地球科学进展 ›› 2018, Vol. 33 ›› Issue (7): 751 -761. doi: 10.11867/j.issn.1001-8166.2018.07.0751

研究论文 上一篇    下一篇

云贵高原北盘江流域构造地貌特征分析
樊云龙 1, 2( ), 潘保田 1, *( ), 胡振波 1, 任大银 2, 陈起伟 2, 刘芬良 1, 李宗盟 1   
  1. 1.兰州大学资源环境学院西部环境教育部重点实验室,甘肃 兰州 730000
    2.贵州师范学院地理与资源学院贵州省地理国情监测重点实验室,贵州 贵阳 550018
  • 收稿日期:2017-12-05 修回日期:2018-04-17 出版日期:2018-07-20
  • 通讯作者: 潘保田 E-mail:fanyunlongpeng@163.com;panbt@lzu.edu.cn
  • 基金资助:
    *国家自然科学基金项目“红水河上游北盘江峡谷发育与演化研究”(编号:41501006);贵州省社发攻关项目“喀斯特生态系统固碳增汇技术研究”(编号:黔科合SY字[2012]3009)资助.

An Analysis of Tectonic Geomorphologic Characteristics of the Beipanjiang Basin in the Yunnan-Guizhou Plateau

Yunlong Fan 1, 2( ), Baotian Pan 1, *( ), Zhenbo Hu 1, Dayin Ren 2, Qiwei Chen 2, Fenliang Liu 1, Zongmeng Li 1   

  1. 1.Key Laboratory of Western China’s Environmental Systems(Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China;
    2.Guizhou Provincial Key Laboratory of Geographic State Monitoring, School of Geography and Resource Science, Guizhou Education University, Guiyang 550018, China
  • Received:2017-12-05 Revised:2018-04-17 Online:2018-07-20 Published:2018-08-30
  • Contact: Baotian Pan E-mail:fanyunlongpeng@163.com;panbt@lzu.edu.cn
  • About author:

    First author:Fan Yunlong(1983-),male,Jingle County,Shanxi Province,Ph.D student. Research areas include geomorphology and environment. E-mail:fanyunlongpeng@163.com

  • Supported by:
    Project supported by the National Natural Science Foundation of China“The study on the development and evolution of Beipan River Gorge in the upper reaches of Hongshui River”(No41501006);The Guizhou Provincial Social Development Project “Study of the technology of carbon sequestration in karst ecosystem”(No[2012]3009).

云贵高原位于青藏高原东南侧,新生代以来伴随着青藏高原的隆升而发生了一系列构造抬升运动。北盘江发源于滇东,自西北向东南流经云贵高原向广西丘陵过渡的斜坡地带。选取北盘江作为研究区,通过提取流域河流地貌参数来研究新构造运动,定量化分析研究区的构造地貌特征。利用30 m分辨率的数字高程模型(DEM)数据,通过GIS技术提取北盘江水系流域的河流地貌参数,包括子流域的面积高程积分(HI)、流域盆地倾斜指数(AF)、河长阶梯指数(SL)、谷底宽度与谷肩高度比(VF)等,并综合分析区域地质构造背景、断层及地震分布等特征。分析表明:4种地貌参数能很好地反映区域构造运动和地貌特征;垭都—紫云断裂在内的一系列断层系统对北盘江中游地区的河流地貌、水系格局、河谷形态等起到了控制性的作用;北盘江流域的地貌演化过程受地质构造作用影响较大,且区域差异明显。

The Yunnan-Guizhou Plateau, located on the southeast boundary of the Tibet Plateau, is the second geomorphologic step in China continent. The large area tilting tectonic deformation occurred in this plateau with the uplift of the Tibet plateau since the Cenozoic. The Beipanjiang River rises in eastern Yunnan Province and southeastward across the slope zone from the Yunnan-Guizhou Plateau to the Guangxi Plain, and goes into the Hongshui River by the Wangmo in Guizhou Province. Due to the southeastward extrusion by the Tibetan Plateau, deep incised-valleys formed in the Yunnan-Guizhou Plateau, which have the characteristics of developed fault, complicated geological structure and rugged terrain. The Cenozoic evolution history of the Yunnan-Guizhou Plateau and the response to the uplifting of Tibet Plateau are unclear because of the lack of sedimentation records, and also this has long been a bottleneck to geomorphologic evolution research. Based on DEM data and GIS software, we extracted the geomorphic indexes which included hypsometric integral [HI], drainage basin asymmetry [AF], stream-length gradient index [SL], and valley floor width-to-height ratio [VF]. The results show that four geomorphic indexes can reflect the regional tectonic movement and topographical features. The geomorphology of Beipanjiang Basin is controlled by tectonic action mainly, especially the Yadu-Ziyun Fracture has great impact on the formation of valleys and the development of water system greatly.

