地球科学进展 ›› 2018, Vol. 33 ›› Issue (7): 762 -774. doi: 10.11867/j.issn.1001-8166.2018.07.0762

研究简报 上一篇    

相对湿度及其变化的年循环研究进展
念达( ), 邓琪敏, 付遵涛 *( )   
  1. 北京大学物理学院大气与海洋科学系,北京 100871
  • 收稿日期:2018-01-11 修回日期:2018-05-21 出版日期:2018-07-20
  • 通讯作者: 付遵涛 E-mail:danian@pku.edu.cn;fuzt@pku.edu.cn
  • 基金资助:
    *国家自然科学基金项目“变化的相对湿度年循环及其影响”(编号: 41675049)资助.

Research Progress of Relative Humidity and Its Changing Annual Cycle

Da Nian( ), Qimin Deng, Zuntao Fu *( )   

  1. Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, China
  • Received:2018-01-11 Revised:2018-05-21 Online:2018-07-20 Published:2018-08-30
  • Contact: Zuntao Fu E-mail:danian@pku.edu.cn;fuzt@pku.edu.cn
  • About author:

    First author:Nian Da(1993-), female, Qujing City, Yunnan Province, Ph.D student. Research areas include climate changes.E-mail:danian@pku.edu.cn

  • Supported by:
    Project supported by the National Natural Science Foundation of China “Changing annual cycle of relative humidity and its impact”(No.41675049).

对相对湿度(RH)年循环进行有效诊断可以对季节内雾霾的监测和调控,流行性疾病爆发空间分布和防治以及季风降水量的实时预报和决策等提供重要帮助。通过总结RH及其年循环的研究现状,系统介绍了当前几类常用的信号提取方法,并评估了这些方法提取年循环信号的可行性。得出以下结论:针对RH年循环的时变特征和非对称三角波、类方波、状态瞬变等复杂结构,以谐波为基础的提取方法难以成功,高抗噪的非线性信号提取方法是解决这个问题的突破口。因此,现阶段对于RH年循环的研究迫切需要完善并提高RH观测数据的质量,精确提取并量化其年循环的时变特征和复杂结构,最后结合动力学过程和统计学进行分析,以期使我国对RH年循环(频率、相位、振幅等)变化的物理机制研究达到更高水平。

Studies on the characteristics of relative humidity annual cycle change include the frequency, phase, and amplitude of the time series and their changes. The effective diagnosis of the relative humidity annual cycle can provide important help in the monitoring and regulation of seasonal haze, the spatial distribution of epidemic outbreaks and their prevention and control, and the real-time forecasting and decision-making of monsoon precipitation. Different from studies on the trend of the relative humidity, the diagnosis in the annual cycle is scarce. This paper summarized the research status of relative humidity and its annual cycle, introduced several current methods for extracting common signals, and evaluated the feasibility of these methods for extracting annual cycle signals. Due to the time-varying characteristics of the annual cycle of relative humidity and complex structures such as asymmetric triangular waves, square-like waves, and state transients, harmonic-based extraction methods are difficult to succeed. The nonlinear signal extraction method with high noise immunity will solve this problem. At present, the relative humidity annual cycle studies urgently need to be improved and improve the quality of relative humidity observation data, accurately extract and quantify the time-varying characteristics and complex structure of the annual cycle. Moreover, combining the dynamic process and statistical analysis, we also need to study the physical mechanism of the change of relative humidity annual cycle (frequency, phase, amplitude, etc.) in China.

中图分类号: 

图1 中国3个观测站月平均RH时间序列 (a)观测站50434 1997年3月至2003年3月(6年)的月数据;(b)观测站59501 1977年10月至1985年10月(8年)的月数据;(c)观测站51573 1968年2月至1993年5月(25年)的月数据
Fig.1 Segments of monthly averaged relative humidity records of three stations in China (a) Records from 1997/3 to 2003/3 at station 50434; (b) Records from 1977/10 to 1985/10 at station 59501;(c) Records from 1968/2 to 1993/5 at station 51573
图1 中国3个观测站月平均RH时间序列 (a)观测站50434 1997年3月至2003年3月(6年)的月数据;(b)观测站59501 1977年10月至1985年10月(8年)的月数据;(c)观测站51573 1968年2月至1993年5月(25年)的月数据
Fig.1 Segments of monthly averaged relative humidity records of three stations in China (a) Records from 1997/3 to 2003/3 at station 50434; (b) Records from 1977/10 to 1985/10 at station 59501;(c) Records from 1968/2 to 1993/5 at station 51573
图2 RH在传统定义下的年循环形式 (a)正弦函数;(b)类方波;(c) 状态迅速转换
Fig.2 Annual cycle of relative humidity based on CAC (a) Sine function;(b) Rectangle-type wave; (c) States of abrupt transition
图2 RH在传统定义下的年循环形式 (a)正弦函数;(b)类方波;(c) 状态迅速转换
Fig.2 Annual cycle of relative humidity based on CAC (a) Sine function;(b) Rectangle-type wave; (c) States of abrupt transition
[1] Trenberth K E, Jones P D, Ambenje P, et al. Observations: Surface and atmospheric climate change[M]//Solomon S, Qin D, Manning M, et al, eds. Climate Change 2007: The Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 2007: 235-336.
Trenberth K E, Jones P D, Ambenje P, et al. Observations: Surface and atmospheric climate change[M]//Solomon S, Qin D, Manning M, et al, eds. Climate Change 2007: The Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 2007: 235-336.
