24846404
[22] Peters J. Ecohydrology of wetlands: Monitoring and Modelling Interactions between Groundwater, Soil and Vegetation[D]. Ghent, Belgium:Ghent University, 2008.
Peters J. Ecohydrology of wetlands: Monitoring and Modelling Interactions between Groundwater, Soil and Vegetation[D]. Ghent, Belgium:Ghent University, 2008.
[23] Baattrup-Pedersen A, Hoffmann C C, Audet J, et al. Groundwater nitrogen and the distribution of groundwater-dependent vegetation in riparian areas in agricultural catchments[J]. Ecological Engineering, 2014, 66(1): 111-119.
doi: 10.1016/j.ecoleng.2013.07.047     URL    
Baattrup-Pedersen A, Hoffmann C C, Audet J, et al. Groundwater nitrogen and the distribution of groundwater-dependent vegetation in riparian areas in agricultural catchments[J]. Ecological Engineering, 2014, 66(1): 111-119.
doi: 10.1016/j.ecoleng.2013.07.047     URL    
[24] Howard J, Merrifield M.Mapping groundwater dependent ecosystems in California[J]. PLoS ONE, 2010, 5(6): e11249.
doi: 10.1371/journal.pone.0011249     URL     pmid: 20585640
Howard J, Merrifield M.Mapping groundwater dependent ecosystems in California[J]. PLoS ONE, 2010, 5(6): e11249.
doi: 10.1371/journal.pone.0011249     URL     pmid: 20585640
[25] Peters J, De Baets B, Samson R, et al. Modelling groundwater-dependent vegetation patterns using ensemble learning[J]. Hydrology & Earth System Sciences, 2008, 12(2): 603-613.
doi: 10.5194/hess-12-603-2008     URL    
Peters J, De Baets B, Samson R, et al. Modelling groundwater-dependent vegetation patterns using ensemble learning[J]. Hydrology & Earth System Sciences, 2008, 12(2): 603-613.
doi: 10.5194/hess-12-603-2008     URL    
[26] Eamus D, Froend R.Groundwater-dependent ecosystems: The where, what and why of GDEs[J]. Australian Journal of Botany, 2006, 54(2): 91-96.
doi: 10.1071/BT06029     URL    
Eamus D, Froend R.Groundwater-dependent ecosystems: The where, what and why of GDEs[J]. Australian Journal of Botany, 2006, 54(2): 91-96.
doi: 10.1071/BT06029     URL    
[27] Lv J, Wang X S, Zhou Y, et al. Groundwater-dependent distribution of vegetation in Hailiutu River catchment, a semi-arid region in China[J]. Ecohydrology, 2013, 6(1): 142-149.
doi: 10.1002/eco.v6.1     URL    
Lv J, Wang X S, Zhou Y, et al. Groundwater-dependent distribution of vegetation in Hailiutu River catchment, a semi-arid region in China[J]. Ecohydrology, 2013, 6(1): 142-149.
doi: 10.1002/eco.v6.1     URL    
[28] Eamus D, Froend R, Loomes R, et al. A functional methodology for determining the groundwater regime needed to maintain the health of groundwater-dependent vegetation[J]. Australian Journal of Botany, 2006, 54(2): 97-114.
doi: 10.1071/BT05031     URL    
Eamus D, Froend R, Loomes R, et al. A functional methodology for determining the groundwater regime needed to maintain the health of groundwater-dependent vegetation[J]. Australian Journal of Botany, 2006, 54(2): 97-114.
doi: 10.1071/BT05031     URL    
[29] Naumburg E, Mata-Gonzalez R, Hunter R G, et al. Phreatophytic vegetation and groundwater fluctuations: A review of current research and application of ecosystem response modeling with an emphasis on Great Basin vegetation[J]. Environmental Management, 2005, 35(6): 726-740.
doi: 10.1007/s00267-004-0194-7     URL    
Naumburg E, Mata-Gonzalez R, Hunter R G, et al. Phreatophytic vegetation and groundwater fluctuations: A review of current research and application of ecosystem response modeling with an emphasis on Great Basin vegetation[J]. Environmental Management, 2005, 35(6): 726-740.
doi: 10.1007/s00267-004-0194-7     URL    
[30] Zencich S J, Froend R H, Turner J V, et al. Influence of groundwater depth on the seasonal sources of water accessed by Banksia tree species on a shallow, sandy coastal aquifer[J]. Oecologia, 2002, 131(1): 8-19.
doi: 10.1007/s00442-001-0855-7     URL    
Zencich S J, Froend R H, Turner J V, et al. Influence of groundwater depth on the seasonal sources of water accessed by Banksia tree species on a shallow, sandy coastal aquifer[J]. Oecologia, 2002, 131(1): 8-19.
doi: 10.1007/s00442-001-0855-7     URL    
[31] Miller G R, Chen X Y, Rubin Y, et al. Groundwater uptake by woody vegetation in a semiarid oak savanna[J]. Water Resources Research, 2010, 46(10): 2 290-2 296.
doi: 10.1029/2009WR008902     URL    
Miller G R, Chen X Y, Rubin Y, et al. Groundwater uptake by woody vegetation in a semiarid oak savanna[J]. Water Resources Research, 2010, 46(10): 2 290-2 296.
doi: 10.1029/2009WR008902     URL    
[32] Vervoort R W, Van Der Zee S. Simulating the effect of capillary flux on the soil water balance in a stochastic ecohydrological framework[J]. Water Resources Research, 2008, 44(8): W08425.DOI:10.1029/2008WR06889.
Vervoort R W, Van Der Zee S. Simulating the effect of capillary flux on the soil water balance in a stochastic ecohydrological framework[J]. Water Resources Research, 2008, 44(8): W08425.DOI:10.1029/2008WR06889.