中图分类号: 

图1 北盘江流域岩性分布图 [ 4 ]
Fig.1 Geological map of Beipanjiang River watershed [ 4 ]
图1 北盘江流域岩性分布图 [ 4 ]
Fig.1 Geological map of Beipanjiang River watershed [ 4 ]
图2 北盘江流域HI值 1.巧墓河;2.望谟河;3.巴若河;4.红纳河;5.打邦河;6.落蟒河;7.罗秧河;8.沙营河;9.洒志河;10.茅口河;11.补那河;12.古牛河;13.野钟河;14.杨梅河;15.发耳河;16.都格河;17.可渡河;18.宝山河;19.龙场河;20.革香河;21.东山河;22.亦那河;23.拖长江;24.营盘河;25.顺场河;26.乌都河;27.文笔河;28.新民河;29.麻布河;30.光照河;31.西泌河;32.麻沙河;33.乜篾河;34.龙弄河;35.花江河;36.牛场河;37.者相河;38.白层河;39.鲁贡河;40.大田河;41.者楼河
Fig.2 The distribution of hypsometric integral classes 1.Qiaomuhe; 2.Wangmohe; 3.Baruohe; 4.Hongnahe; 5.Dabanghe; 6.Luomanghe; 7.Luoyanghe; 8.Shayinghe; 9.Sazhihe; 10.Maokouhe; 11.Bunahe;12.Guniuhe; 13.Yezhonghe; 14.Yangmeihe; 15.Faerhe; 16.Dugehe; 17.Keduhe; 18.Baoshanhe; 19.Longchanghe; 20.Gxianghe; 21.Dongshanhe;22.Yinahe; 23.Tuochangjiang; 24.Yingpanhe; 25.Shunchanghe; 26.Wuduhe; 27.Wenbihe; 28.Xinminhe; 29.Mabuhe;30.Guangzhaohe; 31.Ximihe; 32.Mashahe; 33.Miemiehe; 34.Longnonghe; 35.Huangjianghe; 36.Niuchanghe;37.Zhexianghe; 38.Baicenghe; 39.Lugonghe; 40. Datianhe; 41.Zhelouhe
图2 北盘江流域HI值 1.巧墓河;2.望谟河;3.巴若河;4.红纳河;5.打邦河;6.落蟒河;7.罗秧河;8.沙营河;9.洒志河;10.茅口河;11.补那河;12.古牛河;13.野钟河;14.杨梅河;15.发耳河;16.都格河;17.可渡河;18.宝山河;19.龙场河;20.革香河;21.东山河;22.亦那河;23.拖长江;24.营盘河;25.顺场河;26.乌都河;27.文笔河;28.新民河;29.麻布河;30.光照河;31.西泌河;32.麻沙河;33.乜篾河;34.龙弄河;35.花江河;36.牛场河;37.者相河;38.白层河;39.鲁贡河;40.大田河;41.者楼河
Fig.2 The distribution of hypsometric integral classes 1.Qiaomuhe; 2.Wangmohe; 3.Baruohe; 4.Hongnahe; 5.Dabanghe; 6.Luomanghe; 7.Luoyanghe; 8.Shayinghe; 9.Sazhihe; 10.Maokouhe; 11.Bunahe;12.Guniuhe; 13.Yezhonghe; 14.Yangmeihe; 15.Faerhe; 16.Dugehe; 17.Keduhe; 18.Baoshanhe; 19.Longchanghe; 20.Gxianghe; 21.Dongshanhe;22.Yinahe; 23.Tuochangjiang; 24.Yingpanhe; 25.Shunchanghe; 26.Wuduhe; 27.Wenbihe; 28.Xinminhe; 29.Mabuhe;30.Guangzhaohe; 31.Ximihe; 32.Mashahe; 33.Miemiehe; 34.Longnonghe; 35.Huangjianghe; 36.Niuchanghe;37.Zhexianghe; 38.Baicenghe; 39.Lugonghe; 40. Datianhe; 41.Zhelouhe
图3 北盘江流域AF值及倾向
Fig.3 The distribution of AF
图3 北盘江流域AF值及倾向
Fig.3 The distribution of AF
图4 北盘江SL指数
Fig.4 The distribution of SL
图4 北盘江SL指数
Fig.4 The distribution of SL
图5 北盘江谷底宽度与谷肩比值分布
Fig.5 The distribution of Vf ratios
图5 北盘江谷底宽度与谷肩比值分布
Fig.5 The distribution of Vf ratios
图6 北盘江典型河谷照片 (a)北盘江上游宣威盆地河谷;(b)北盘江上游都格镇附近河谷;(c)北盘江中游郎岱三角形构造区河谷;(d)北盘江中游花江峡谷
Fig.6 Field imagery and typical valley sections of the Beipanjiang River (a)Xuanwei Basin in the upper reaches of Beipanjiang River; (b)Duge Town in the upper reaches of Beipanjiang River; (c)Langdai triangle structure in the middle reaches of Beipanjiang River; (d)Huajiang Gorge in the middle reaches of Beipanjiang River
图6 北盘江典型河谷照片 (a)北盘江上游宣威盆地河谷;(b)北盘江上游都格镇附近河谷;(c)北盘江中游郎岱三角形构造区河谷;(d)北盘江中游花江峡谷
Fig.6 Field imagery and typical valley sections of the Beipanjiang River (a)Xuanwei Basin in the upper reaches of Beipanjiang River; (b)Duge Town in the upper reaches of Beipanjiang River; (c)Langdai triangle structure in the middle reaches of Beipanjiang River; (d)Huajiang Gorge in the middle reaches of Beipanjiang River