[2] Held I M, Shell K M.Using relative humidity as a state variable in climate feedback analysis[J]. Journal of Climate, 2012, 25(8): 2 578-2 582.
doi: 10.1175/JCLI-D-11-00721.1     URL    
Held I M, Shell K M.Using relative humidity as a state variable in climate feedback analysis[J]. Journal of Climate, 2012, 25(8): 2 578-2 582.
doi: 10.1175/JCLI-D-11-00721.1     URL    
[3] Sherwood S C, Ingram W, Tsushima Y, et al. Relative humidity changes in a warmer climate[J]. Journal of Geophysical Research, 2010, 115(D9): 1 063.
doi: 10.1029/2009JD012585     URL    
Sherwood S C, Ingram W, Tsushima Y, et al. Relative humidity changes in a warmer climate[J]. Journal of Geophysical Research, 2010, 115(D9): 1 063.
doi: 10.1029/2009JD012585     URL    
[4] Xie B, Zhang Q, Ying Y.Trends in precipitable water and relative humidity in China: 1979-2005[J]. Journal of Applied Meteorology and Climatology, 2011, 50(10): 1 985-1 994.
doi: 10.1175/2011JAMC2446.1     URL    
Xie B, Zhang Q, Ying Y.Trends in precipitable water and relative humidity in China: 1979-2005[J]. Journal of Applied Meteorology and Climatology, 2011, 50(10): 1 985-1 994.
doi: 10.1175/2011JAMC2446.1     URL    
[5] Schmidt G A, Ruedy R A, Miller R L, et al. Attribution of the present-day total greenhouse effect[J]. Journal of Geophysical Research, 2010, 115(D20): 20 106
doi: 10.1029/2010JD014287     URL    
Schmidt G A, Ruedy R A, Miller R L, et al. Attribution of the present-day total greenhouse effect[J]. Journal of Geophysical Research, 2010, 115(D20): 20 106
doi: 10.1029/2010JD014287     URL    
[6] Cubasch U, Meehl G A, Boer G J,et al. Projections of future climate change[M]//Houghton J T, Ding Y, Griggs D J, et al, eds. Climate Change 2001: The Scientific Basis: Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel, 2001: 526-582.
Cubasch U, Meehl G A, Boer G J,et al. Projections of future climate change[M]//Houghton J T, Ding Y, Griggs D J, et al, eds. Climate Change 2001: The Scientific Basis: Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel, 2001: 526-582.
[7] Dai A.Global precipitation and thunderstorm frequencies. Part I: Seasonal and interannual variations[J]. Journal of Climate, 2001, 14(6): 1 092-1 111.
doi: 10.1175/1520-0442(2001)0142.0.CO;2     URL    
Dai A.Global precipitation and thunderstorm frequencies. Part I: Seasonal and interannual variations[J]. Journal of Climate, 2001, 14(6): 1 092-1 111.
doi: 10.1175/1520-0442(2001)0142.0.CO;2     URL    
[8] Dai A.Global precipitation and thunderstorm frequencies. Part II: Diurnal variations[J]. Journal of Climate, 2001, 14(6): 1 112-1 128.
doi: 10.1175/1520-0442(2001)0142.0.CO;2     URL    
Dai A.Global precipitation and thunderstorm frequencies. Part II: Diurnal variations[J]. Journal of Climate, 2001, 14(6): 1 112-1 128.
doi: 10.1175/1520-0442(2001)0142.0.CO;2     URL    
[9] Zhao T, Wang J, Dai A.Evaluation of atmospheric precipitable water from reanalysis products using homogenized radiosonde observations over China[J]. Journal of Geophysical Research: Atmospheres, 2015, 120(20): 10 703-10 727.
Zhao T, Wang J, Dai A.Evaluation of atmospheric precipitable water from reanalysis products using homogenized radiosonde observations over China[J]. Journal of Geophysical Research: Atmospheres, 2015, 120(20): 10 703-10 727.
[10] Vautard R, Yiou P, Van Oldenborgh G J. Decline of fog, mist and haze in Europe over the past 30 years[J]. Nature Geoscience, 2009, 2(2): 115-119.
doi: 10.1038/ngeo414     URL    
Vautard R, Yiou P, Van Oldenborgh G J. Decline of fog, mist and haze in Europe over the past 30 years[J]. Nature Geoscience, 2009, 2(2): 115-119.
doi: 10.1038/ngeo414     URL    
[11] Virmani J I, Weisberg R H.Relative humidity over the West Florida continental shelf[J]. Monthly Weather Review, 2005, 133(6): 1 671-1 686.
doi: 10.1175/MWR2944.1     URL    
Virmani J I, Weisberg R H.Relative humidity over the West Florida continental shelf[J]. Monthly Weather Review, 2005, 133(6): 1 671-1 686.
doi: 10.1175/MWR2944.1     URL    
[12] Gultepe I.Fog and boundary Layer Clouds: Fog Visibility and Forecasting[M].Berlin: Birkh?user Basel, 2007.
Gultepe I.Fog and boundary Layer Clouds: Fog Visibility and Forecasting[M].Berlin: Birkhäuser Basel, 2007.
[13] Pilié R J, Mack E J, Rogers C W, et al. The formation of marine fog and the development of fog-stratus systems along the California coast[J]. Journal of Applied Meteorology, 1979, 18(10): 1 275-1 286.
doi: 10.1175/1520-0450(1979)018<1275:TFOMFA>2.0.CO;2     URL    
Pilié R J, Mack E J, Rogers C W, et al. The formation of marine fog and the development of fog-stratus systems along the California coast[J]. Journal of Applied Meteorology, 1979, 18(10): 1 275-1 286.
doi: 10.1175/1520-0450(1979)018<1275:TFOMFA>2.0.CO;2     URL    
[14] Butler C J, García-Suárez A M. Relative humidity at Armagh observatory, 1838-2008[J]. International Journal of Climatology, 2012, 32(5): 657-668.
doi: 10.1002/joc.2302     URL    
Butler C J, García-Suárez A M. Relative humidity at Armagh observatory, 1838-2008[J]. International Journal of Climatology, 2012, 32(5): 657-668.
doi: 10.1002/joc.2302     URL    
[15] Lowen A C, Mubareka S, Steel J, et al. Influenza virus transmission is dependent on relative humidity and temperature[J]. PLoS Pathog, 2007, 3(10): e151.
doi: 10.1371/journal.ppat.0030151     URL     pmid: 17953482
Lowen A C, Mubareka S, Steel J, et al. Influenza virus transmission is dependent on relative humidity and temperature[J]. PLoS Pathog, 2007, 3(10): e151.
doi: 10.1371/journal.ppat.0030151     URL     pmid: 17953482
[16] Peixoto J P, Oort A H.The climatology of relative humidity in the atmosphere[J]. Journal of Climate, 1996, 9(12): 3 443-3 463.
doi: 10.1175/1520-0442(1996)0092.0.CO;2     URL    
Peixoto J P, Oort A H.The climatology of relative humidity in the atmosphere[J]. Journal of Climate, 1996, 9(12): 3 443-3 463.
