地球科学进展 ›› 2017, Vol. 32 ›› Issue (6): 643 -650. doi: 10.11867/j.issn.1001-8166.2017.06.0643

上一篇    下一篇

1951—2014年西北太平洋双台风活动气候特征研究
尹碧文 1, 2, 3( ), 任福民 1, 2, *( ), 李国平 1   
  1. 1.成都信息工程大学大气科学学院,四川 成都 610225
    2.中国气象科学研究院灾害天气 国家重点实验室,北京,100081
    3.秦皇岛市气象局,河北 秦皇岛 066000
  • 收稿日期:2017-01-03 修回日期:2017-04-20 出版日期:2017-06-20
  • 通讯作者: 任福民 E-mail:biwenyin@163.com;fmren@163.com
  • 基金资助:
    国家自然科学基金项目“双台风相互作用对中国极端降水的影响”(编号:41675042)和“我国东南沿海热带气旋极端降水的识别及其成因研究”(编号:41375056)资助

Climatic Characteristics of Binary Tropical Cyclones in the Northwest Pacific Ocean

Biwen Yin 1, 2, 3( ), Fumin Ren 1, 2, *( ), Guoping Li 1   

  1. 1.School of Atmospheric Sciences, Chengdu University of Information Technology,Chengdu 610225,China
    2.State Key Laboratory of Severe Weather/Chinese Academy of Meteorological Sciences,Beijing 100081,China
    3.Qinhuangdao Meteorological Office, Qinhuangdao Hebei 066000, China
  • Received:2017-01-03 Revised:2017-04-20 Online:2017-06-20 Published:2017-06-10
  • Contact: Fumin Ren E-mail:biwenyin@163.com;fmren@163.com
  • About author:

    First author:Yin Biwen(1992-),female,Qitaihe City,Heilongjiang Province,Master student. Research areas include interactions of binary cyclones.E-mail:biwenyin@163.com

  • Supported by:
    Project supported by the National Natural Science Foundation of China “Impacts of binary tropical cyclones on extreme precipitations over mainland of China”(No.41675042)and “Identifying tropical cyclone extreme rainfall and study on its causes over Southeast China”(No.41375056)

利用台风最佳路径资料以及NCEP全球再分析资料,采用客观判定标准对1951—2014年西北太平洋2类双台风活动进行识别及气候特征分析,并对典型类双台风活动极值特征给出合适的解释。当2个台风之间距离d≤1 800 km时被定义为双台风活动;双台风活动又划分为典型类双台风和非典型类双台风。双台风活动的主要气候特征如下:1951—2014年西北太平洋一共出现699对双台风活动,其中典型类双台风和非典型类双台风分别为446对和253对,分别占到63.8%和36.2%;典型类双台风对比例随过程最短距离减小而增大,非典型类双台风对比例随过程最短距离减小而减小。典型类双台风过程相互靠近速度最大时刻,双台风对主要表现为东—西向分布,正好受副高南侧东风气流控制,有利于东台风快速靠近西台风;典型类双台风过程逆时针互旋角速度最大时刻,双台风对主要呈东北—西南或东北东—西南西向分布,并位于副高西侧和西南方主要受东南风为主控制,有利于双台风的逆时针互旋。

Based on typhoon best track data of China Meteorological Administration and NCEP global reanalysis data, this study analyzed the characteristics of binary tropical cyclones (TC) in the Northwest Pacific Ocean during 1951 to 2014 by using the objective determine standard. When the distance between the two TCs d≤ 1 800 km, they are defined as binary tropical cyclones or binary typhoons. And binary typhoons are divided into two different types which are typical binary typhoons and atypical binary typhoons. The climatic characteristics of binary tropical cyclones are as follows: There were 699 pairs of binary typhoons in Northwest Pacific Ocean during 1951 to 2014. In these cases, there were 446 pairs of typical binary typhoons and 253 pairs of atypical cases, occupying 63.8% and 36.2%, respectively. The proportion of typical cases increased with the shortest distance decreasing, while the proportion of atypical cases decreased with the shortest distance decreasing. When the speed of typical binary typhoons moving towards each other reached the peak, binary typhoons mainly showed the east to west direction. At this time, typhoons were controlled by easterly stream of the southern edge of the subtropical high. In this situation, the east typhoon moved toward the west typhoon quickly. When the anticlockwise angular velocity of typical binary typhoons reached the peak, binary cases distributed northeast to southwest or east-northeast to west-southwest, appearing in west and southwest edge of the subtropical high and mainly being controlled by southeasterly stream, thus benefiting the anticlockwise rotation between the typical binary typhoons.

