Please wait a minute...
img img
高级检索
地球科学进展  2017, Vol. 32 Issue (6): 630-642    DOI: 10.11867/j.issn.1001-8166.2017.06.0630
研究论文     
陆地定量遥感产品的真实性检验关键技术与试验验证
晋锐1, 2, 李新1, 2, 马明国3, 葛咏4, 刘绍民5, 肖青6, 闻建光6, 赵凯7, 辛晓平8, 冉有华1, 柳钦火6, 张仁华4
1.中国科学院西北生态资源环境研究院 甘肃省遥感重点实验室 中科院黑河遥感试验研究站,甘肃 兰州 730000;
2.中国科学院青藏高原地球科学卓越创新中心,北京 100101;
3.西南大学,重庆 400715;
4.中国科学院地理科学与资源研究所,北京 100101;
5.北京师范大学地理科学学部,北京 100875;
6.中国科学院遥感与数字地球研究所,北京 100094;
7.中国科学院东北地理与农业生态研究所,吉林 长春 130102;
8.中国农业科学院呼伦贝尔草原生态系统野外科学观测研究站,北京 100081
Key Methods and Experiment Verification for the Validation of Quantitative Remote Sensing Products
Jin Rui1, 2, Li Xin1, 2, Ma Mingguo3, Ge Yong4, Liu Shaomin5, Xiao Qing6, Wen Jianguang6, Zhao Kai7, Xin Xiaoping8, Ran Youhua1, Liu Qinhuo6, Zhang Renhua4
1.Key Laboratory of Remote Sensing of Gansu Province, Heihe Remote Sensing Experimental Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China;
2.CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101, China;
3.Southwest University, Chongqing 400715, China;
4.Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China;
5.Beijing Normal University, Beijing 100875, China;
6.Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China;
7.Northwest Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China;
8.Hulunbeier State Station of Grassland Ecosystem Field Observation and Scientific Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
 全文: PDF(9150 KB)   HTML
摘要: 遥感产品真实性检验是评价遥感产品质量、可靠性和适用性的唯一手段,是提高遥感产品精度、改善遥感产品质量的主要依据,更是推动遥感产品应用范围和应用水平的重要保障。主要介绍国家高技术研究发展计划地球观测与导航技术领域“星机地综合定量遥感系统与应用示范(一期)”项目在“遥感产品真实性检验关键技术及其试验验证”方面取得的主要进展:研制了一系列国家标准,包括陆地定量遥感产品真实性检验通用方法,遥感产品真实性检验地面观测场的选场和布设规范,以及24个遥感产品真实性检验的单项国家标准;研建了遥感产品真实性检验的完整技术流程体系,发展和完善了真实性检验过程中的空间优化采样—尺度上推—检验策略的关键技术方法;通过星机地同步试验获取多尺度配套观测数据集,系统实证了遥感产品真实性检验标准与技术体系;构建了遥感产品真实性检验网,开展核心观测场的多模式联网观测实践,初步形成全国真实性检验网的原型体系和运行机制,为我国遥感产品真实性检验的业务化运行奠定了坚实的基础。
关键词: 尺度上推真实性检验像元尺度真值定量遥感产品地表异质性    
Abstract: The validation is an important guarantee of quality, reliability and applicability of Remote Sensing Products (RSPs), and is also the foundation to improve the RSPs accuracy, extend the application domain and strength the application ability. This paper introduced the progresses and lessons learned from a project titled by ‘key technology of remote sensing products validation and its experimental evaluation’ supported by Ministry of Science and Technology of China. The progresses included: ①Formulating a series of national standards composed of general methods for the validation of terrestrial quantative RSPs, field-site selection and instrumentation for land surface RSPs, and other 24 individual standards of remote sensing variables; ②Building integral technique process system of RSPs validation; ③Developing some key methods from optimized spatial sampling, upscaling to validation strategy; ④Obtaining the multi-scale satellite-airborne-ground synchronized observation and evaluating systematically the validation standard and techniques; ⑤Setting up national validation network for RSPs, exploring multi-mode allied observation experiment and forming the prototype and operation mechanism for the validation network.