doi: 10.1175/1520-0442(1996)0092.0.CO;2     URL    
[17] Gaffen D J, Ross R J.Climatology and trends of US surface humidity and temperature[J]. Journal of Climate, 1999, 12(3): 811-828.
doi: 10.1175/1520-0442(1999)012<0811:CATOUS>2.0.CO;2     URL    
Gaffen D J, Ross R J.Climatology and trends of US surface humidity and temperature[J]. Journal of Climate, 1999, 12(3): 811-828.
doi: 10.1175/1520-0442(1999)012<0811:CATOUS>2.0.CO;2     URL    
[18] New M, Hulme M, Jones P.Representing twentieth-century space-time climate variability. Part II: Development of 1901-96 monthly grids of terrestrial surface climate[J]. Journal of Climate, 2000, 13(13): 2 217-2 238.
doi: 10.1175/1520-0442(2000)013<2217:RTCSTC>2.0.CO;2     URL    
New M, Hulme M, Jones P.Representing twentieth-century space-time climate variability. Part II: Development of 1901-96 monthly grids of terrestrial surface climate[J]. Journal of Climate, 2000, 13(13): 2 217-2 238.
doi: 10.1175/1520-0442(2000)013<2217:RTCSTC>2.0.CO;2     URL    
[19] Wang J X L, Gaffen D J. Late-twentieth-century climatology and trends of surface humidity and temperature in China[J]. Journal of Climate, 2001, 14(13): 2 833-2 845.
doi: 10.1175/1520-0442(2001)0142.0.CO;2     URL    
Wang J X L, Gaffen D J. Late-twentieth-century climatology and trends of surface humidity and temperature in China[J]. Journal of Climate, 2001, 14(13): 2 833-2 845.
doi: 10.1175/1520-0442(2001)0142.0.CO;2     URL    
[20] Worley S J, Woodruff S D, Reynolds R W, et al. ICOADS release 2.1 data and products[J]. International Journal of Climatology, 2005, 25(7): 823-842.
doi: 10.1002/joc.1166     URL    
Worley S J, Woodruff S D, Reynolds R W, et al. ICOADS release 2.1 data and products[J]. International Journal of Climatology, 2005, 25(7): 823-842.
doi: 10.1002/joc.1166     URL    
[21] Van Wijngaarden W A, Vincent L A. Examination of discontinuities in hourly surface relative humidity in Canada during 1953-2003[J].Journal of Geophysical Research, 2005, 110(D22): 3 093-3 109.
doi: 10.1029/2005JD005925     URL    
Van Wijngaarden W A, Vincent L A. Examination of discontinuities in hourly surface relative humidity in Canada during 1953-2003[J].Journal of Geophysical Research, 2005, 110(D22): 3 093-3 109.
doi: 10.1029/2005JD005925     URL    
[22] Vincent L A, van Wijngaarden W A, Hopkinson R. Surface temperature and humidity trends in Canada for 1953-2005[J]. Journal of Climate, 2007, 20(20): 5 100-5 113.
doi: 10.1175/JCLI4293.1     URL    
Vincent L A, van Wijngaarden W A, Hopkinson R. Surface temperature and humidity trends in Canada for 1953-2005[J]. Journal of Climate, 2007, 20(20): 5 100-5 113.
doi: 10.1175/JCLI4293.1     URL    
[23] Willett K M, Jones P D, Gillett N P, et al. Recent changes in surface humidity: Development of the HadCRUH dataset[J]. Journal of Climate, 2008, 21(20): 5 364-5 383.
doi: 10.1175/2008JCLI2274.1     URL    
Willett K M, Jones P D, Gillett N P, et al. Recent changes in surface humidity: Development of the HadCRUH dataset[J]. Journal of Climate, 2008, 21(20): 5 364-5 383.
doi: 10.1175/2008JCLI2274.1     URL    
[24] Willett K M, Jones P D, Thorne P W, et al. A comparison of large scale changes in surface humidity over land in observations and CMIP3 general circulation models[J]. Environmental Research Letters, 2010, 5(2): 025210.
doi: 10.1088/1748-9326/5/2/025210     URL    
Willett K M, Jones P D, Thorne P W, et al. A comparison of large scale changes in surface humidity over land in observations and CMIP3 general circulation models[J]. Environmental Research Letters, 2010, 5(2): 025210.
doi: 10.1088/1748-9326/5/2/025210     URL    
[25] Simmons A J, Willett K M, Jones P D, et al. Low-frequency variations in surface atmospheric humidity, temperature, and precipitation: Inferences from reanalyses and monthly gridded observational data sets[J]. Journal of Geophysical Research, 2010, 115(D1): 1-21.
Simmons A J, Willett K M, Jones P D, et al. Low-frequency variations in surface atmospheric humidity, temperature, and precipitation: Inferences from reanalyses and monthly gridded observational data sets[J]. Journal of Geophysical Research, 2010, 115(D1): 1-21.
[26] Randall D A, Wood R A, Bony S, et al.Climate models and their evaluation[M]//Climate Change 2007: The Physical Science basis. Contribution of Working Group I to the Fourth Assessment Report of the IPCC (FAR). Cambridge: Cambridge University Press, 2007: 589-662.
Randall D A, Wood R A, Bony S, et al.Climate models and their evaluation[M]//Climate Change 2007: The Physical Science basis. Contribution of Working Group I to the Fourth Assessment Report of the IPCC (FAR). Cambridge: Cambridge University Press, 2007: 589-662.