图7 垭都—紫云断裂带综合剖面图 [ 4 ]
Fig.7 Yadu-Ziyun Fracture zone profile [ 4 ]
图7 垭都—紫云断裂带综合剖面图 [ 4 ]
Fig.7 Yadu-Ziyun Fracture zone profile [ 4 ]
图8 北盘江区域构造简图(地震数据引自《中国地震信息网》) (a)郎岱三角形构造区;(b)花江峡谷区
Fig.8 Sketch map showing tectonic geology in Beipanjiang watershed(The seismic data from China Seismic Information) (a)Langdai triangle structure; (b)Huajiang Gorge
图8 北盘江区域构造简图(地震数据引自《中国地震信息网》) (a)郎岱三角形构造区;(b)花江峡谷区
Fig.8 Sketch map showing tectonic geology in Beipanjiang watershed(The seismic data from China Seismic Information) (a)Langdai triangle structure; (b)Huajiang Gorge
[1] Tao Yaling,Chang Hong.River geomorphic evolution connected to tectonics around the First Bend of Yangtze River[J]. Advances in Earth Science, 2017,32(5):488-501.
doi: 10.11867/j.issn.1001-8166.2017.05.0488     URL    
Tao Yaling,Chang Hong.River geomorphic evolution connected to tectonics around the First Bend of Yangtze River[J]. Advances in Earth Science, 2017,32(5):488-501.
[陶亚玲,常宏.长江第一湾附近构造作用下的河流地貌演化[J].地球科学进展,2017,32(5):488-501.]
doi: 10.11867/j.issn.1001-8166.2017.05.0488     URL    
[陶亚玲,常宏.长江第一湾附近构造作用下的河流地貌演化[J].地球科学进展,2017,32(5):488-501.]
doi: 10.11867/j.issn.1001-8166.2017.05.0488     URL    
[2] Xiong Kangning.Development of cone karst in response to neotectonism in Guizou[J]. Guizhou Geology, 1996, 13(2):181-186.
Xiong Kangning.Development of cone karst in response to neotectonism in Guizou[J]. Guizhou Geology, 1996, 13(2):181-186.
[熊康宁. 新构造运动对贵州锥状喀斯特发育的影响[J].贵州科学, 1996, 13(2):181-186.]
[熊康宁. 新构造运动对贵州锥状喀斯特发育的影响[J].贵州科学, 1996, 13(2):181-186.]
[3] Jiang Fuchu, Wu Xihao.Late cenozoic tectonic movement in geomorphologic boundary belt of southeastern Qinghai-Xizang Plateau[J]. Journal of Chendu University of Technology,1998,25(2):162-168.
Jiang Fuchu, Wu Xihao.Late cenozoic tectonic movement in geomorphologic boundary belt of southeastern Qinghai-Xizang Plateau[J]. Journal of Chendu University of Technology,1998,25(2):162-168.
[蒋复初,吴锡浩.青藏高原东南部地貌边界带晚新生代构造运动[J].成都理工学院学报,1998,25(2):162-168.]
[蒋复初,吴锡浩.青藏高原东南部地貌边界带晚新生代构造运动[J].成都理工学院学报,1998,25(2):162-168.]
[4] Wang Yan’geng, Suo Shutian, Zhang Mingfa, et al.Tectonics and Carlin-type Gold Deposits in Southwestern Guizhou, China[M]. Beijing: Geological Publishing House, 1994: 45-47.
Wang Yan’geng, Suo Shutian, Zhang Mingfa, et al.Tectonics and Carlin-type Gold Deposits in Southwestern Guizhou, China[M]. Beijing: Geological Publishing House, 1994: 45-47.
[王砚耕,索书田,张明发,等. 黔西南构造与卡林型金矿[M]. 北京:地质出版社, 1994: 45-47.]
[王砚耕,索书田,张明发,等. 黔西南构造与卡林型金矿[M]. 北京:地质出版社, 1994: 45-47.]
[5] Wang Jinjin, Hu Yuzhao, Zhang Guiquan, et al. Seismic prospecting evidence on control of thrust nappe structrues in Mid-southwestern Guizhou to Kalin type gold deposit[J]. Geology and Exploration, 2011, 47(3):439-447.
