地球科学进展 ›› 2017, Vol. 32 ›› Issue (6): 630 -642. doi: 10.11867/j.issn.1001-8166.2017.06.0630

上一篇    下一篇

陆地定量遥感产品的真实性检验关键技术与试验验证
晋锐 1, 2( ), 李新 1, 2, 马明国 3, 葛咏 4, 刘绍民 5, 肖青 6, 闻建光 6, 赵凯 7, 辛晓平 8, 冉有华 1, 柳钦火 6, 张仁华 4   
  1. 1.中国科学院西北生态资源环境研究院 甘肃省遥感重点实验室 中科院黑河遥感试验研究站,甘肃 兰州 730000
    2.中国科学院青藏高原地球科学卓越创新中心,北京 100101
    3.西南大学,重庆 400715
    4.中国科学院地理科学与资源研究所,北京 100101
    5.北京师范大学地理科学学部,北京 100875
    6.中国科学院遥感与数字地球研究所,北京 100094
    7.中国科学院东北地理与农业生态研究所,吉林 长春 130102
    8.中国农业科学院呼伦贝尔草原生态系统野外科学观测研究站,北京 100081
  • 收稿日期:2017-02-22 修回日期:2017-05-09 出版日期:2017-06-20
  • 基金资助:
    国家高技术研究发展计划项目“遥感产品真实性检验关键技术及其试验验证”(编号:2012AA12A305);国家自然科学基金重点项目“陆表遥感产品真实性检验中的关键理论与方法研究”(编号:41531174)资助

Key Methods and Experiment Verification for the Validation of Quantitative Remote Sensing Products

Rui Jin 1, 2( ), Xin Li 1, 2, Mingguo Ma 3, Yong Ge 4, Shaomin Liu 5, Qing Xiao 6, Jianguang Wen 6, Kai Zhao 7, Xiaoping Xin 8, Youhua Ran 1, Qinhuo Liu 6, Renhua Zhang 4   

  1. 1.Key Laboratory of Remote Sensing of Gansu Province, Heihe Remote Sensing Experimental Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
    2.CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101, China
    3.Southwest University, Chongqing 400715, China
    4.Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    5.Beijing Normal University, Beijing 100875, China
    6.Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China
    7.Northwest Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
    8.Hulunbeier State Station of Grassland Ecosystem Field Observation and Scientific Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2017-02-22 Revised:2017-05-09 Online:2017-06-20 Published:2017-06-10
  • About author:

    First author:Jin Rui(1979-),female,Linfen City,Shanxi Province,Associate professor. Research areas include hydrological remote sensing, cryosphere remote sensing, land data assimilation, validation.E-mail:jinrui@lzb.ac.cn

  • Supported by:
    Project supported by the National High Technology Research and Development Program of China “Key techniques for remote sensing products validation and its experiment verification”(No.2012AA12A305);The National Natural Science Foundation of China “Key theory and methods for validation of land surface remote sensing products”(No.41531174)

遥感产品真实性检验是评价遥感产品质量、可靠性和适用性的唯一手段,是提高遥感产品精度、改善遥感产品质量的主要依据,更是推动遥感产品应用范围和应用水平的重要保障。主要介绍国家高技术研究发展计划地球观测与导航技术领域“星机地综合定量遥感系统与应用示范(一期)”项目在“遥感产品真实性检验关键技术及其试验验证”方面取得的主要进展:研制了一系列国家标准,包括陆地定量遥感产品真实性检验通用方法,遥感产品真实性检验地面观测场的选场和布设规范,以及24个遥感产品真实性检验的单项国家标准;研建了遥感产品真实性检验的完整技术流程体系,发展和完善了真实性检验过程中的空间优化采样—尺度上推—检验策略的关键技术方法;通过星机地同步试验获取多尺度配套观测数据集,系统实证了遥感产品真实性检验标准与技术体系;构建了遥感产品真实性检验网,开展核心观测场的多模式联网观测实践,初步形成全国真实性检验网的原型体系和运行机制,为我国遥感产品真实性检验的业务化运行奠定了坚实的基础。