[27] Manabe S, Wetherald R T.Thermal equilibrium of the atmosphere with a given distribution of relative humidity[J]. Journal of the Atmospheric Sciences, 1967, 24(3): 241-259.
doi: 10.1175/1520-0469(1967)024<0241:TEOTAW>2.0.CO;2     URL    
Manabe S, Wetherald R T.Thermal equilibrium of the atmosphere with a given distribution of relative humidity[J]. Journal of the Atmospheric Sciences, 1967, 24(3): 241-259.
doi: 10.1175/1520-0469(1967)024<0241:TEOTAW>2.0.CO;2     URL    
[28] Manabe S, Wetherald R T.The effects of doubling the CO2 concentration on the climate of a general circulation model[J]. Journal of the Atmospheric Sciences, 1975, 32(1): 3-15.
doi: 10.1175/1520-0469(1975)032&lt;0003:TEODTC&gt;2.0.CO;2     URL    
Manabe S, Wetherald R T.The effects of doubling the CO2 concentration on the climate of a general circulation model[J]. Journal of the Atmospheric Sciences, 1975, 32(1): 3-15.
doi: 10.1175/1520-0469(1975)032&lt;0003:TEODTC&gt;2.0.CO;2     URL    
[29] Held I M, Soden B J.Water vapor feedback and global warming 1[J]. Annual Review of Energy and the Environment, 2000, 25(1): 441-475.
doi: 10.1146/annurev.energy.25.1.441     URL    
Held I M, Soden B J.Water vapor feedback and global warming 1[J]. Annual Review of Energy and the Environment, 2000, 25(1): 441-475.
doi: 10.1146/annurev.energy.25.1.441     URL    
[30] Dai A.Recent climatology, variability, and trends in global surface humidity[J]. Journal of Climate, 2006, 19(15): 3 589-3 606.
doi: 10.1175/JCLI3816.1     URL    
Dai A.Recent climatology, variability, and trends in global surface humidity[J]. Journal of Climate, 2006, 19(15): 3 589-3 606.
doi: 10.1175/JCLI3816.1     URL    
[31] Zhao T, Dai A, Wang J.Trends in tropospheric humidity from 1970 to 2008 over China from a homogenized radiosonde dataset[J]. Journal of Climate, 2012, 25(13): 4 549-4 567.
doi: 10.1175/JCLI-D-11-00557.1     URL    
Zhao T, Dai A, Wang J.Trends in tropospheric humidity from 1970 to 2008 over China from a homogenized radiosonde dataset[J]. Journal of Climate, 2012, 25(13): 4 549-4 567.
doi: 10.1175/JCLI-D-11-00557.1     URL    
[32] Du J, Cooper F, Fueglistaler S.Statistical analysis of global variations of atmospheric relative humidity as observed by AIRS[J]. Journal of Geophysical Research, 2012, 117(D12): 13 300.
doi: 10.1029/2012JD017550     URL    
Du J, Cooper F, Fueglistaler S.Statistical analysis of global variations of atmospheric relative humidity as observed by AIRS[J]. Journal of Geophysical Research, 2012, 117(D12): 13 300.
doi: 10.1029/2012JD017550     URL    
[33] Willett K M, Williams Jr C N, Dunn R J H, et al. HadISDH: An updateable land surface specific humidity product for climate monitoring[J]. Climate of the Past, 2013, 9(2): 657.
doi: 10.5194/cp-9-657-2013     URL    
Willett K M, Williams Jr C N, Dunn R J H, et al. HadISDH: An updateable land surface specific humidity product for climate monitoring[J]. Climate of the Past, 2013, 9(2): 657.
doi: 10.5194/cp-9-657-2013     URL    
[34] Fatichi S, Molnar P, Mastrotheodoros T, et al. Diurnal and seasonal changes in near-surface humidity in a complex orography[J]. Journal of Geophysical Research, 2015, 120(6): 2 358-2 374.
doi: 10.1002/2014JD022537     URL    
Fatichi S, Molnar P, Mastrotheodoros T, et al. Diurnal and seasonal changes in near-surface humidity in a complex orography[J]. Journal of Geophysical Research, 2015, 120(6): 2 358-2 374.
doi: 10.1002/2014JD022537     URL    
[35] Wypych A.Twentieth century variability of surface humidity as the climate change indicator in Kraków (Southern Poland)[J]. Theoretical and Applied Climatology, 2010, 101(3/4): 475-482.
doi: 10.1007/s00704-009-0221-y     URL    
Wypych A.Twentieth century variability of surface humidity as the climate change indicator in Kraków (Southern Poland)[J]. Theoretical and Applied Climatology, 2010, 101(3/4): 475-482.
doi: 10.1007/s00704-009-0221-y     URL    
[36] Vicente-Serrano S M, Azorin-Molina C, Sanchez-Lorenzo A, et al. Temporal evolution of surface humidity in Spain: Recent trends and possible physical mechanisms[J].Climate Dynamics, 2014, 42(9/10): 2 655-2 674.
doi: 10.1007/s00382-013-1885-7     URL    
Vicente-Serrano S M, Azorin-Molina C, Sanchez-Lorenzo A, et al. Temporal evolution of surface humidity in Spain: Recent trends and possible physical mechanisms[J].Climate Dynamics, 2014, 42(9/10): 2 655-2 674.
doi: 10.1007/s00382-013-1885-7     URL    
[37] Shiu C J, Liu S C, Chen J P.Diurnally asymmetric trends of temperature, humidity, and precipitation in Taiwan[J]. Journal of Climate, 2009, 22(21): 5 635-5 649.
doi: 10.1175/2009JCLI2514.1     URL    
Shiu C J, Liu S C, Chen J P.Diurnally asymmetric trends of temperature, humidity, and precipitation in Taiwan[J]. Journal of Climate, 2009, 22(21): 5 635-5 649.
doi: 10.1175/2009JCLI2514.1     URL    
[38] Hartmann D L, Klein Tank A M G, Rusticucci M, et al. Climate Change 2013: the Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2013.
Hartmann D L, Klein Tank A M G, Rusticucci M, et al. Climate Change 2013: the Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2013.
[39] Nojarov P.Variations in precipitation amounts, atmosphere circulation, and relative humidity in high mountainous parts of Bulgaria for the period 1947-2008[J]. Theoretical and Applied Climatology, 2012, 107(1/2): 175-187.
doi: 10.1007/s00704-011-0473-1     URL    
Nojarov P.Variations in precipitation amounts, atmosphere circulation, and relative humidity in high mountainous parts of Bulgaria for the period 1947-2008[J]. Theoretical and Applied Climatology, 2012, 107(1/2): 175-187.
doi: 10.1007/s00704-011-0473-1     URL    
[40] Talaee P H, Sabziparvar A A, Tabari H.Observed changes in relative humidity and dew point temperature in coastal regions of Iran[J]. Theoretical and Applied Climatology, 2012, 110(3): 385-393.
doi: 10.1007/s00704-012-0630-1     URL    
Talaee P H, Sabziparvar A A, Tabari H.Observed changes in relative humidity and dew point temperature in coastal regions of Iran[J]. Theoretical and Applied Climatology, 2012, 110(3): 385-393.