中图分类号: 

图1 1951—2014年西北太平洋双台风活动过程最短距离时刻2个台风位置及连线地理分布
Fig.1 The geographical distribution of locations and connections of two typhoons’ activity at the moment of the minimum distance in the Northwest Pacific Ocean during 1951-2014
图2 1951—2014年西北太平洋2类双台风对比例—过程最短距离分布
Fig.2 The distribution of two kindsof binary TC pair proportions-the minimum distance in the Northwest Pacific Ocean during 1951-2014
图3 1951—2014年西北太平洋2类双台风对频次年际变化
Fig.3 Annual variations of two kinds of binary TC pair frequencies in the Northwest Pacific Ocean during 1951-2014
图4 1951—2014年西北太平洋2类双台风对频次季节变化
Fig.4 Seasonal variations of two kinds of binary TC pair frequencies in the Northwest Pacific Ocean during 1951-2014
图5 双台风连线方向的划分示意图
Fig.5 Division of the direction for line between binary typhoons
图6 三参量极值情况下不同方向—双台风对频次占比分布
Fig.6 The distribution of frequencies’ proportions of paired binary typhoon under the different direction in case of extreme value of three parameters
图7 过程相互靠近速度最大时刻占比值前2位方向(合并为“东—西向”)的2个台风连线的中点位置、双台风平均位置和平均连线位置,及500 hPa上的588 gpm等高线^考虑到图中双台风对数量最多的月份为8月和9月,故500 hPa上的588 gpm等高线采用了8月(虚线)和9月(实线)1951—2014年平均高度场
Fig.7 Thecenter distribution of the two typhoon lines, the average position of the binary typhoons and the average connection position at the moment of the maximum-speeding procedural closing to each other in the top two direction (merged into“east-west”) and the location of 588 gpm contour line of 500 hPa^In consideration of the maximum amount of the month of paired binary typhoon is August and September, 588 gpm contour line of 500 hPa adopts annual mean height field in August and September during 1951-2014
图8 过程逆时针互旋角速度最大时刻占比值前2位方向(合并为“0°~45°方向”)的2个台风连线的中点位置、双台风平均位置和平均连线位置,及500 hPa上的588 gpm等高线^考虑到图中双台风对数量最多的月份为8月和9月,故500 hPa上的588 gpm等高线采用了8月(虚线)和9月(实线)1951—2014年平均高度场
Fig.8 Thecenter distribution of the two typhoon lines, the average position of the binary typhoons and the average connection position at the moment of the maximum-speeding counterclockwise spinning in the top two direction(merged into“0°~45°”) and the location of 588 gpm contour line of 500 hPa^In consideration of the maximum amount of the month of paired binary typhoon is August and September, 588 gpm contour line of 500 hPa adopts annual mean height field in August and September during 1951-2014
[1] Fujiwhara S.The nature tendency towards symmetry of motion and its application as a principle in meteorology[J]. Quarterly Journal of the Royal Meteorological Society,1921,47(200):287-293.
[2] Fujiwhara S.On the growth and decay of vertical systems[J]. Quarterly Journal of the Royal Meteorological Society,1923,49(206):75-104.
[3] Chen Lianshou,Ding Yihui.Introduction to the Western Pacific Typhoon[M]. Beijing: Science Press,1979:262-318.
[陈联寿,丁一汇. 西太平洋台风概论[M].北京:科学出版社,1979:262-318.]
[4] Brand S.Interaction of binary tropical cyclones of the western North Pacific Ocean[J].Journal of Applied and Meterorlogy and Climatelogy,1970,9(3):433-441.
[5] Bao Chenglan, Ruan Junshi,Zhu Yuejian.The rotation of binary typhoons influenced by Fujiwhara effect and environmental flow field[J].Chinese Science Bulletin, 1985,30(10):48-50.
[包澄澜,阮均石,朱跃建. 藤原效应与环境流场对双台风互旋的影响[J]. 科学通报, 1985,30(10):48-50.]
[6] Ruan Junshi,Yu Xuechao,Wu Zhongren.A preliminary analysis about the interactions of binary typhoons[J].Journal of Atmospheric Sciences, 1985,(3):106-111 .