The validation is an important guarantee of quality, reliability and applicability of Remote Sensing Products (RSPs), and is also the foundation to improve the RSPs accuracy, extend the application domain and strength the application ability. This paper introduced the progresses and lessons learned from a project titled by ‘key technology of remote sensing products validation and its experimental evaluation’ supported by Ministry of Science and Technology of China. The progresses included: ①Formulating a series of national standards composed of general methods for the validation of terrestrial quantative RSPs, field-site selection and instrumentation for land surface RSPs, and other 24 individual standards of remote sensing variables; ②Building integral technique process system of RSPs validation; ③Developing some key methods from optimized spatial sampling, upscaling to validation strategy; ④Obtaining the multi-scale satellite-airborne-ground synchronized observation and evaluating systematically the validation standard and techniques; ⑤Setting up national validation network for RSPs, exploring multi-mode allied observation experiment and forming the prototype and operation mechanism for the validation network.

中图分类号: 

图1 总体技术路线图
Fig.1 Flowchart of land surface remote sensing products validation
图2 遥感产品真实性检验标准的技术路线
Fig.2 Technology of the guideline and standards about the remote sensing products validation
图3 异质像元尺度优化采样的技术路线
Fig.3 Optimal sampling of the observations in the heterogeneous remote sensing pixels
图4 遥感产品真实性检验技术和标准规范的星机地试验验证
Fig.4 Verification of key technology and standard by synchronized satellite-aircraft-ground experiment
图5 星机地综合遥感试验的设计
Fig.5 Design of the synchronized satellite-aircraft-ground experiment
图6 真实性检验关键技术的试验验证
Fig.6 Verification of the ground truth derivation method at remote sensing pixels scale
图7 遥感产品全国真实性检验网原型建设技术路线图
Fig.7 Construction of national validation network of remote sensing products
表1 核心观测场及其功能
Table 1 Core validation sites and their functions
图8 遥感产品全国真实性检验网观测场布置的长期规划
Fig.8 Long-term planning of the national validation network of remote sensing products
[1] Justice C, Belward A, Morisette J T, et al.Developments in the ‘validation’ of satellite sensor products for the study of the land surface[J]. International Journal of Remote Sensing, 2000, 21(17): 3 383-3 390.
[2] Running S, Baldocchi D, Turner D, et al.A global terrestrial monitoring network integrating tower fluxes, flask sampling, ecosystem modeling and EOS satellite data[J]. Remote Sensing of Environment, 1999, 70(1): 108-127.
[3] Baret F, Morissette J, Fernandes R, et al.Evaluation of the representativeness of networks of sites for the global validation and intercomparison of land biophysical products: Proposition of the CEOS-BELMANIP[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(7): 1 794-1 803.
[4] Morisette J, Baret F, Privette J, et al.Validation of global moderate-resolution LAI products: A framework proposed within the CEOS land product validation subgroup[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(7): 1 804-1 817.
[5] Choi M, Jacobs J, Bosch D.Remote sensing observatory validation of surface soil moisture using Advanced Microwave Scanning Radiometer E, Common Land Model, and ground based data: Case study in SMEX03 Little River Region, Georgia, US[J]. Water Resources Research, 2008, 44(8): 853-861.
[6] Bosch D, Lakshmi V, Jackson T, et al.Large scale measurements of soil moisture for validation of remotely sensed data: Georgia soil moisture experiment of 2003[J]. Journal of Hydrology, 2006, 323(1/4): 120-137.
[7] Sanchez N, Martinez-fernandez J, Scaini A, et al. Validation of the SMOS L2 soil moisture data in the REMEDHUS network (Spain)[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(5): 1 602-1 611.