URL    
Wang Jinjin, Hu Yuzhao, Zhang Guiquan, et al. Seismic prospecting evidence on control of thrust nappe structrues in Mid-southwestern Guizhou to Kalin type gold deposit[J]. Geology and Exploration, 2011, 47(3):439-447.
[王津津,胡煜昭,张桂权,等.黔西南中部逆冲推覆构造控制卡林型金矿的地震勘探证据[J].地质与勘探, 2011, 47(3):439-447.]
URL    
[王津津,胡煜昭,张桂权,等.黔西南中部逆冲推覆构造控制卡林型金矿的地震勘探证据[J].地质与勘探, 2011, 47(3):439-447.]
URL    
[6] Wang Erqi, Yin Jiyun.Cenozoic multi-stage deformation occurred in southwest Sichuan: Cause for the dismemberment of the proto-Sichuan Basin[J]. Journal of Northwest University(Natural Science Edition), 2009,39(3): 359-367.
URL    
Wang Erqi, Yin Jiyun.Cenozoic multi-stage deformation occurred in southwest Sichuan: Cause for the dismemberment of the proto-Sichuan Basin[J]. Journal of Northwest University(Natural Science Edition), 2009,39(3): 359-367.
[王二七,尹纪云. 西南新生代构造作用以及四川原型盆地的破坏[J].西北大学学报:自然科学版, 2009,39(3): 359-367.]
URL    
[王二七,尹纪云. 西南新生代构造作用以及四川原型盆地的破坏[J].西北大学学报:自然科学版, 2009,39(3): 359-367.]
URL    
[7] Zhang Peiquan, Sun Jie, Liu Xiaohan,et al. Features of fluvial landform and crust deformations along the Nanpanjiang River-Hongshuihe River(middle segment)[J]. Quaternary Sciences, 2013,33(4): 771-784.
doi: 10.3969/j.issn.1001-7410.2013.04.14    
Zhang Peiquan, Sun Jie, Liu Xiaohan,et al. Features of fluvial landform and crust deformations along the Nanpanjiang River-Hongshuihe River(middle segment)[J]. Quaternary Sciences, 2013,33(4): 771-784.
[张沛全,孙杰,刘小汉,等. 南盘江—红水河(中段)的河流地貌特征与地壳变形[J].第四纪研究, 2013,33(4): 771-784.]
doi: 10.3969/j.issn.1001-7410.2013.04.14    
[张沛全,孙杰,刘小汉,等. 南盘江—红水河(中段)的河流地貌特征与地壳变形[J].第四纪研究, 2013,33(4): 771-784.]
doi: 10.3969/j.issn.1001-7410.2013.04.14    
[8] Antón L, De Vicente G, Mu?oz-Martín A, et al. Using river long profiles and geomorphic indices to evaluate the geomorphological signature of continental scale drainage capture, Duero basin (NW Iberia)[J]. Geomorphology, 2014, 206: 250-261.
doi: 10.1016/j.geomorph.2013.09.028     URL    
Antón L, De Vicente G, Muñoz-Martín A, et al. Using river long profiles and geomorphic indices to evaluate the geomorphological signature of continental scale drainage capture, Duero basin (NW Iberia)[J]. Geomorphology, 2014, 206: 250-261.
doi: 10.1016/j.geomorph.2013.09.028     URL    
[9] Zhang Tianqi, Wang Zhen, Zhang Xiaoming,et al. Hypsometric integral analysis of the Urumqi River drainage basin and its implications for topographic evolution[J]. Quaternary Sciences, 2015,35(1):60-70.
doi: 10.11928/j.issn.1001-7410.2015.01.06     URL    
Zhang Tianqi, Wang Zhen, Zhang Xiaoming,et al. Hypsometric integral analysis of the Urumqi River drainage basin and its implications for topographic evolution[J]. Quaternary Sciences, 2015,35(1):60-70.
[张天琪,王振,张晓明,等. 北天山乌鲁木齐河流域面积—高程积分及其地貌意义[J],第四纪研究, 2015,35(1):60-70.]
doi: 10.11928/j.issn.1001-7410.2015.01.06     URL    