[33] Teuling A J, Hupet F, Troch P A, et al. Climate variability effects on spatial soil moisture dynamics[J]. Geophysical Research Letters, 2007, 34(6): 125-141.
doi: 10.1029/2006GL029080     URL    
Teuling A J, Hupet F, Troch P A, et al. Climate variability effects on spatial soil moisture dynamics[J]. Geophysical Research Letters, 2007, 34(6): 125-141.
doi: 10.1029/2006GL029080     URL    
[34] Zhuang L, Chen Y N.Physiological responses of three contrasting plant species to groundwater level changes in an arid environment[J]. Journal of Integrative Plant Biology, 2006, 48(5): 520-526.
doi: 10.1111/jipb.2006.48.issue-5     URL    
Zhuang L, Chen Y N.Physiological responses of three contrasting plant species to groundwater level changes in an arid environment[J]. Journal of Integrative Plant Biology, 2006, 48(5): 520-526.
doi: 10.1111/jipb.2006.48.issue-5     URL    
[35] Li J, Yu B, Zhao C, et al. Physiological and morphological responses of Tamarix ramosissima and Populus euphratica to altered groundwater availability[J]. Tree Physiology, 2013, 33(1): 57-68.
doi: 10.1093/treephys/tps120     URL    
Li J, Yu B, Zhao C, et al. Physiological and morphological responses of Tamarix ramosissima and Populus euphratica to altered groundwater availability[J]. Tree Physiology, 2013, 33(1): 57-68.
doi: 10.1093/treephys/tps120     URL    
[36] Shi Z, Cheng R, Liu S, et al. Carbon assimilation, 13C and water relations of Elaeagnus angustifolia grown at two groundwater depths in the Minqin desert, China[J]. Plant Biosystems, 2008, 142(3): 525-532.
doi: 10.1080/11263500802410876     URL    
Shi Z, Cheng R, Liu S, et al. Carbon assimilation, 13C and water relations of Elaeagnus angustifolia grown at two groundwater depths in the Minqin desert, China[J]. Plant Biosystems, 2008, 142(3): 525-532.
doi: 10.1080/11263500802410876     URL    
[37] Chen Yaning, Chen Yapeng, Li Weihong, et al. Response of ABA content of Populus euphratica to groundwater depth changes in lower Tarim River[J]. Chinese Science Bulletin, 2003, 48(9): 958-961.
Chen Yaning, Chen Yapeng, Li Weihong, et al. Response of ABA content of Populus euphratica to groundwater depth changes in lower Tarim River[J]. Chinese Science Bulletin, 2003, 48(9): 958-961.
[陈亚宁, 陈亚鹏, 李卫红,等. 塔里木河下游胡杨脯氨酸累积对地下水位变化的响应[J]. 科学通报, 2003, 48(9): 958-961.]
[陈亚宁, 陈亚鹏, 李卫红,等. 塔里木河下游胡杨脯氨酸累积对地下水位变化的响应[J]. 科学通报, 2003, 48(9): 958-961.]
[38] Zhang Pei, Yuan Guofu, Zhuang Wei, et al. Ecophysiological responses and adaptation of Tamarix ramosissima to changes in groundwater depth in the Heihe River Basin[J]. Acta Ecologica Sinica, 2011, 31(22): 6 677-6 687.
URL    
Zhang Pei, Yuan Guofu, Zhuang Wei, et al. Ecophysiological responses and adaptation of Tamarix ramosissima to changes in groundwater depth in the Heihe River Basin[J]. Acta Ecologica Sinica, 2011, 31(22): 6 677-6 687.
[张佩, 袁国富, 庄伟, 等. 黑河中游荒漠绿洲过渡带多枝柽柳对地下水位变化的生理生态响应与适应[J]. 生态学报, 2011, 31(22): 6 677-6 687.]
URL    
[张佩, 袁国富, 庄伟, 等. 黑河中游荒漠绿洲过渡带多枝柽柳对地下水位变化的生理生态响应与适应[J]. 生态学报, 2011, 31(22): 6 677-6 687.]
URL    
[39] Horton J L, Kolb T E, Hart S C.Physiological response to groundwater depth varies among species and with river flow Regulation[J]. Ecological Applications, 2001, 11(4): 1 046-1 059.
doi: 10.2307/3061011     URL    
Horton J L, Kolb T E, Hart S C.Physiological response to groundwater depth varies among species and with river flow Regulation[J]. Ecological Applications, 2001, 11(4): 1 046-1 059.
doi: 10.2307/3061011     URL    
[40] Li Jianguo, Wang Wenchao, Pu Lijie, et al. Coastal reclamation and saltmarsh carbon budget: Advances and prospects[J]. Advances in Earth Science, 2017, 32(6): 599-614.
doi: 10.11867/j.issn.1001-8166.2017.06.0599     URL    
Li Jianguo, Wang Wenchao, Pu Lijie, et al. Coastal reclamation and saltmarsh carbon budget: Advances and prospects[J]. Advances in Earth Science, 2017, 32(6): 599-614.
[李建国, 王文超, 濮励杰, 等. 滩涂围垦对盐沼湿地碳收支的影响研究进展[J]. 地球科学进展, 2017, 32(6): 599-614.]
doi: 10.11867/j.issn.1001-8166.2017.06.0599     URL    
[李建国, 王文超, 濮励杰, 等. 滩涂围垦对盐沼湿地碳收支的影响研究进展[J]. 地球科学进展, 2017, 32(6): 599-614.]
doi: 10.11867/j.issn.1001-8166.2017.06.0599     URL    
[41] Luan Junwei, Cui Lijuan, Song Hongtao, et al. Foreign research progress on carbon cycle in wetland ecosystems[J]. Wetland Science, 2012, 10(2): 235-242.
Luan Junwei, Cui Lijuan, Song Hongtao, et al. Foreign research progress on carbon cycle in wetland ecosystems[J]. Wetland Science, 2012, 10(2): 235-242.
[栾军伟, 崔丽娟, 宋洪涛, 等. 国外湿地生态系统碳循环研究进展[J]. 湿地科学, 2012, 10(2): 235-242.]
[栾军伟, 崔丽娟, 宋洪涛, 等. 国外湿地生态系统碳循环研究进展[J]. 湿地科学, 2012, 10(2): 235-242.]
[42] Zhang Y, Li C, Trettin C C, ,et al. An integrated model of soil. An integrated model of soil, hydrology, vegetation for carbon dynamics in wetland ecosystems[J]. Global Biogeochemical Cycles, 2002, 16(4): 9-1-9-17.
Zhang Y, Li C, Trettin C C, ,et al. An integrated model of soil. An integrated model of soil, hydrology, vegetation for carbon dynamics in wetland ecosystems[J]. Global Biogeochemical Cycles, 2002, 16(4): 9-1-9-17.