[8] Colliander A, Jackson T, Bindlish R, et al.Validation of SMAP surface soil moisture products with core validation sites[J]. Remote Sensing of Environment, 2017, 191: 215-231.
[9] Morisette J, Privette J, Justice C.A framework for the validation of MODIS land products[J]. Remote Sensing of Environment, 2002, 83(1/2): 77-96.
[10] Li Xin, Ma Mingguo, Wang Jian, et al.Simultaneous remote sensing and ground-based experiment in the Heihe River Basin: Scientific objectives and experiment design[J]. Advance in Earth Sciences, 2008, 23(9): 897-914.
[李新, 马明国, 王建, 等. 黑河流域遥感—地面观测同步试验:科学目标与试验方案[J]. 地球科学进展, 2008, 23(9): 897-914.]
[11] Li Xin, Li Xiaowen, Li Zengyuan, et al.Watershed allied telemetry experimental research[J]. Journal of Geophysical Research Atmospheres, 2009, 114(D22): 2 191-2 196.
[12] Li Xiaowen.Review of the project of quantitative remote sensing of major factors for spatial-temporal heterogeneity on the land surface[J]. Advances in Earth Science, 2006, 21(8): 771-780.
[李小文. 地球表面时空多变要素的定量遥感项目综述[J]. 地球科学进展, 2006, 21(8): 771-780.]
[13] Hu X, Liu J, Sun L, et al.Characterization of CRCS Dunhuang test site and vicarious calibration utilization for Fengyun (FY) series sensors[J]. Canadian Journal of Remote Sensing, 2010, 36(5): 566-582.
[14] Gao Hailiang, Gu Xingfa, Yu Tao, et al.HJ-1A HIS on-orbit radiometric calibration and validation reseach[J]. Science in China (Series E), 2010, 40(11): 1 312-1 321.
[高海亮, 顾行发, 余涛, 等. 环境卫星HJ-1A超光谱成像仪在轨辐射定标及真实性检验[J]. 中国科学:E辑, 2010, 40(11): 1 312-1 321.]
[15] Jiang Xiaoguang, Li Zhaoliang, Xi Xiaohuan, et al.Basic frame of remote sensing validation system[J]. Arid Land Geography, 2008, 31(4): 567-571.
[姜小光, 李召良, 习晓环, 等. 遥感真实性检验系统框架初步构想[J]. 干旱区地理,2008, 31(4): 567-571.]
[16] Dennis B. Turner Review No.15. ‘Breathing’ of the terrestrial biosphere: Lessons learned from a global network of carbon dioxide flux measurement systems[J]. Australian Journal of Botany, 2008, 56(1): 1-26.
[17] Holben B, Eck T, Slutsker I, et al.AERONET—A federated instrument network and data archive for aerosol characterization[J]. Remote Sensing of Environment, 1998, 66(1): 1-16.
[18] Dorigo W, Wagner W, Hohensinn R, et al.The international soil moisture network: A data hosting facility for global in situ soil moisture measurements[J]. Hydrology and Earth System Sciences, 2011, 15(5): 1 675-1 698.
[19] Zhang Renhua.Quantitative Thermal-Infrared Remote Sensing Modelling and Ground—Based Experiment Basis[M]. Beijing: Science Press, 2009.
[张仁华. 定量热红外遥感模型及地面实验基础[M].北京:科学出版社, 2009.]
[20] Zhang Renhua, Tian Jing, Li Zhaoliang, et al.Principles and methods for the validation of quantitative remote sensing products[J]. Science in China (Series D), 2010, 40(2): 211-222.
[张仁华, 田静, 李召良, 等. 定量遥感产品真实性检验的基础与方法[J]. 中国科学:D辑, 2010, 40(2): 211-222.]
[21] Martínez-Fernndez J, Ceballos A.Temporal stability of soil moisture in a large-field experiment in spain[J]. Soil Science Society of America Journal, 2003, 67(6): 1 647-1 656.
[22] Cosh M, Jackson T, Moran S, et al.Temporal persistence and stability of surface soil moisture in a semi-arid watershed[J]. Remote Sensing of Environment, 2008, 112(2): 304-313.
[23] Liu Shaomin, Li Xiaowen, Shi Shengjin, et al.Measurement, analysis and application of surface energy and water vapor fluxes at large scale[J]. Advances in Earth Science, 2010, 25(11):1 113-1 127.
[刘绍民, 李小文, 施生锦, 等. 大尺度地表水热通量的观测、分析与应用[J]. 地球科学进展, 2010, 25(11): 1 113-1 127.]
[24] Jia Zhenzhen, Liu Shaomin, Mao Defa, et al.A study of the validation method of remotely sensed evapotranspiration based on observation data[J]. Advances in Earth Science, 2010, 25(11): 1 248-1 260.
[贾贞贞, 刘绍民, 毛德发, 等. 基于地面观测的遥感监测蒸散量验证方法研究[J]. 地球科学进展, 2010, 25(11): 1 248-1 260.]