Key words: Validation of remote sensing products    Quantative remote sensing products    Ground truth    Up-scaling.    Heterogeneous surface
收稿日期: 2017-02-22 出版日期: 2017-06-10
ZTFLH:  P237  
基金资助: 国家高技术研究发展计划项目“遥感产品真实性检验关键技术及其试验验证”(编号:2012AA12A305); 国家自然科学基金重点项目“陆表遥感产品真实性检验中的关键理论与方法研究”(编号:41531174)资助
作者简介: 晋锐(1979-),女,山西临汾人,副研究员,主要从事冰冻圈遥感、水文遥感、陆面数据同化及真实性检验研究.E-mail:jinrui@lzb.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张仁华
柳钦火
葛咏
闻建光
辛晓平
晋锐
李新
冉有华
马明国
刘绍民
肖青
赵凯

引用本文:

晋锐, 李新, 马明国, 葛咏, 刘绍民, 肖青, 闻建光, 赵凯, 辛晓平, 冉有华, 柳钦火, 张仁华. 陆地定量遥感产品的真实性检验关键技术与试验验证[J]. 地球科学进展, 2017, 32(6): 630-642.

Jin Rui, Li Xin, Ma Mingguo, Ge Yong, Liu Shaomin, Xiao Qing, Wen Jianguang, Zhao Kai, Xin Xiaoping, Ran Youhua, Liu Qinhuo, Zhang Renhua. Key Methods and Experiment Verification for the Validation of Quantitative Remote Sensing Products. Advances in Earth Science, 2017, 32(6): 630-642.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2017.06.0630        http://www.adearth.ac.cn/CN/Y2017/V32/I6/630

[1] Justice C, Belward A, Morisette J T, et al . Developments in the ‘validation’ of satellite sensor products for the study of the land surface[J]. International Journal of Remote Sensing , 2000, 21(17): 3 383-3 390.
[2] Running S, Baldocchi D, Turner D, et al . A global terrestrial monitoring network integrating tower fluxes, flask sampling, ecosystem modeling and EOS satellite data[J]. Remote Sensing of Environment , 1999, 70(1): 108-127.
[3] Baret F, Morissette J, Fernandes R, et al . Evaluation of the representativeness of networks of sites for the global validation and intercomparison of land biophysical products: Proposition of the CEOS-BELMANIP[J]. IEEE Transactions on Geoscience and Remote Sensing , 2006, 44(7): 1 794-1 803.
[4] Morisette J, Baret F, Privette J, et al . Validation of global moderate-resolution LAI products: A framework proposed within the CEOS land product validation subgroup[J]. IEEE Transactions on Geoscience and Remote Sensing , 2006, 44(7): 1 804-1 817.
[5] Choi M, Jacobs J, Bosch D. Remote sensing observatory validation of surface soil moisture using Advanced Microwave Scanning Radiometer E, Common Land Model, and ground based data: Case study in SMEX03 Little River Region, Georgia, US[J]. Water Resources Research , 2008, 44(8): 853-861.
[6] Bosch D, Lakshmi V, Jackson T, et al. Large scale measurements of soil moisture for validation of remotely sensed data: Georgia soil moisture experiment of 2003[J]. Journal of Hydrology , 2006, 323(1/4): 120-137.
[7] Sanchez N, Martinez-fernandez J, Scaini A, et al . Validation of the SMOS L2 soil moisture data in the REMEDHUS network (Spain)[J]. IEEE Transactions on Geoscience and Remote Sensing , 2012, 50(5): 1 602-1 611.
[8] Colliander A, Jackson T, Bindlish R, et al . Validation of SMAP surface soil moisture products with core validation sites[J]. Remote Sensing of Environment , 2017, 191: 215-231.
[9] Morisette J, Privette J, Justice C. A framework for the validation of MODIS land products[J]. Remote Sensing of Environment , 2002, 83(1/2): 77-96.
[10] Li Xin, Ma Mingguo, Wang Jian, et al . Simultaneous remote sensing and ground-based experiment in the Heihe River Basin: Scientific objectives and experiment design[J]. Advance in Earth Sciences , 2008, 23 (9): 897-914.
. 地球科学进展, 2008, 23(9): 897-914.]
[11] Li Xin, Li Xiaowen, Li Zengyuan, et al . Watershed allied telemetry experimental research[J]. Journal of Geophysical Research Atmospheres , 2009, 114(D22): 2 191-2 196.
[12] Li Xiaowen. Review of the project of quantitative remote sensing of major factors for spatial-temporal heterogeneity on the land surface[J]. Advances in Earth Science , 2006, 21 (8): 771-780.
. 地球科学进展, 2006, 21(8): 771-780.]