[43] Frolking S, Roulet N T, Moore T R, et al. Modeling northern peatland decomposition and peat accumulation[J]. Ecosystems, 2001, 4(5): 479-498.
doi: 10.1007/s10021-001-0105-1     URL    
Frolking S, Roulet N T, Moore T R, et al. Modeling northern peatland decomposition and peat accumulation[J]. Ecosystems, 2001, 4(5): 479-498.
doi: 10.1007/s10021-001-0105-1     URL    
[44] An Peijun, Zhang Zhiqiang, Wang Liwei.Review of Earth critical zone research[J]. Advances in Earth Science, 2016, 31(12): 1 228-1 234.
doi: 10.11867/j.issn.1001-8166.2016.12.1228     URL    
An Peijun, Zhang Zhiqiang, Wang Liwei.Review of Earth critical zone research[J]. Advances in Earth Science, 2016, 31(12): 1 228-1 234.
[安培浚, 张志强, 王立伟. 地球关键带的研究进展[J].地球科学进展, 2016, 31(12): 1 228-1 234.]
doi: 10.11867/j.issn.1001-8166.2016.12.1228     URL    
[安培浚, 张志强, 王立伟. 地球关键带的研究进展[J].地球科学进展, 2016, 31(12): 1 228-1 234.]
doi: 10.11867/j.issn.1001-8166.2016.12.1228     URL    
[45] Zhao Wenzhi, Zhou Hong, Liu Hu.Advances in moisture migration in vadose zone of dryland and recharge effects on groundwater dynamics[J]. Advances in Earth Science, 2017, 32(9): 899-909.
doi: 10.11867/j.issn.1001-8166.2017.09.0908     URL    
Zhao Wenzhi, Zhou Hong, Liu Hu.Advances in moisture migration in vadose zone of dryland and recharge effects on groundwater dynamics[J]. Advances in Earth Science, 2017, 32(9): 899-909.
[赵文智, 周宏, 刘鹄.干旱区包气带土壤水分运移及其对地下水补给研究进展[J]. 地球科学进展, 2017, 32(9): 899-909.]
doi: 10.11867/j.issn.1001-8166.2017.09.0908     URL    
[赵文智, 周宏, 刘鹄.干旱区包气带土壤水分运移及其对地下水补给研究进展[J]. 地球科学进展, 2017, 32(9): 899-909.]
doi: 10.11867/j.issn.1001-8166.2017.09.0908     URL    
[46] Chen Yaning, Li Weihong, Xu Hailiang, et al. The influence of groundwater on vegetation in the lower reaches of Tarim River, China[J]. Acta Geographica Sinica, 2003, 58(4): 542-549.
Chen Yaning, Li Weihong, Xu Hailiang, et al. The influence of groundwater on vegetation in the lower reaches of Tarim River, China[J]. Acta Geographica Sinica, 2003, 58(4): 542-549.
[陈亚宁, 李卫红, 徐海量,等. 塔里木河下游地下水位对植被的影响[J]. 地理学报, 2003, 58(4):542-549.]
[陈亚宁, 李卫红, 徐海量,等. 塔里木河下游地下水位对植被的影响[J]. 地理学报, 2003, 58(4):542-549.]
[47] Zhao Wenzhi, Liu Hu.Recent advances in desert vegetation response to groundwater table changes[J]. Acta Ecologica Sinica, 2006, 26(8): 2 703-2 708.
doi: 10.3321/j.issn:1000-0933.2006.08.037     URL    
Zhao Wenzhi, Liu Hu.Recent advances in desert vegetation response to groundwater table changes[J]. Acta Ecologica Sinica, 2006, 26(8): 2 703-2 708.
[赵文智, 刘鹄. 荒漠区植被对地下水埋深响应研究进展[J]. 生态学报, 2006, 26(8): 2 703-2 708].
doi: 10.3321/j.issn:1000-0933.2006.08.037     URL    
[赵文智, 刘鹄. 荒漠区植被对地下水埋深响应研究进展[J]. 生态学报, 2006, 26(8): 2 703-2 708].
doi: 10.3321/j.issn:1000-0933.2006.08.037     URL    
[48] Dwire K A, Kauffman J B, Baham J E.Plant species distribution in relation to water-table depth and soil redox potential in montane riparian meadows[J]. Wetlands, 2006, 26(1): 131-146.
doi: 10.1672/0277-5212(2006)26[131:PSDIRT]2.0.CO;2     URL    
Dwire K A, Kauffman J B, Baham J E.Plant species distribution in relation to water-table depth and soil redox potential in montane riparian meadows[J]. Wetlands, 2006, 26(1): 131-146.
doi: 10.1672/0277-5212(2006)26[131:PSDIRT]2.0.CO;2     URL    
[49] Famiglietti J S.The global groundwater crisis[J]. Nature Climate Change, 2014, 4(11): 945.
doi: 10.1038/nclimate2425     URL    
Famiglietti J S.The global groundwater crisis[J]. Nature Climate Change, 2014, 4(11): 945.
doi: 10.1038/nclimate2425     URL    
[50] Guderle M, Hildebrandt A.Using measured soil water contents to estimate evapotranspiration and root water uptake profiles—A comparative study[J]. Hydrology & Earth System Sciences, 2015, 19(1): 409-425.
Guderle M, Hildebrandt A.Using measured soil water contents to estimate evapotranspiration and root water uptake profiles—A comparative study[J]. Hydrology & Earth System Sciences, 2015, 19(1): 409-425.
[51] Rahgozar M, Shah N, Ross M.Estimation of evapotranspiration and water budget components using concurrent soil moisture and water table monitoring[J]. Isrn Soil Science, 2012, (1/4): 119-142.
Rahgozar M, Shah N, Ross M.Estimation of evapotranspiration and water budget components using concurrent soil moisture and water table monitoring[J]. Isrn Soil Science, 2012, (1/4): 119-142.
[52] Liu H, Lin H.Frequency and control of subsurface preferential flow: From pedon to catchment scales[J]. Soil Science Society of America Journal, 2015, 79(2): 362.
doi: 10.2136/sssaj2014.08.0330     URL    
Liu H, Lin H.Frequency and control of subsurface preferential flow: From pedon to catchment scales[J]. Soil Science Society of America Journal, 2015, 79(2): 362.
doi: 10.2136/sssaj2014.08.0330     URL    
[53] Turkeltaub T, Kurtzman D, Dahan O.Real-time monitoring of nitrate transport in the deep vadose zone under a crop field-implications for groundwater protection[J]. Hydrology & Earth System Sciences Discussions, 2016, 20(8): 3 099-3 108.
Turkeltaub T, Kurtzman D, Dahan O.Real-time monitoring of nitrate transport in the deep vadose zone under a crop field-implications for groundwater protection[J]. Hydrology & Earth System Sciences Discussions, 2016, 20(8): 3 099-3 108.