[张天琪,王振,张晓明,等. 北天山乌鲁木齐河流域面积—高程积分及其地貌意义[J],第四纪研究, 2015,35(1):60-70.]
doi: 10.11928/j.issn.1001-7410.2015.01.06     URL    
[10] Zhou Dequan, Liu Xiuming, Jiang Lijun,et al. Step-like land- forms and uplift of Guizhou Plateau[J]. Earth and Environment, 2005,33(2):79-84.
Zhou Dequan, Liu Xiuming, Jiang Lijun,et al. Step-like land- forms and uplift of Guizhou Plateau[J]. Earth and Environment, 2005,33(2):79-84.
[周德全,刘秀明,姜立君,等.贵州高原层状地貌与高原抬升[J].地球与环境, 2005,33(2):79-84.]
[周德全,刘秀明,姜立君,等.贵州高原层状地貌与高原抬升[J].地球与环境, 2005,33(2):79-84.]
[11] Pan Baotian, Li Jijun, Li Bingyuan.Discussion on evidences for surface uplift of the Tibetan Plateau[J]. Journal of Lanzhou University (Natural Sciences), 2000, 36(3):100-111.
Pan Baotian, Li Jijun, Li Bingyuan.Discussion on evidences for surface uplift of the Tibetan Plateau[J]. Journal of Lanzhou University (Natural Sciences), 2000, 36(3):100-111.
[潘保田,李吉均,李炳元.青藏高原地面抬升证据讨论[J].兰州大学学报:自然科学版, 2000, 36(3):100-111.]
[潘保田,李吉均,李炳元.青藏高原地面抬升证据讨论[J].兰州大学学报:自然科学版, 2000, 36(3):100-111.]
[12] Clark M K, Royden L H, Whipple K X, et al. Use of a regional,relict landscape to measure vertical deformation of the eastern Tibetan Plateau[J]. Journal of Geophysical Research (Earth Surface), 2006, 111(F3).DOI:10.1029/2005JF000294.
Clark M K, Royden L H, Whipple K X, et al. Use of a regional,relict landscape to measure vertical deformation of the eastern Tibetan Plateau[J]. Journal of Geophysical Research (Earth Surface), 2006, 111(F3).DOI:10.1029/2005JF000294.
[13] Strahler Arthur N.Hypsometric (area~altitude) analysis of erosional topography[J]. Bulletin of the Geological Society of America, 1952, 63(11):1 117-1 142.
doi: 10.1130/0016-7606(1952)63[1117:HAAOET]2.0.CO;2     URL    
Strahler Arthur N.Hypsometric (area~altitude) analysis of erosional topography[J]. Bulletin of the Geological Society of America, 1952, 63(11):1 117-1 142.
doi: 10.1130/0016-7606(1952)63[1117:HAAOET]2.0.CO;2     URL    
[14] Clement Alastair J H, Martin S B. Tilting of active folds and drainage asymmetry on the Manawatu Anticlines, New Zealand: A preliminary investigation[J]. Earth Surface Processes and Landforms, 2008, 33(11): 1 787-1 795.
doi: 10.1002/esp.v33:11     URL    
Clement Alastair J H, Martin S B. Tilting of active folds and drainage asymmetry on the Manawatu Anticlines, New Zealand: A preliminary investigation[J]. Earth Surface Processes and Landforms, 2008, 33(11): 1 787-1 795.
doi: 10.1002/esp.v33:11     URL    
[15] John Biju, Rajendran C P.Geomorphic indicators of neotectonism from the Precambrian terrain of Peninsular India: A study from the Bharathapuzha Basin, Kerala[J]. Journal of the Geological Society of India, 2008, 71(6): 827-840.
John Biju, Rajendran C P.Geomorphic indicators of neotectonism from the Precambrian terrain of Peninsular India: A study from the Bharathapuzha Basin, Kerala[J]. Journal of the Geological Society of India, 2008, 71(6): 827-840.