[13] Hu X, Liu J, Sun L, et al . Characterization of CRCS Dunhuang test site and vicarious calibration utilization for Fengyun (FY) series sensors[J]. Canadian Journal of Remote Sensing , 2010, 36(5): 566-582.
[14] Gao Hailiang, Gu Xingfa, Yu Tao, et al . HJ-1A HIS on-orbit radiometric calibration and validation reseach[J]. Science in China ( Series E ), 2010, 40(11): 1 312-1 321.
. 中国科学:E辑, 2010, 40(11): 1 312-1 321.]
[15] Jiang Xiaoguang, Li Zhaoliang, Xi Xiaohuan, et al . Basic frame of remote sensing validation system[J]. Arid Land Geography , 2008, 31 (4): 567-571.
. 干旱区地理,2008, 31(4): 567-571.]
[16] Dennis B. Turner Review No. 15. ‘Breathing’ of the terrestrial biosphere: Lessons learned from a global network of carbon dioxide flux measurement systems[J]. Australian Journal of Botany , 2008, 56(1): 1-26.
[17] Holben B, Eck T, Slutsker I, et al . AERONET—A federated instrument network and data archive for aerosol characterization[J]. Remote Sensing of Environment , 1998, 66(1): 1-16.
[18] Dorigo W, Wagner W, Hohensinn R, et al . The international soil moisture network: A data hosting facility for global in situ soil moisture measurements[J]. Hydrology and Earth System Sciences , 2011, 15(5): 1 675-1 698.
[19] Zhang Renhua. Quantitative Thermal-Infrared Remote Sensing Modelling and Ground—Based Experiment Basis[M]. Beijing: Science Press, 2009.
.北京:科学出版社, 2009.]
[20] Zhang Renhua, Tian Jing, Li Zhaoliang, et al .Principles and methods for the validation of quantitative remote sensing products[J]. Science in China ( Series D ), 2010, 40(2): 211-222.
. 中国科学:D辑, 2010, 40(2): 211-222.]
[21] Martínez-Fern��ndez J, Ceballos A. Temporal stability of soil moisture in a large-field experiment in spain[J]. Soil Science Society of America Journal , 2003, 67(6): 1 647-1 656.
[22] Cosh M, Jackson T, Moran S, et al . Temporal persistence and stability of surface soil moisture in a semi-arid watershed[J]. Remote Sensing of Environment , 2008, 112(2): 304-313.
[23] Liu Shaomin, Li Xiaowen, Shi Shengjin, et al . Measurement, analysis and application of surface energy and water vapor fluxes at large scale[J]. Advances in Earth Science , 2010, 25(11):1 113-1 127.
. 地球科学进展, 2010, 25(11): 1 113-1 127.]
[24] Jia Zhenzhen, Liu Shaomin, Mao Defa, et al . A study of the validation method of remotely sensed evapotranspiration based on observation data[J]. Advances in Earth Science , 2010, 25(11): 1 248-1 260.
. 地球科学进展, 2010, 25(11): 1 248-1 260.]
[25] Tan B, Woodcock C, Hu J, et al . The impact of gridding artifacts on the local spatial properties of MODIS data: Implications for validation, compositing, and band-to-band registration across resolutions[J]. Remote Sensing of Environment , 2006, 105(2): 98-114.
[26] Huang D, Yang W, Tan B, et al . The importance of measurement errors for deriving accurate reference leaf area index maps for validation of moderate-resolution satellite LAI products[J]. IEEE Transactions on Geoscience and Remote Sensing , 2006, 44(7): 1 866-1 871.
[27] Wang J, Zhang T, Fu B. A measure of spatial stratified heterogeneity[J]. Ecological Indicators , 2016, 67: 250-256.
[28] Wang J, Ge Y, Heuvelink G B M, et al . Spatial sampling design for estimating regional GPP with spatial heterogeneities[J]. IEEE Geoscience and Remote Sensing Letters , 2014, 11(2): 539-543.
[29] Ge Y, Wang J H, Heuvelink G B M, et al . Sampling design optimization of a wireless sensor network for monitoring ecohydrological processes in the Babao River Basin, China[J]. International Journal of Geographical Information Science , 2015, 29(1): 92-110.
[30] Wang J, Ge Y, Heuvelink G, et al . Upscaling in situ soil moisture observations to pixel averages with spatio-temporal geostatistics[J]. Remote Sensing , 2015, 7(9): 11 372-11 388.