doi: 10.1007/s00704-012-0630-1     URL    
[41] Pfahl S, Niedermann N.Daily covariations in near-surface relative humidity and temperature over the ocean[J]. Journal of Geophysical Research, 2011, 116(D19): 1 441-1 458.
doi: 10.1029/2011JD015792    
Pfahl S, Niedermann N.Daily covariations in near-surface relative humidity and temperature over the ocean[J]. Journal of Geophysical Research, 2011, 116(D19): 1 441-1 458.
doi: 10.1029/2011JD015792    
[42] Song Y, Liu Y, Ding Y.A study of surface humidity changes in China during the recent 50 years[J]. Acta Meteorologica Sinica, 2012, 26(5): 541-553.
doi: 10.1007/s13351-012-0501-9     URL    
Song Y, Liu Y, Ding Y.A study of surface humidity changes in China during the recent 50 years[J]. Acta Meteorologica Sinica, 2012, 26(5): 541-553.
doi: 10.1007/s13351-012-0501-9     URL    
[43] Mao R, Gong D Y, Zhao T, et al. Trends in the frequency of high relative humidity over China: 1979-2012[J]. Journal of Climate, 2015, 28(24): 9 816-9 837.
doi: 10.1175/JCLI-D-14-00840.1     URL    
Mao R, Gong D Y, Zhao T, et al. Trends in the frequency of high relative humidity over China: 1979-2012[J]. Journal of Climate, 2015, 28(24): 9 816-9 837.
doi: 10.1175/JCLI-D-14-00840.1     URL    
[44] McCarthy M P, Toumi R. Observed interannual variability of tropical troposphere relative humidity[J]. Journal of Climate, 2004, 17(16): 3 181-3 191.
doi: 10.1175/1520-0442(2004)0172.0.CO;2     URL    
McCarthy M P, Toumi R. Observed interannual variability of tropical troposphere relative humidity[J]. Journal of Climate, 2004, 17(16): 3 181-3 191.
doi: 10.1175/1520-0442(2004)0172.0.CO;2     URL    
[45] Broman D, Rajagopalan B, Hopson T.Spatiotemporal variability and predictability of relative humidity over West African Monsoon region[J]. Journal of Climate, 2014, 27(14): 5 346-5 363.
doi: 10.1175/JCLI-D-13-00414.1     URL    
Broman D, Rajagopalan B, Hopson T.Spatiotemporal variability and predictability of relative humidity over West African Monsoon region[J]. Journal of Climate, 2014, 27(14): 5 346-5 363.
doi: 10.1175/JCLI-D-13-00414.1     URL    
[46] You Q, Min J, Lin H, et al. Observed climatology and trend in relative humidity in the central and eastern Tibetan Plateau[J]. Journal of Geophysical Research, 2015, 120(9): 3 610-3 621.
doi: 10.1002/2014JD023031     URL    
You Q, Min J, Lin H, et al. Observed climatology and trend in relative humidity in the central and eastern Tibetan Plateau[J]. Journal of Geophysical Research, 2015, 120(9): 3 610-3 621.
doi: 10.1002/2014JD023031     URL    
[47] Gettelman A, Walden V P, Miloshevich L M, et al. Relative humidity over Antarctica from radiosondes, satellites, and a general circulation model[J]. Journal of Geophysical Research, 2006, 111(D9): 1 435-1 453.
doi: 10.1029/2005JD006636     URL    
Gettelman A, Walden V P, Miloshevich L M, et al. Relative humidity over Antarctica from radiosondes, satellites, and a general circulation model[J]. Journal of Geophysical Research, 2006, 111(D9): 1 435-1 453.
doi: 10.1029/2005JD006636     URL    
[48] Thomson D J.The seasons, global temperature, and precession[J]. Science, 1995, 268(5 207): 59.
doi: 10.1126/science.268.5207.59     URL     pmid: 17755231
Thomson D J.The seasons, global temperature, and precession[J]. Science, 1995, 268(5 207): 59.
doi: 10.1126/science.268.5207.59     URL     pmid: 17755231
[49] Thomson D J.Dependence of global temperatures on atmospheric CO2 and solar irradiance[J]. Proceedings of the National Academy of Sciences, 1997, 94(16): 8 370-8 377.
doi: 10.1073/pnas.94.16.8370     URL     pmid: 11607747
Thomson D J.Dependence of global temperatures on atmospheric CO2 and solar irradiance[J]. Proceedings of the National Academy of Sciences, 1997, 94(16): 8 370-8 377.
doi: 10.1073/pnas.94.16.8370     URL     pmid: 11607747
[50] Barbosa S M.Changing seasonality in Europe’s air temperature[J]. The European Physical Journal-Special Topics, 2009, 174(1): 81-89.
doi: 10.1140/epjst/e2009-01091-9     URL    
Barbosa S M.Changing seasonality in Europe’s air temperature[J]. The European Physical Journal-Special Topics, 2009, 174(1): 81-89.
doi: 10.1140/epjst/e2009-01091-9     URL    
[51] Stine A R, Huybers P, Fung I Y.Changes in the phase of the annual cycle of surface temperature[J]. Nature, 2009, 457(7 228): 435-440.
doi: 10.1038/nature07675     URL     pmid: 19158790
Stine A R, Huybers P, Fung I Y.Changes in the phase of the annual cycle of surface temperature[J]. Nature, 2009, 457(7 228): 435-440.
doi: 10.1038/nature07675     URL     pmid: 19158790
[52] Qian C, Fu C, Wu Z.Changes in the amplitude of the temperature annual cycle in China and their implication for climate change research[J]. Journal of Climate, 2011, 24(20): 5 292-5 302.
doi: 10.1175/JCLI-D-11-00006.1     URL    
Qian C, Fu C, Wu Z.Changes in the amplitude of the temperature annual cycle in China and their implication for climate change research[J]. Journal of Climate, 2011, 24(20): 5 292-5 302.
doi: 10.1175/JCLI-D-11-00006.1     URL    
[53] Qian C, Zhang X.Human influences on changes in the temperature seasonality in mid-to high-latitude land areas[J]. Journal of Climate, 2015, 28(15): 5 908-5 921.