[54] Jin Rui, Li Xin, Yan Baoping, et al. Introduction of eco’hydrological wireless sensor network in the Heihe River Basin[J]. Advances in Earth Science, 2012, 27(9): 993-1 005.
doi: 10.11867/j.issn.1001-8166.2012.09.0993     URL    
Jin Rui, Li Xin, Yan Baoping, et al. Introduction of eco’hydrological wireless sensor network in the Heihe River Basin[J]. Advances in Earth Science, 2012, 27(9): 993-1 005.
[晋锐, 李新, 阎保平,等. 黑河流域生态水文传感器网络设计[J]. 地球科学进展, 2012, 27(9):993-1 005.]
doi: 10.11867/j.issn.1001-8166.2012.09.0993     URL    
[晋锐, 李新, 阎保平,等. 黑河流域生态水文传感器网络设计[J]. 地球科学进展, 2012, 27(9):993-1 005.]
doi: 10.11867/j.issn.1001-8166.2012.09.0993     URL    
[55] Schelde K, Ringgaard R, Herbst M, et al. Comparing evapotranspiration rates estimated from atmospheric flux and TDR soil moisture measurements[J]. Vadose Zone Journal, 2011, 10(1): 78-83.
doi: 10.2136/vzj2010.0060     URL    
Schelde K, Ringgaard R, Herbst M, et al. Comparing evapotranspiration rates estimated from atmospheric flux and TDR soil moisture measurements[J]. Vadose Zone Journal, 2011, 10(1): 78-83.
doi: 10.2136/vzj2010.0060     URL    
[56] Shah N, Ross M, Trout K.Using soil moisture data to estimate evapotranspiration and development of a physically based root water uptake model[M]//Evapotranspiration-Remote Sensing and Modeling. InTech, 2012.DOI:10.5772/18040.
Shah N, Ross M, Trout K.Using soil moisture data to estimate evapotranspiration and development of a physically based root water uptake model[M]//Evapotranspiration-Remote Sensing and Modeling. InTech, 2012.DOI:10.5772/18040.
[57] Mould D, Frahm E, Salzmann T, et al. Evaluating the use of diurnal groundwater fluctuations for estimating evapotranspiration in wetland environments: Case studies in southeast England and northeast Germany[J]. Ecohydrology, 2010, 3(3): 294-305.
doi: 10.1002/eco.v3:3     URL    
Mould D, Frahm E, Salzmann T, et al. Evaluating the use of diurnal groundwater fluctuations for estimating evapotranspiration in wetland environments: Case studies in southeast England and northeast Germany[J]. Ecohydrology, 2010, 3(3): 294-305.
doi: 10.1002/eco.v3:3     URL    
[58] Mazur M L C, Wiley M J, Wilcox D A. Estimating evapotranspiration and groundwater flow from water-table fluctuations for a general wetland scenario[J]. Ecohydrology, 2014, 7(2): 378-390.
doi: 10.1002/eco.v7.2     URL    
Mazur M L C, Wiley M J, Wilcox D A. Estimating evapotranspiration and groundwater flow from water-table fluctuations for a general wetland scenario[J]. Ecohydrology, 2014, 7(2): 378-390.
doi: 10.1002/eco.v7.2     URL    
[59] Jobbagy E G, Nosetto M D, Villagra P E, et al. Water subsidies from mountains to deserts: Their role in sustaining groundwater-fed oases in a sandy landscape[J]. Ecological Applications, 2011, 21(3): 678-694.
doi: 10.1890/09-1427.1     URL    
Jobbagy E G, Nosetto M D, Villagra P E, et al. Water subsidies from mountains to deserts: Their role in sustaining groundwater-fed oases in a sandy landscape[J]. Ecological Applications, 2011, 21(3): 678-694.
doi: 10.1890/09-1427.1     URL    
[60] Chen X, Zhang Z C, Zhang X N, et al. Estimation of groundwater recharge from precipitation and evapotranspiration by lysimeter measurement and soil moisture model[J]. Journal of Hydrologic Engineering, 2008, 13(5): 333-340.
doi: 10.1061/(ASCE)1084-0699(2008)13:5(333)     URL    
Chen X, Zhang Z C, Zhang X N, et al. Estimation of groundwater recharge from precipitation and evapotranspiration by lysimeter measurement and soil moisture model[J]. Journal of Hydrologic Engineering, 2008, 13(5): 333-340.
doi: 10.1061/(ASCE)1084-0699(2008)13:5(333)     URL    
[61] Brooksbank K, Veneklaas E J, White D A, et al. The fate of hydraulically redistributed water in a semi-arid zone eucalyptus species[J]. Tree Physiology, 2011, 31(6): 649-658.
doi: 10.1093/treephys/tpr052     URL     pmid: 21743058
Brooksbank K, Veneklaas E J, White D A, et al. The fate of hydraulically redistributed water in a semi-arid zone eucalyptus species[J]. Tree Physiology, 2011, 31(6): 649-658.
doi: 10.1093/treephys/tpr052     URL     pmid: 21743058
[62] Baird K J, Stromberg J C, Maddock T.Linking riparian dynamics and groundwater: An ecohydrologic approach to modeling groundwater and riparian vegetation[J]. Environmental Management, 2005, 36(4): 551-564.
doi: 10.1007/s00267-004-0181-z     URL    
Baird K J, Stromberg J C, Maddock T.Linking riparian dynamics and groundwater: An ecohydrologic approach to modeling groundwater and riparian vegetation[J]. Environmental Management, 2005, 36(4): 551-564.
doi: 10.1007/s00267-004-0181-z     URL    
[63] Jiménez-Martínez J, Candela L, Molinero J, et al. Groundwater recharge in irrigated semi-arid areas: Quantitative hydrological modelling and sensitivity analysis[J]. Hydrogeology Journal, 2010, 18(8): 1 811-1 824.
doi: 10.1007/s10040-010-0658-1     URL    
Jiménez-Martínez J, Candela L, Molinero J, et al. Groundwater recharge in irrigated semi-arid areas: Quantitative hydrological modelling and sensitivity analysis[J]. Hydrogeology Journal, 2010, 18(8): 1 811-1 824.
doi: 10.1007/s10040-010-0658-1     URL    
[64] Ajami H, Meixner T, Maddock T, et al. Impact of land-surface elevation and riparian evapotranspiration seasonality on groundwater budget in MODFLOW models[J]. Hydrogeology Journal, 2011, 19(6): 1 181-1 188.
doi: 10.1007/s10040-011-0743-0     URL    
Ajami H, Meixner T, Maddock T, et al. Impact of land-surface elevation and riparian evapotranspiration seasonality on groundwater budget in MODFLOW models[J]. Hydrogeology Journal, 2011, 19(6): 1 181-1 188.
doi: 10.1007/s10040-011-0743-0     URL    
[65] Soylu M E, Istanbulluoglu E, Lenters J D, et al. Quantifying the impact of groundwater depth on evapotranspiration in a semi-arid grassland region[J]. Hydrology & Earth System Sciences, 2011, 15(3): 787-806.