[31] Kang J, Li X, Jin R, et al. Hybrid optimal design of the eco-hydrological wireless sensor network in the middle reach of the Heihe River Basin, China[J]. Sensors , 2014, 14(10): 19 095-19 114.
[32] Li Xin, Jin Rui, Liu Shaomin, et al . Upscaling research in HiWATER: Progress and prospects[J]. Joural of Remote Sensing , 2016, 20(5): 1 993-2 002.
. 遥感学报, 2016, 20(5): 1 993-2 002.]
[33] Wang J, Christakos G, Hu M. Modeling spatial means of surfaces with stratified nonhomogeneity[J]. IEEE Transactions on Geoscience and Remote Sensing , 2009, 47(12): 4 167-4 174.
[34] Kang J, Jin R, Li X. Regression kriging-based upscaling of soil moisture measurements from a wireless sensor network and multiresource remote sensing information over heterogeneous cropland[J]. IEEE Geoscience and Remote Sensing Letters , 2015, 12(1): 92-96.
[35] Gao S, Zhu Z, Liu S, et al . Estimating the spatial distribution of soil moisture based on Bayesian maximum entropy method with auxiliary data from remote sensing[J]. International Journal of Applied Earth Observation and Geoinformation , 2014, 32(10): 54-66.
[36] Kang J, Jin R, Li X, et al . Block kriging with measurement errors: A case study of the spatial prediction of soil moisture in the middle reaches of Heihe River Basin[J]. IEEE Geoscience and Remote Sensing Letters , 2016, 14(1):87-91.
[37] Wang J, Ge Y, Song Y, et al . A geostatistical approach to upscale soil moisture with unequal precision observations[J]. IEEE Geoscience and Remote Sensing Letters , 2014, 11(12): 2 125-2 129.
[38] Ge Y, Liang Y, Wang J, et al . Upscaling sensible heat fluxes with area-to-area regression kriging[J]. IEEE Geoscience and Remote Sensing Letters , 2015, 12(3): 656-660.
[39] Hu M, Wang J, Ge Y, et al . Scaling flux tower observations of sensible heat flux using weighted area-to-area regression kriging[J]. Atmosphere , 2015, 6(8): 1 032-1 044.
[40] Liu S, Xu Z, Song L, et al . Upscaling evapotranspiration measurements from multi-site to the satellite pixel scale over heterogeneous land surfaces[J]. Agricultural and Forest Meteorology , 2016,230/231:97-113.
[41] Mu X, Hu M, Song W, et al . Evaluation of sampling methods for validation of remotely sensed fractional vegetation cover[J]. Remote Sensing , 2015, 7(12): 16 164-16 182.
[42] Jin R, Li X, Yan B, et al . A nested ecohydrological wireless sensor network for capturing the surface heterogeneity in the midstream areas of the Heihe River Basin, China[J]. IEEE Geoscience and Remote Sensing Letters , 2014, 11(11): 2 015-2 019.
[43] Li X, Cheng G, Liu S, et al . Heihe Watershed Allied Telemetry Experimental Research (HiWATER): Scientific objectives and experimental design[J]. Bulletin of the American Meteorological Society , 2013, 94(8): 1 145-1 160.
[44] Xu Z, Liu S, Li X, et al . Intercomparison of surface energy flux measurement systems used during the HiWATER-MUSOEXE[J]. Journal of Geophysical Research-Atmospheres , 2013, 118(23): 13 140-13 157.
[45] Ma M, Che T, Li X, et al . A prototype network for remote sensing validation in China[J]. Remote Sensing , 2015, 7(5): 5 187-5 202.
[46] Wang S, Li X, Ge Y, et al . Validation of regional-scale remote sensing products in China: From site to network[J]. Remote Sensing , 2016, 8(12): 980.
[1] 马晋, 周纪, 刘绍民, 王钰佳. 卫星遥感地表温度的真实性检验研究进展[J]. 地球科学进展, 2017, 32(6): 615-629.
[2] 晋 锐,李 新,阎保平,罗万明,李秀红,郭建文,马明国,亢 健,张艳林. 黑河流域生态水文传感器网络设计[J]. 地球科学进展, 2012, 27(9): 993-1005.
[3] 李新,刘绍民,马明国,肖青,柳钦火,晋锐,车涛,王维真,祁元,李弘毅,朱高峰,郭建文,冉有华. 黑河流域生态—水文过程综合遥感观测联合试验总体设计[J]. 地球科学进展, 2012, 27(5): 481-498.