doi: 10.1175/JCLI-D-14-00821.1     URL    
Qian C, Zhang X.Human influences on changes in the temperature seasonality in mid-to high-latitude land areas[J]. Journal of Climate, 2015, 28(15): 5 908-5 921.
doi: 10.1175/JCLI-D-14-00821.1     URL    
[54] Eliseev A V, Mokhov I I.Amplitude-phase characteristics of the annual cycle of surface air temperature in the Northern Hemisphere[J]. Advances in Atmospheric Sciences, 2003, 20(1): 1-16.
doi: 10.1007/BF03342045     URL    
Eliseev A V, Mokhov I I.Amplitude-phase characteristics of the annual cycle of surface air temperature in the Northern Hemisphere[J]. Advances in Atmospheric Sciences, 2003, 20(1): 1-16.
doi: 10.1007/BF03342045     URL    
[55] Dwyer J G, Biasutti M, Sobel A H.Projected changes in the seasonal cycle of surface temperature[J]. Journal of Climate, 2012, 25(18): 6 359-6 374.
doi: 10.1175/JCLI-D-11-00741.1     URL    
Dwyer J G, Biasutti M, Sobel A H.Projected changes in the seasonal cycle of surface temperature[J]. Journal of Climate, 2012, 25(18): 6 359-6 374.
doi: 10.1175/JCLI-D-11-00741.1     URL    
[56] Mann M E, Park J.Greenhouse warming and changes in the seasonal cycle of temperature: Model versus observations[J]. Geophysical Research Letters, 1996, 23(10): 1 111-1 114.
doi: 10.1029/96GL01066     URL    
Mann M E, Park J.Greenhouse warming and changes in the seasonal cycle of temperature: Model versus observations[J]. Geophysical Research Letters, 1996, 23(10): 1 111-1 114.
doi: 10.1029/96GL01066     URL    
[57] Tesouro M, Gimeno L, Nieto R, et al. Interannual variability of the annual cycle of temperature over Northern Africa[J]. Studia Geophysica et Geodaetica, 2005, 49(1): 141-151.
doi: 10.1007/s11200-005-1630-8     URL    
Tesouro M, Gimeno L, Nieto R, et al. Interannual variability of the annual cycle of temperature over Northern Africa[J]. Studia Geophysica et Geodaetica, 2005, 49(1): 141-151.
doi: 10.1007/s11200-005-1630-8     URL    
[58] Thomson D J.Climate change: Shifts in season[J]. Nature, 2009, 457(7 228): 391-392.
doi: 10.1038/457391a     URL     pmid: 19158781
Thomson D J.Climate change: Shifts in season[J]. Nature, 2009, 457(7 228): 391-392.
doi: 10.1038/457391a     URL     pmid: 19158781
[59] Stine A R, Huybers P.Changes in the seasonal cycle of temperature and atmospheric circulation[J]. Journal of Climate, 2012, 25(21): 7 362-7 380.
doi: 10.1175/JCLI-D-11-00470.1     URL    
Stine A R, Huybers P.Changes in the seasonal cycle of temperature and atmospheric circulation[J]. Journal of Climate, 2012, 25(21): 7 362-7 380.
doi: 10.1175/JCLI-D-11-00470.1     URL    
[60] McKinnon K A, Stine A R, Huybers P. The spatial structure of the annual cycle in surface temperature: Amplitude, phase, and Lagrangian history[J]. Journal of Climate, 2013, 26(20): 7 852-7 862.
doi: 10.1175/JCLI-D-13-00021.1     URL    
McKinnon K A, Stine A R, Huybers P. The spatial structure of the annual cycle in surface temperature: Amplitude, phase, and Lagrangian history[J]. Journal of Climate, 2013, 26(20): 7 852-7 862.
doi: 10.1175/JCLI-D-13-00021.1     URL    
[61] Palu? M, Novotná D, Tichavsky P.Shifts of seasons at the European mid-latitudes: Natural fluctuations correlated with the North Atlantic Oscillation[J]. Geophysical Research Letters, 2005, 32(12): 161-179
Paluš M, Novotná D, Tichavský P.Shifts of seasons at the European mid-latitudes: Natural fluctuations correlated with the North Atlantic Oscillation[J]. Geophysical Research Letters, 2005, 32(12): 161-179
[62] Qian C, Fu C, Wu Z, et al. The role of changes in the annual cycle in earlier onset of climatic spring in northern China[J]. Advances in Atmospheric Sciences, 2011, 28(2): 284-296.
doi: 10.1007/s00376-010-9221-1     URL    
Qian C, Fu C, Wu Z, et al. The role of changes in the annual cycle in earlier onset of climatic spring in northern China[J]. Advances in Atmospheric Sciences, 2011, 28(2): 284-296.
doi: 10.1007/s00376-010-9221-1     URL    
[63] Wu Z, Schneider E K, Kirtman B P, et al. The modulated annual cycle: An alternative reference frame for climate anomalies[J]. Climate Dynamics, 2008, 31(7/8): 823-841.
doi: 10.1007/s00382-008-0437-z     URL    
Wu Z, Schneider E K, Kirtman B P, et al. The modulated annual cycle: An alternative reference frame for climate anomalies[J]. Climate Dynamics, 2008, 31(7/8): 823-841.
doi: 10.1007/s00382-008-0437-z     URL    
[64] Qian C, Wu Z, Fu C, et al. On multi-timescale variability of temperature in China in modulated annual cycle reference frame[J]. Advances in Atmospheric Sciences, 2010, 27(5): 1 169-1 182.
doi: 10.1007/s00376-009-9121-4     URL    
Qian C, Wu Z, Fu C, et al. On multi-timescale variability of temperature in China in modulated annual cycle reference frame[J]. Advances in Atmospheric Sciences, 2010, 27(5): 1 169-1 182.
doi: 10.1007/s00376-009-9121-4     URL    
[65] Qian C, Wu Z, Fu C, et al. On changing El Ni?o: A view from time-varying annual cycle, interannual variability, and mean state[J]. Journal of Climate, 2011, 24(24): 6 486-6 500.
doi: 10.1175/JCLI-D-10-05012.1     URL    
Qian C, Wu Z, Fu C, et al. On changing El Niño: A view from time-varying annual cycle, interannual variability, and mean state[J]. Journal of Climate, 2011, 24(24): 6 486-6 500.