Soylu M E, Istanbulluoglu E, Lenters J D, et al. Quantifying the impact of groundwater depth on evapotranspiration in a semi-arid grassland region[J]. Hydrology & Earth System Sciences, 2011, 15(3): 787-806.
[66] Vervoort R W, van der Zee S E. Stochastic soil water dynamics of phreatophyte vegetation with dimorphic root systems[J]. Water Resources Research, 2009, 45(10): W10439.DOI.10.1029/2008WR007245.
doi: 10.1029/2010WR009373     URL    
Vervoort R W, van der Zee S E. Stochastic soil water dynamics of phreatophyte vegetation with dimorphic root systems[J]. Water Resources Research, 2009, 45(10): W10439.DOI.10.1029/2008WR007245.
doi: 10.1029/2010WR009373     URL    
[67] Kelly B F J, Timms W A, Andersen M S, et al. Aquifer heterogeneity and response time: The challenge for groundwater management[J]. Crop & Pasture Science, 2013, 64(11/12): 1 141-1 154.
doi: 10.1071/CP13084     URL    
Kelly B F J, Timms W A, Andersen M S, et al. Aquifer heterogeneity and response time: The challenge for groundwater management[J]. Crop & Pasture Science, 2013, 64(11/12): 1 141-1 154.
doi: 10.1071/CP13084     URL    
[68] Yuce G.The vulnerability of groundwater dependent ecosystems: A study on the Porsuk River Basin (Turkey) as a typical example[M]//Baba A, Howard K W F, Gunduz O, eds. Groundwater and Ecosystems. Netherland: Springer, 2006: 295-310.
Yuce G.The vulnerability of groundwater dependent ecosystems: A study on the Porsuk River Basin (Turkey) as a typical example[M]//Baba A, Howard K W F, Gunduz O, eds. Groundwater and Ecosystems. Netherland: Springer, 2006: 295-310.
[69] Lamontagne S, Taylor A R, Cook P G, et al. Field assessment of surface water-groundwater connectivity in a semi-arid river basin (Murray-Darling, Australia)[J]. Hydrological Processes, 2014, 28(4): 1 561-1 572.
doi: 10.1002/hyp.9691     URL    
Lamontagne S, Taylor A R, Cook P G, et al. Field assessment of surface water-groundwater connectivity in a semi-arid river basin (Murray-Darling, Australia)[J]. Hydrological Processes, 2014, 28(4): 1 561-1 572.
doi: 10.1002/hyp.9691     URL    
[70] Kaplan D, Munoz-Carpena R.Complementary effects of surface water and groundwater on soil moisture dynamics in a degraded coastal floodplain forest[J]. Journal of Hydrology, 2011, 398(3/4): 221-234.
doi: 10.1016/j.jhydrol.2010.12.019     URL    
Kaplan D, Munoz-Carpena R.Complementary effects of surface water and groundwater on soil moisture dynamics in a degraded coastal floodplain forest[J]. Journal of Hydrology, 2011, 398(3/4): 221-234.
doi: 10.1016/j.jhydrol.2010.12.019     URL    
[71] Smith J W N, Bonell M, Gibert J, et al. Groundwater-surface water interactions, nutrient fluxes and ecological response in river corridors: Translating science into effective environmental management[J]. Hydrological Processes, 2008, 22(1): 151-157.
doi: 10.1002/(ISSN)1099-1085     URL    
Smith J W N, Bonell M, Gibert J, et al. Groundwater-surface water interactions, nutrient fluxes and ecological response in river corridors: Translating science into effective environmental management[J]. Hydrological Processes, 2008, 22(1): 151-157.
doi: 10.1002/(ISSN)1099-1085     URL    
[72] Aguilera H, Casta?o S, Moreno L, et al. Model of hydrological behaviour of the anthropized semiarid wetland of Las Tablas de Daimiel National Park (Spain) based on surface water-groundwater interactions[J]. Hydrogeology Journal, 2013, 21(3): 623-641.
doi: 10.1007/s10040-012-0950-3     URL    
Aguilera H, Castaño S, Moreno L, et al. Model of hydrological behaviour of the anthropized semiarid wetland of Las Tablas de Daimiel National Park (Spain) based on surface water-groundwater interactions[J]. Hydrogeology Journal, 2013, 21(3): 623-641.
doi: 10.1007/s10040-012-0950-3     URL    
[73] Gu Hongbiao, Chi Baoming, Wang He, et al. Relationship between surface water and groundwater in the Liujiang Basin—Hydrochemical constrains[J]. Advances in Earth Science, 2017, 32(8): 789-799.
doi: 10.11867/j.issn.1001-8166.2017.08.0789     URL    
Gu Hongbiao, Chi Baoming, Wang He, et al. Relationship between surface water and groundwater in the Liujiang Basin—Hydrochemical constrains[J]. Advances in Earth Science, 2017, 32(8): 789-799.
[谷洪彪, 迟宝明, 王贺, 等. 柳江盆地地表水与地下水转化关系的氢氧稳定同位素和水化学证据[J]. 地球科学进展, 2017, 32(8): 789-799.]
doi: 10.11867/j.issn.1001-8166.2017.08.0789     URL    
[谷洪彪, 迟宝明, 王贺, 等. 柳江盆地地表水与地下水转化关系的氢氧稳定同位素和水化学证据[J]. 地球科学进展, 2017, 32(8): 789-799.]
doi: 10.11867/j.issn.1001-8166.2017.08.0789     URL    
[74] Huang T, Pang Z.Estimating groundwater recharge following land-use change using chloride mass balance of soil profiles: A case study at Guyuan and Xifeng in the Loess Plateau of China[J]. Hydrogeology Journal, 2011, 19(1): 177-186.
doi: 10.1007/s10040-010-0643-8     URL    
Huang T, Pang Z.Estimating groundwater recharge following land-use change using chloride mass balance of soil profiles: A case study at Guyuan and Xifeng in the Loess Plateau of China[J]. Hydrogeology Journal, 2011, 19(1): 177-186.