[16] Perez-Pena J V, Azanon J M, Azor A. Spatial analysis of stream power using GIS:SLK anomaly maps[J]. Earth Surface Processes and Landforms, 2009, 34(1):16-25.
doi: 10.1002/esp.1684     URL    
Perez-Pena J V, Azanon J M, Azor A. Spatial analysis of stream power using GIS:SLK anomaly maps[J]. Earth Surface Processes and Landforms, 2009, 34(1):16-25.
doi: 10.1002/esp.1684     URL    
[17] Troiani M F, Della Seta.The use of the stream length-Gradient index in morphotectonic analysis of smallcatchments: A case study from Central Italy[J]. Geomorphology, 2008, 102: 159-168.
doi: 10.1016/j.geomorph.2007.06.020     URL    
Troiani M F, Della Seta.The use of the stream length-Gradient index in morphotectonic analysis of smallcatchments: A case study from Central Italy[J]. Geomorphology, 2008, 102: 159-168.
doi: 10.1016/j.geomorph.2007.06.020     URL    
[18] Chang Zhiyang, Wang Jian, Bai Shibiao, et al. Appraisal of active tectonic in Bailongjiang Basin based on DEM data[J]. Quaternary Sciences, 2014, 34(2): 292-301.
doi: 10.3969/j.issn.1001-7410.2014.02.03     URL    
Chang Zhiyang, Wang Jian, Bai Shibiao, et al. Appraisal of active tectonic in Bailongjiang Basin based on DEM data[J]. Quaternary Sciences, 2014, 34(2): 292-301.
[常直杨,王建,白世彪,等.基于DEM的白龙江流域构造活动定量分析[J].第四纪研究, 2014, 34(2): 292-301.]
doi: 10.3969/j.issn.1001-7410.2014.02.03     URL    
[常直杨,王建,白世彪,等.基于DEM的白龙江流域构造活动定量分析[J].第四纪研究, 2014, 34(2): 292-301.]
doi: 10.3969/j.issn.1001-7410.2014.02.03     URL    
[19] Le Guangyu, Zhang Shijun, Yang Wunian.Structural deformation patterns and tectonic stress field in west-central Guizhou[J]. Chinese Journal of Geology, 1994, 29(1):10-18.
Le Guangyu, Zhang Shijun, Yang Wunian.Structural deformation patterns and tectonic stress field in west-central Guizhou[J]. Chinese Journal of Geology, 1994, 29(1):10-18.
[乐光禹,张时俊,杨武年.贵州中西部的构造格局与构造应力场[J].地质科学, 1994, 29(1):10-18.]
[乐光禹,张时俊,杨武年.贵州中西部的构造格局与构造应力场[J].地质科学, 1994, 29(1):10-18.]
[20] Yang Wunian.Analysis of remote sensing images for tectonic pattern and stress field in Liuzhi-Langdai region, western Guizhou[J]. Remote Sensing for Land & Resources, 1996,28(2):21-28.
Yang Wunian.Analysis of remote sensing images for tectonic pattern and stress field in Liuzhi-Langdai region, western Guizhou[J]. Remote Sensing for Land & Resources, 1996,28(2):21-28.
[杨武年. 黔西六枝—朗岱地区构造格局及其应力场遥感图像解析[J].国土资源遥感, 1996,28(2):21-28.]
[杨武年. 黔西六枝—朗岱地区构造格局及其应力场遥感图像解析[J].国土资源遥感, 1996,28(2):21-28.]
[1] 吕红华,李有利. 不断融入新元素的我国构造地貌学研究:以天山为例[J]. 地球科学进展, 2020, 35(6): 594-606.
[2] 王修喜. 低温热年代学在青藏高原构造地貌发育过程研究中的应用[J]. 地球科学进展, 2017, 32(3): 234-244.
[3] 曾燕,邱新法,潘敖大,刘昌明. 地形对黄河流域太阳辐射影响的分析研究[J]. 地球科学进展, 2008, 23(11): 1185-1193.
[4] 白占国,万国江. 现代侵蚀作用核素示踪研究新进展[J]. 地球科学进展, 1998, 13(3): 232-237.
[5] 韩慕康. 构造地貌学[J]. 地球科学进展, 1992, 7(5): 61-.
阅读次数
全文


摘要