doi: 10.1175/JCLI-D-10-05012.1     URL    
[66] Deng Q, Nian D, Fu Z.The impact of inter-annual variability of annual cycle on long-term persistence of surface air temperature in long historical records[J]. Climate Dynamics, 2018, 50: 1 091-1 100.
doi: 10.1007/s00382-017-3662-5     URL    
Deng Q, Nian D, Fu Z.The impact of inter-annual variability of annual cycle on long-term persistence of surface air temperature in long historical records[J]. Climate Dynamics, 2018, 50: 1 091-1 100.
doi: 10.1007/s00382-017-3662-5     URL    
[67] Thompson R.Complex demodulation and the estimation of the changing continentality of Europe's climate[J]. International Journal of Climatology, 1995, 15(2): 175-185.
doi: 10.1002/joc.3370150204     URL    
Thompson R.Complex demodulation and the estimation of the changing continentality of Europe's climate[J]. International Journal of Climatology, 1995, 15(2): 175-185.
doi: 10.1002/joc.3370150204     URL    
[68] Vecchio A, Carbone V.Amplitude-frequency fluctuations of the seasonal cycle, temperature anomalies, and long-range persistence of climate records[J]. Physical Review E, 2010, 82(6): 066101.
doi: 10.1103/PhysRevE.82.066101     URL    
Vecchio A, Carbone V.Amplitude-frequency fluctuations of the seasonal cycle, temperature anomalies, and long-range persistence of climate records[J]. Physical Review E, 2010, 82(6): 066101.
doi: 10.1103/PhysRevE.82.066101     URL    
[69] Capparelli V, Vecchio A, Carbone V.Long-range persistence of temperature records induced by long-term climatic phenomena[J]. Physical Review E, 2011, 83(4): 046103.
doi: 10.1103/PhysRevE.83.046103     URL     pmid: 21599236
Capparelli V, Vecchio A, Carbone V.Long-range persistence of temperature records induced by long-term climatic phenomena[J]. Physical Review E, 2011, 83(4): 046103.
doi: 10.1103/PhysRevE.83.046103     URL     pmid: 21599236
[70] Grieser J, Tr?mel S, Sch?nwiese C D.Statistical time series decomposition into significant components and application to European temperature[J]. Theoretical and Applied Climatology, 2002, 71(3): 171-183.
doi: 10.1007/s007040200003     URL    
Grieser J, Trömel S, Schönwiese C D.Statistical time series decomposition into significant components and application to European temperature[J]. Theoretical and Applied Climatology, 2002, 71(3): 171-183.
doi: 10.1007/s007040200003     URL    
[71] Climate Program Office>About CPO>Glossary[EB/OL].[2017-05-11]..
URL    
Climate Program Office>About CPO>Glossary[EB/OL].[2017-05-11]..
URL    
[72] Zhao Tianbao, Qian Cheng.Comparison between traditional anomaly and variability of temperature in China in modulated annual cycle reference frame[J]. Climatic and Environmental Research,2010, 15(1): 34-44.
Zhao Tianbao, Qian Cheng.Comparison between traditional anomaly and variability of temperature in China in modulated annual cycle reference frame[J]. Climatic and Environmental Research,2010, 15(1): 34-44.
[赵天保, 钱诚. 传统距平与变年循环参照系下的中国气温变率比较[J]. 气候与环境研究, 2010, 15(1): 34-44.]
[赵天保, 钱诚. 传统距平与变年循环参照系下的中国气温变率比较[J]. 气候与环境研究, 2010, 15(1): 34-44.]
[73] Box G E P, Jenkins G M, Reinsel G C, et al. Time Series Analysis: Forecasting and Control[M]. New Jersey: John Wiley & Sons, 2015.
Box G E P, Jenkins G M, Reinsel G C, et al. Time Series Analysis: Forecasting and Control[M]. New Jersey: John Wiley & Sons, 2015.
[74] Bonsal B R, Prowse T D.Trends and variability in spring and autumn 0 C-isotherm dates over Canada[J]. Climatic Change, 2003, 57(3): 341-358.
doi: 10.1023/A:1022810531237     URL    
Bonsal B R, Prowse T D.Trends and variability in spring and autumn 0 C-isotherm dates over Canada[J]. Climatic Change, 2003, 57(3): 341-358.
doi: 10.1023/A:1022810531237     URL    
[75] Bingham C, Godfrey M, Tukey J.Modern techniques of power spectrum estimation[J]. IEEE Transactions on Audio and Electroacoustics, 1967, 15(2): 56-66.
doi: 10.1109/TAU.1967.1161895     URL    
Bingham C, Godfrey M, Tukey J.Modern techniques of power spectrum estimation[J]. IEEE Transactions on Audio and Electroacoustics, 1967, 15(2): 56-66.
doi: 10.1109/TAU.1967.1161895     URL    
[76] Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[C]//Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. The Royal Society, 1998, 454(1 971): 903-995.
Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[C]//Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. The Royal Society, 1998, 454(1 971): 903-995.
[77] Huang N E, Shen Z, Long S R.A new view of nonlinear water waves: The Hilbert Spectrum 1[J]. Annual Review of Fluid Mechanics, 1999, 31(1): 417-457.
doi: 10.1146/annurev.fluid.31.1.417     URL    
Huang N E, Shen Z, Long S R.A new view of nonlinear water waves: The Hilbert Spectrum 1[J]. Annual Review of Fluid Mechanics, 1999, 31(1): 417-457.
doi: 10.1146/annurev.fluid.31.1.417     URL    
[78] Wu Z, Huang N E.Statistical significance test of intrinsic mode functions[M]//Huang N E, Shen S S P, eds. Hilbert-Huang Transform and Its Applications Edited. Singapore: World Scientific, 2005: 149-169.
Wu Z, Huang N E.Statistical significance test of intrinsic mode functions[M]//Huang N E, Shen S S P, eds. Hilbert-Huang Transform and Its Applications Edited. Singapore: World Scientific, 2005: 149-169.