doi: 10.1007/s10040-010-0643-8     URL    
[75] Krause S, Hannah D, Fleckenstein J.Hyporheic hydrology: Interactions at the groundwater-surface water interface[J]. Hydrological Processes, 2009, 23(15): 2 103-2 107.
doi: 10.1002/hyp.7366     URL    
Krause S, Hannah D, Fleckenstein J.Hyporheic hydrology: Interactions at the groundwater-surface water interface[J]. Hydrological Processes, 2009, 23(15): 2 103-2 107.
doi: 10.1002/hyp.7366     URL    
[76] Foglia L, Mcnally A, Harter T.Coupling a spatiotemporally distributed soil water budget with stream-depletion functions to inform stakeholder-driven management of groundwater-dependent ecosystems[J]. Water Resources Research, 2013, 49(11): 7 292-7 310.
doi: 10.1002/wrcr.20555     URL    
Foglia L, Mcnally A, Harter T.Coupling a spatiotemporally distributed soil water budget with stream-depletion functions to inform stakeholder-driven management of groundwater-dependent ecosystems[J]. Water Resources Research, 2013, 49(11): 7 292-7 310.
doi: 10.1002/wrcr.20555     URL    
[77] Mcfarlane D J, Williamson D R.An overview of water logging and salinity in southwestern Australia as related to the ‘Ucarro’experimental catchment[J]. Agricultural Water Management, 2002, 53(1): 5-29.
doi: 10.1016/S0378-3774(01)00153-6     URL    
Mcfarlane D J, Williamson D R.An overview of water logging and salinity in southwestern Australia as related to the ‘Ucarro’experimental catchment[J]. Agricultural Water Management, 2002, 53(1): 5-29.
doi: 10.1016/S0378-3774(01)00153-6     URL    
[78] Runyan C W, D’odorico P.Ecohydrological feedbacks between salt accumulation and vegetation dynamics: Role of vegetation-groundwater interactions[J]. Water Resources Research, 2010, 46(11): W11561.DOI:10.1029/2010WR009464
Runyan C W, D’odorico P.Ecohydrological feedbacks between salt accumulation and vegetation dynamics: Role of vegetation-groundwater interactions[J]. Water Resources Research, 2010, 46(11): W11561.DOI:10.1029/2010WR009464
[79] Antonellini M, Mollema P N.Impact of groundwater salinity on vegetation species richness in the coastal pine forests and wetlands of Ravenna, Italy[J]. Ecological Engineering, 2010, 36(9): 1 201-1 211.
doi: 10.1016/j.ecoleng.2009.12.007     URL    
Antonellini M, Mollema P N.Impact of groundwater salinity on vegetation species richness in the coastal pine forests and wetlands of Ravenna, Italy[J]. Ecological Engineering, 2010, 36(9): 1 201-1 211.
doi: 10.1016/j.ecoleng.2009.12.007     URL    
[80] Shah N, Nachabe M, Ross M.Extinction depth and evapotranspiration from ground water under selected land covers[J]. Groundwater, 2007, 45(3): 329-338.
doi: 10.1111/gwat.2007.45.issue-3     URL    
Shah N, Nachabe M, Ross M.Extinction depth and evapotranspiration from ground water under selected land covers[J]. Groundwater, 2007, 45(3): 329-338.
doi: 10.1111/gwat.2007.45.issue-3     URL    
[81] Huang T M, Pang Z H, Chen Y N, et al. Groundwater circulation relative to water quality and vegetation in an arid transitional zone linking oasis, desert and river[J]. Chinese Science Bulletin, 2013, 58(25): 3 088-3 097.
doi: 10.1007/s11434-013-5948-2     URL    
Huang T M, Pang Z H, Chen Y N, et al. Groundwater circulation relative to water quality and vegetation in an arid transitional zone linking oasis, desert and river[J]. Chinese Science Bulletin, 2013, 58(25): 3 088-3 097.
doi: 10.1007/s11434-013-5948-2     URL    
[82] Anderies J M.Minimal models and agroecological policy at the regional scale: An application to salinity problems in southeastern Australia[J]. Regional Environmental Change, 2005, 5(1): 1-17.
doi: 10.1007/s10113-004-0081-z     URL    
Anderies J M.Minimal models and agroecological policy at the regional scale: An application to salinity problems in southeastern Australia[J]. Regional Environmental Change, 2005, 5(1): 1-17.
doi: 10.1007/s10113-004-0081-z     URL    
[83] Chui T F M, Low S Y, Liong S Y. An ecohydrological model for studying groundwater-vegetation interactions in wetlands[J]. Journal of Hydrology, 2011, 409(1/2): 291-304.
doi: 10.1016/j.jhydrol.2011.08.039     URL    
Chui T F M, Low S Y, Liong S Y. An ecohydrological model for studying groundwater-vegetation interactions in wetlands[J]. Journal of Hydrology, 2011, 409(1/2): 291-304.
doi: 10.1016/j.jhydrol.2011.08.039     URL    
[84] Barron O, Silberstein R, Ali R, et al. Climate change effects on water-dependent ecosystems in south-western Australia (Reprinted from J. Hydrol., vol 434, pg 95-109, 2012)[J]. Journal of Hydrology, 2012, 475:473-487.
doi: 10.1016/j.jhydrol.2012.02.049     URL    
Barron O, Silberstein R, Ali R, et al. Climate change effects on water-dependent ecosystems in south-western Australia (Reprinted from J. Hydrol., vol 434, pg 95-109, 2012)[J]. Journal of Hydrology, 2012, 475:473-487.
doi: 10.1016/j.jhydrol.2012.02.049     URL    
[85] Barron O, Froend R, Hodgson G, et al. Projected risks to groundwater-dependent terrestrial vegetation caused by changing climate and groundwater abstraction in the Central Perth Basin, Western Australia[J]. Hydrological Processes, 2014, 28(22): 5 513-5 529.
doi: 10.1002/hyp.10014     URL    
Barron O, Froend R, Hodgson G, et al. Projected risks to groundwater-dependent terrestrial vegetation caused by changing climate and groundwater abstraction in the Central Perth Basin, Western Australia[J]. Hydrological Processes, 2014, 28(22): 5 513-5 529.
doi: 10.1002/hyp.10014     URL    
[86] Gowing J, Parkin G, Forsythe N, et al. Shallow groundwater in sub-Saharan Africa: Neglected opportunity for sustainable intensification of small-scale agriculture?[J]. Hydrology & Earth System Sciences Discussions, 2016, 10: 519-549.