[阮均石,余学超,吴中仁. 关于双台风相互作用的初步分析[J]. 大气科学学报, 1985,(3):106-111.]
[7] Bao Chenglan, Ruan Junshi, Zhu Yuejian.Study on the relationship of the rotation of binary typhoons and environmental flow field[J].Journal of Ocean, 1985, 7(6):696-705.
[包澄澜, 阮均石,朱跃建. 双台风互旋与引导气流关系的研究[J]. 海洋学报, 1985, 7(6):696-705.]
[8] Wang Yuqing, Zhu Yongti.Study on numerical simulation of Fujiwhara effect[J].Journal of Applied Meteorological Science,1989,4(1):13-20.
[王玉清,朱永禔. 双涡藤原效应的数值模拟研究[J]. 应用气象学报,1989,4(1):13-20.]
[9] Luo Zhexian,Ma Jingxian.Study on the numerical simulation of binary typhoons in the south of the subtropical high[J].Journal of Meteorology,2001,59(4):450-458.
[罗哲贤,马镜娴.副热带高压南侧双台风相互作用的数值研究[J].气象学报,2001,59(4):450-458.]
[10] Wu Xian,Fei Jianfang,Huang Xiaogang,et al.Statistical classification and characteristics analysis of the binary typhoons in the Northwest Pacific Ocean[J].Journal of Tropical Meteorology, 2011,27(4):455-464
[吴限, 费建芳, 黄小刚,等. 西北太平洋双热带气旋相互作用统计分类及其特征分析[J]. 热带气象学报, 2011, 27(4):455-464.]
[11] Xu X D, Lu C, Xu H X, et al.A possible mechanism responsible for exceptional rainfall over Taiwan from Typhoon Morakot[J].Atmospheric Science Letters,2011,12(3):294-299.
[12] Xu H X, Zhang Xuejin, Xu Xiangde.Impact of Tropical Storm Bopha on the intensity change of super typhoon Saomai in the 2006 Typhoon Season[J].Advances in Meteorology, 2013,doi: 10.1155/2013/487010.
[13] Xu Hongxiong, Xu Xiangde,Chen Bin,et al.Three-dimention physical picture of the binary typhoons’interactions of vortex energy and transport of water vapor[J]. Journal of Meteorology Meteorology, 2013, 71(5):825-838.
[徐洪雄,徐祥德,陈斌,等. 双台风生消过程涡旋能量、水汽输送相互影响的三维物理图像[J]. 气象学报,2013, 71(5):825-838.]
[14] Xu H X, Du B. The impact of Typhoon Danas (2013) on the torrential rainfall associated with Typhoon Fitow (2013) in East China[J].Advances in Meteorology,2015,doi:10.1155/2015/383712.
[15] Yu Z C, Ji J, Xu S, et al.Numerical simulation and analysis of the Yangtze River Delta rainstorm on 8 October 2013 caused by binary typhoons[J].Atmospheric Research,2015,166:33-48.
[16] Xie Huimin, Ren Fumin, Li Guoping,et al.The role of supper typhoon “Danas” in extreme precipitation associated with severe typhoon Fitow[J].Journal of Meteorology,2016,42(2): 156-165.
[谢惠敏, 任福民, 李国平,等. 超强台风“丹娜丝”对1323号强台风“菲特”极端降水的作用[J].气象,2016,42(2): 156-165.]
[17] Zhan Ruifen,Tang Jie,Yu Hui.Tropical cyclone forecast accuracy of positioning and business assessment in the Northwest Pacific Ocean in 2009[J].Meteorology,2010, 36(10):114-121.
[占瑞芬,汤杰,余晖.2009年西北太平洋热带气旋定位和业务预报精度评定[J] . 气象, 2010,36(10):114-121.]
[18] Ren Fumin,Wu Guoxiong,Wang Xiaoling,et al.Tropical Cyclones Affecting China Over the Last 60 Years[M].Beijing: Meteorology Press,2011.
[任福民, 吴国雄, 王小玲,等.近60年影响中国之热带气旋[M]. 北京:气象出版社,2011].
[1] 谢彦君, 任福民, 李国平, 王铭杨, 杨慧. 影响中国双台风活动气候特征研究[J]. 地球科学进展, 2020, 35(1): 101-108.
[2] 韩钦臣, 康建成, 王国栋, 朱炯. 基于海洋分析资料的吕宋海峡水交换的月际变化特征[J]. 地球科学进展, 2015, 30(5): 609-619.
[3] 李宏宇,张强,王胜. 陇中黄土高原夏季陆面辐射和热量特征研究[J]. 地球科学进展, 2010, 25(10): 1070-1081.
[4] 况雪源,刘健,林惠娟,王红丽,提汝媛. 近千年来三个气候特征时期东亚夏季风的模拟对比[J]. 地球科学进展, 2010, 25(10): 1082-1090.
[5] 陆日宇,富元海. 夏季东亚和西北太平洋地区的气候变异及其机理[J]. 地球科学进展, 2009, 24(2): 123-131.
[6] 翟世奎,李怀明,于增慧,于新生. 现代海底热液活动调查研究技术进展[J]. 地球科学进展, 2007, 22(8): 769-776.
[7] 陈光华,黄荣辉. 西北太平洋热带气旋和台风活动若干气候问题的研究[J]. 地球科学进展, 2006, 21(6): 610-616.
阅读次数
全文


摘要