[79] Wu Z, Huang N E.Ensemble empirical mode decomposition: A noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1-41.
doi: 10.1142/S1793536909000047     URL    
Wu Z, Huang N E.Ensemble empirical mode decomposition: A noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1-41.
doi: 10.1142/S1793536909000047     URL    
[80] Iatsenko D, McClintock P V E, Stefanovska A. Nonlinear mode decomposition: A noise-robust, adaptive decomposition method[J]. Physical Review E, 2015, 92(3): 032916.
doi: 10.1103/PhysRevE.92.032916     URL     pmid: 26465549
Iatsenko D, McClintock P V E, Stefanovska A. Nonlinear mode decomposition: A noise-robust, adaptive decomposition method[J]. Physical Review E, 2015, 92(3): 032916.
doi: 10.1103/PhysRevE.92.032916     URL     pmid: 26465549
[81] Cleveland R B, Cleveland W S, Terpenning I.STL: A seasonal-trend decomposition procedure based on loess[J]. Journal of Official Statistics, 1990, 6(1): 3.
URL    
Cleveland R B, Cleveland W S, Terpenning I.STL: A seasonal-trend decomposition procedure based on loess[J]. Journal of Official Statistics, 1990, 6(1): 3.
URL    
[82] Cleveland W S, Devlin S J.Locally weighted regression: An approach to regression analysis by local fitting[J]. Journal of the American Statistical Association, 1988, 83(403): 596-610.
doi: 10.1080/01621459.1988.10478639     URL    
Cleveland W S, Devlin S J.Locally weighted regression: An approach to regression analysis by local fitting[J]. Journal of the American Statistical Association, 1988, 83(403): 596-610.
doi: 10.1080/01621459.1988.10478639     URL    
[83] Krzyszczak J, Baranowski P, Zubik M, et al. Temporal scale influence on multifractal properties of agro-meteorological time series[J]. Agricultural and Forest Meteorology, 2017, 239: 223-235.
doi: 10.1016/j.agrformet.2017.03.015     URL    
Krzyszczak J, Baranowski P, Zubik M, et al. Temporal scale influence on multifractal properties of agro-meteorological time series[J]. Agricultural and Forest Meteorology, 2017, 239: 223-235.
doi: 10.1016/j.agrformet.2017.03.015     URL    
[84] Eladawy A, Nadaoka K, Negm A, et al. Characterization of the northern Red Sea’s oceanic features with remote sensing data and outputs from a global circulation model[J]. Oceanologia, 2017, 59(3): 213-237.
doi: 10.1016/j.oceano.2017.01.002     URL    
Eladawy A, Nadaoka K, Negm A, et al. Characterization of the northern Red Sea’s oceanic features with remote sensing data and outputs from a global circulation model[J]. Oceanologia, 2017, 59(3): 213-237.
doi: 10.1016/j.oceano.2017.01.002     URL    
[85] Jiang J H, Su H, Zhai C, et al. Evaluation of cloud and water vapor simulations in CMIP5 climate models using NASA “A-Train” satellite observations[J]. Journal of Geophysical Research, 2012, 117(D14):110 871.
Jiang J H, Su H, Zhai C, et al. Evaluation of cloud and water vapor simulations in CMIP5 climate models using NASA “A-Train” satellite observations[J]. Journal of Geophysical Research, 2012, 117(D14):110 871.
[86] Chen J, Del Genio A D, Carlson B E, et al. The spatiotemporal structure of twentieth-century climate variations in observations and reanalyses. Part I: Long-term trend[J]. Journal of Climate, 2008, 21(11): 2 611-2 633.
doi: 10.1175/2007JCLI2011.1     URL    
Chen J, Del Genio A D, Carlson B E, et al. The spatiotemporal structure of twentieth-century climate variations in observations and reanalyses. Part I: Long-term trend[J]. Journal of Climate, 2008, 21(11): 2 611-2 633.
doi: 10.1175/2007JCLI2011.1     URL    
[87] Ryoo J M, Waugh D W, Gettelman A.Variability of subtropical upper tropospheric humidity[J]. Atmospheric Chemistry and Physics, 2008, 8(1): 1 041-1 067.
doi: 10.5194/acpd-8-1041-2008     URL    
Ryoo J M, Waugh D W, Gettelman A.Variability of subtropical upper tropospheric humidity[J]. Atmospheric Chemistry and Physics, 2008, 8(1): 1 041-1 067.
doi: 10.5194/acpd-8-1041-2008     URL    
[88] Vattay G, Harnos A.Scaling behavior in daily air humidity fluctuations[J]. Physical Review Letters, 1994, 73(5): 768.
doi: 10.1103/PhysRevLett.73.768     URL    
Vattay G, Harnos A.Scaling behavior in daily air humidity fluctuations[J]. Physical Review Letters, 1994, 73(5): 768.
doi: 10.1103/PhysRevLett.73.768     URL    
[89] Garcia J M, Gimenez L M, Pacheco A F.On fluctuations of the mean daily relative humidity and self-organized critical phenomena[J]. Journal of Geophysical Research, 1997, 102(D8): 9 487-9 491.
doi: 10.1029/96JD03868     URL    
Garcia J M, Gimenez L M, Pacheco A F.On fluctuations of the mean daily relative humidity and self-organized critical phenomena[J]. Journal of Geophysical Research, 1997, 102(D8): 9 487-9 491.
doi: 10.1029/96JD03868     URL    
[90] Chen X, Lin G X, Fu Z T.Long-range correlations in daily relative humidity fluctuations: A new index to characterize the climate regions over China[J]. Geophysical Research Letters, 2007, 34(7): L07804.DOI:10.1029/2006GL027755.
Chen X, Lin G X, Fu Z T.Long-range correlations in daily relative humidity fluctuations: A new index to characterize the climate regions over China[J]. Geophysical Research Letters, 2007, 34(7): L07804.DOI:10.1029/2006GL027755.
[91] Lin G X, Chen X, Fu Z T.Temporal-spatial diversities of long-range correlation for relative humidity over China[J]. Physica A, 2007, 383: 585-594.
doi: 10.1016/j.physa.2007.04.059     URL    
Lin G X, Chen X, Fu Z T.Temporal-spatial diversities of long-range correlation for relative humidity over China[J]. Physica A, 2007, 383: 585-594.
doi: 10.1016/j.physa.2007.04.059     URL    
[1] 刘强;王跃思;王明星. 北京地区大气主要温室气体的季节变化[J]. 地球科学进展, 2004, 19(5): 817-823.
阅读次数
全文


摘要