Gowing J, Parkin G, Forsythe N, et al. Shallow groundwater in sub-Saharan Africa: Neglected opportunity for sustainable intensification of small-scale agriculture?[J]. Hydrology & Earth System Sciences Discussions, 2016, 10: 519-549.
[87] Tomlinson M, Boulton A J.Ecology and management of subsurface groundwater dependent ecosystems in Australia—A review[J]. Marine and Freshwater Research, 2010, 61(8): 936-949.
doi: 10.1071/MF09267     URL    
Tomlinson M, Boulton A J.Ecology and management of subsurface groundwater dependent ecosystems in Australia—A review[J]. Marine and Freshwater Research, 2010, 61(8): 936-949.
doi: 10.1071/MF09267     URL    
[88] Wilby R L, Dessai S.Robust adaptation to climate change[J]. Weather, 2010, 65(7): 180-185.
doi: 10.1002/wea.543     URL    
Wilby R L, Dessai S.Robust adaptation to climate change[J]. Weather, 2010, 65(7): 180-185.
doi: 10.1002/wea.543     URL    
[89] Ficklin D L, Luedeling E, Zhang M H.Sensitivity of groundwater recharge under irrigated agriculture to changes in climate, CO2 concentrations and canopy structure[J]. Agricultural Water Management, 2010, 97(7): 1 039-1 050.
doi: 10.1016/j.agwat.2010.02.009     URL    
Ficklin D L, Luedeling E, Zhang M H.Sensitivity of groundwater recharge under irrigated agriculture to changes in climate, CO2 concentrations and canopy structure[J]. Agricultural Water Management, 2010, 97(7): 1 039-1 050.
doi: 10.1016/j.agwat.2010.02.009     URL    
[90] Brolsma R J, Van Vliet M T H, Bierkens M F P. Climate change impact on a groundwater-influenced hillslope ecosystem[J]. Water Resources Research, 2010, 46(11): W11503.DOI:10.1029/2009WR008782.
doi: 10.1029/2009WR008782     URL    
Brolsma R J, Van Vliet M T H, Bierkens M F P. Climate change impact on a groundwater-influenced hillslope ecosystem[J]. Water Resources Research, 2010, 46(11): W11503.DOI:10.1029/2009WR008782.
doi: 10.1029/2009WR008782     URL    
[91] Jolly I D, Mcewan K L, Holland K L.A review of groundwater-surface water interactions in arid/semi-arid wetlands and the consequences of salinity for wetland ecology[J]. Ecohydrology, 2008, 1(1): 43-58.
doi: 10.1002/eco.6     URL    
Jolly I D, Mcewan K L, Holland K L.A review of groundwater-surface water interactions in arid/semi-arid wetlands and the consequences of salinity for wetland ecology[J]. Ecohydrology, 2008, 1(1): 43-58.
doi: 10.1002/eco.6     URL    
[92] Rodriguez-Iturbe I, D’odorico P, Laio F, et al. Challenges in humid land ecohydrology: Interactions of water table and unsaturated zone with climate, soil, and vegetation[J]. Water Resources Research, 2007, 43(9): W09301.DOI:10.1029/2007WR006073.
Rodriguez-Iturbe I, D’odorico P, Laio F, et al. Challenges in humid land ecohydrology: Interactions of water table and unsaturated zone with climate, soil, and vegetation[J]. Water Resources Research, 2007, 43(9): W09301.DOI:10.1029/2007WR006073.
[93] Laio F, Tamea S, Ridolfi L, et al. Ecohydrology of groundwater-dependent ecosystems: 1. Stochastic water table dynamics[J]. Water Resources Research, 2009, 45(5):W05419.DOI:10.1029/2008WR007292.
Laio F, Tamea S, Ridolfi L, et al. Ecohydrology of groundwater-dependent ecosystems: 1. Stochastic water table dynamics[J]. Water Resources Research, 2009, 45(5):W05419.DOI:10.1029/2008WR007292.
[94] Pumo D, Tamea S, Noto L V, et al. Modeling belowground water table fluctuations in the Everglades[J]. Water Resources Research, 2010, 46(11): W11557. DOI: 10.1029/2009WR008911.
doi: 10.1029/2009WR008911     URL    
Pumo D, Tamea S, Noto L V, et al. Modeling belowground water table fluctuations in the Everglades[J]. Water Resources Research, 2010, 46(11): W11557. DOI: 10.1029/2009WR008911.
doi: 10.1029/2009WR008911     URL    
[95] Borgogno F, D'odorico P, Laio F, et al. Stochastic resonance and coherence resonance in groundwater-dependent plant ecosystems[J]. Journal of Theoretical Biology, 2012, 293(1): 65-73.
doi: 10.1016/j.jtbi.2011.09.015     URL     pmid: 21968441
Borgogno F, D'odorico P, Laio F, et al. Stochastic resonance and coherence resonance in groundwater-dependent plant ecosystems[J]. Journal of Theoretical Biology, 2012, 293(1): 65-73.
doi: 10.1016/j.jtbi.2011.09.015     URL     pmid: 21968441
[96] Vereecken H, Huisman J A, Bogena H, ,et al. On the value of soil moisture measurements in vadose zone hydrology: A review[J]. Water Resources Research, 2008, 44(4): W00D06.DOI:10.1029/2008WR006829.
doi: 10.1029/2008WR006829     URL    
Vereecken H, Huisman J A, Bogena H, ,et al. On the value of soil moisture measurements in vadose zone hydrology: A review[J]. Water Resources Research, 2008, 44(4): W00D06.DOI:10.1029/2008WR006829.
doi: 10.1029/2008WR006829     URL    
[97] Mekki I, Jacob F, Marlet S, et al. Management of groundwater resources in relation to oasis sustainability: The case of the Nefzawa region in Tunisia[J]. Journal of Environmental Management, 2013, 121(7): 142-151.
Mekki I, Jacob F, Marlet S, et al. Management of groundwater resources in relation to oasis sustainability: The case of the Nefzawa region in Tunisia[J]. Journal of Environmental Management, 2013, 121(7): 142-151.
[98] Brolsma R, Karssenberg D, Bierkens M.Vegetation competition model for water and light limitation. I: Model description, one-dimensional competition and the influence of groundwater[J]. Ecological Modelling, 2010, 221(10): 1 348-1 363.
doi: 10.1016/j.ecolmodel.2010.02.012     URL    
Brolsma R, Karssenberg D, Bierkens M.Vegetation competition model for water and light limitation. I: Model description, one-dimensional competition and the influence of groundwater[J]. Ecological Modelling, 2010, 221(10): 1 348-1 363.
doi: 10.1016/j.ecolmodel.2010.02.012     URL    
[99] Elmore A, Kaste J, Okin G, et al. Groundwater influences on atmospheric dust generation in deserts[J]. Journal of Arid Environments, 2008, 72(10): 1 753-1 765.
doi: 10.1016/j.jaridenv.2008.05.008     URL    
Elmore A, Kaste J, Okin G, et al. Groundwater influences on atmospheric dust generation in deserts[J]. Journal of Arid Environments, 2008, 72(10): 1 753-1 765.
doi: 10.1016/j.jaridenv.2008.05.008     URL    
[100] Murray B R, Hose G C, Eamus D, et al. Valuation of groundwater-dependent ecosystems: A functional methodology incorporating ecosystem services[J]. Australian Journal of Botany, 2006, 54(2): 221-229.
doi: 10.1071/BT05018     URL    
Murray B R, Hose G C, Eamus D, et al. Valuation of groundwater-dependent ecosystems: A functional methodology incorporating ecosystem services[J]. Australian Journal of Botany, 2006, 54(2): 221-229.
doi: 10.1071/BT05018     URL    
[101] Aldous A R, Bach L B.Hydro-ecology of groundwater-dependent ecosystems: Applying basic science to groundwater management[J]. Hydrological Sciences Journal, 2014, 59(3/4): 530-544.
doi: 10.1080/02626667.2014.889296     URL    
Aldous A R, Bach L B.Hydro-ecology of groundwater-dependent ecosystems: Applying basic science to groundwater management[J]. Hydrological Sciences Journal, 2014, 59(3/4): 530-544.
doi: 10.1080/02626667.2014.889296     URL    
[102] Krause S, Heathwaite A L, Miller F, et al. Groundwater-dependent wetlands in the UK and Ireland: Controls, functioning and assessing the likelihood of damage from human activities[J]. Water Resources Management, 2007, 21(12): 2 015-2 025.
doi: 10.1007/s11269-007-9192-x     URL    
Krause S, Heathwaite A L, Miller F, et al. Groundwater-dependent wetlands in the UK and Ireland: Controls, functioning and assessing the likelihood of damage from human activities[J]. Water Resources Management, 2007, 21(12): 2 015-2 025.
doi: 10.1007/s11269-007-9192-x     URL    
[103] Thomas F M, Arndt S K, Bruelheide H, et al. Ecological basis for a sustainable management of the indigenous vegetation in a Central-Asian Desert: Presentation and first results[J]. Journal of Applied Botany, 2000, 74(5/6): 212-219.
Thomas F M, Arndt S K, Bruelheide H, et al. Ecological basis for a sustainable management of the indigenous vegetation in a Central-Asian Desert: Presentation and first results[J]. Journal of Applied Botany, 2000, 74(5/6): 212-219.
[104] Chen Guodong, Xiao Honglang, Xu Zhongmin, et al. Water issue and its countermeasure in the inland river basins of Northwest China—A case study in Heihe River Basin[J]. Journal of Glaciology and Geocryology, 2006, 28(3): 407-413.
doi: 10.3969/j.issn.1000-0240.2006.03.017     URL    
Chen Guodong, Xiao Honglang, Xu Zhongmin, et al. Water issue and its countermeasure in the inland river basins of Northwest China—A case study in Heihe River Basin[J]. Journal of Glaciology and Geocryology, 2006, 28(3): 407-413.
[程国栋, 肖洪浪, 徐中民,等. 中国西北内陆河水问题及其应对策略——以黑河流域为例[J]. 冰川冻土, 2006, 28(3):407-413.]
doi: 10.3969/j.issn.1000-0240.2006.03.017     URL    
[程国栋, 肖洪浪, 徐中民,等. 中国西北内陆河水问题及其应对策略——以黑河流域为例[J]. 冰川冻土, 2006, 28(3):407-413.]
doi: 10.3969/j.issn.1000-0240.2006.03.017     URL    
[1] 单薪蒙, 温家洪, 王军, 胡恒智. 深度不确定性下的灾害风险稳健决策方法评述[J]. 地球科学进展, 2021, 36(9): 911-921.
[2] 段伟利, 邹珊, 陈亚宁, 李稚, 方功焕. 18792015年巴尔喀什湖水位变化及其主要影响因素分析[J]. 地球科学进展, 2021, 36(9): 950-961.
[3] 王澄海, 张晟宁, 张飞民, 李课臣, 杨凯. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[4] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[5] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[6] 张子洋, 闫明, MULVANEY Robert, 季峻峰, 效存德, 刘雷保, 安春雷. 东南极 LGB69冰芯 17122001年气温变化记录的初步研究[J]. 地球科学进展, 2021, 36(2): 172-184.
[7] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[8] 龙上敏,刘秦玉,郑小童,程旭华,白学志,高臻. 南大洋海温长期变化研究进展[J]. 地球科学进展, 2020, 35(9): 962-977.
[9] 蔡运龙. 生态问题的社会经济检视[J]. 地球科学进展, 2020, 35(7): 742-749.
[10] 萧凌波. 17361911年华北饥荒的时空分布及其与气候、灾害、收成的关系[J]. 地球科学进展, 2020, 35(5): 478-487.
[11] 熊建国, 李有利, 张培震. 夷平面研究新进展[J]. 地球科学进展, 2020, 35(4): 378-388.
[12] 武登云, 任治坤, 吕红华, 刘金瑞, 哈广浩, 张弛, 朱孟浩. 冲积扇形态与沉积特征及其动力学控制因素:进展与展望[J]. 地球科学进展, 2020, 35(4): 389-403.
[13] 胡利民,石学法,叶君,张钰莹. 北极东西伯利亚陆架沉积有机碳的源汇过程研究进展[J]. 地球科学进展, 2020, 35(10): 1073-1086.
[14] 王亚锋,芦晓明,朱海峰,梁尔源. 高山树线的调查与研究方法[J]. 地球科学进展, 2020, 35(1): 38-51.
[15] 罗鑫玥,陈明星. 城镇化对气候变化影响的研究进展[J]. 地球科学进展, 2019, 34(9): 984-997.
阅读次数
全文


摘要