[25] Tan B, Woodcock C, Hu J, et al.The impact of gridding artifacts on the local spatial properties of MODIS data: Implications for validation, compositing, and band-to-band registration across resolutions[J]. Remote Sensing of Environment, 2006, 105(2): 98-114.
[26] Huang D, Yang W, Tan B, et al.The importance of measurement errors for deriving accurate reference leaf area index maps for validation of moderate-resolution satellite LAI products[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(7): 1 866-1 871.
[27] Wang J, Zhang T, Fu B.A measure of spatial stratified heterogeneity[J]. Ecological Indicators, 2016, 67: 250-256.
[28] Wang J, Ge Y, Heuvelink G B M, et al. Spatial sampling design for estimating regional GPP with spatial heterogeneities[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(2): 539-543.
[29] Ge Y, Wang J H, Heuvelink G B M, et al. Sampling design optimization of a wireless sensor network for monitoring ecohydrological processes in the Babao River Basin, China[J]. International Journal of Geographical Information Science, 2015, 29(1): 92-110.
[30] Wang J, Ge Y, Heuvelink G, et al.Upscaling in situ soil moisture observations to pixel averages with spatio-temporal geostatistics[J]. Remote Sensing, 2015, 7(9): 11 372-11 388.
[31] Kang J, Li X, Jin R, et al.Hybrid optimal design of the eco-hydrological wireless sensor network in the middle reach of the Heihe River Basin, China[J]. Sensors, 2014, 14(10): 19 095-19 114.
[32] Li Xin, Jin Rui, Liu Shaomin, et al.Upscaling research in HiWATER: Progress and prospects[J]. Joural of Remote Sensing, 2016, 20(5): 1 993-2 002.
[李新, 晋锐, 刘绍民, 等.黑河遥感试验中尺度上推研究的进展与前瞻[J]. 遥感学报, 2016, 20(5): 1 993-2 002.]
[33] Wang J, Christakos G, Hu M.Modeling spatial means of surfaces with stratified nonhomogeneity[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(12): 4 167-4 174.
[34] Kang J, Jin R, Li X.Regression kriging-based upscaling of soil moisture measurements from a wireless sensor network and multiresource remote sensing information over heterogeneous cropland[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(1): 92-96.
[35] Gao S, Zhu Z, Liu S, et al.Estimating the spatial distribution of soil moisture based on Bayesian maximum entropy method with auxiliary data from remote sensing[J]. International Journal of Applied Earth Observation and Geoinformation, 2014, 32(10): 54-66.
[36] Kang J, Jin R, Li X, et al.Block kriging with measurement errors: A case study of the spatial prediction of soil moisture in the middle reaches of Heihe River Basin[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 14(1):87-91.
[37] Wang J, Ge Y, Song Y, et al.A geostatistical approach to upscale soil moisture with unequal precision observations[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(12): 2 125-2 129.
[38] Ge Y, Liang Y, Wang J, et al.Upscaling sensible heat fluxes with area-to-area regression kriging[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(3): 656-660.
[39] Hu M, Wang J, Ge Y, et al.Scaling flux tower observations of sensible heat flux using weighted area-to-area regression kriging[J]. Atmosphere, 2015, 6(8): 1 032-1 044.
[40] Liu S, Xu Z, Song L, et al. Upscaling evapotranspiration measurements from multi-site to the satellite pixel scale over heterogeneous land surfaces[J]. Agricultural and Forest Meteorology, 2016,230/231:97-113.
[41] Mu X, Hu M, Song W, et al.Evaluation of sampling methods for validation of remotely sensed fractional vegetation cover[J]. Remote Sensing, 2015, 7(12): 16 164-16 182.
[42] Jin R, Li X, Yan B, et al.A nested ecohydrological wireless sensor network for capturing the surface heterogeneity in the midstream areas of the Heihe River Basin, China[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(11): 2 015-2 019.
[43] Li X, Cheng G, Liu S, et al.Heihe Watershed Allied Telemetry Experimental Research (HiWATER): Scientific objectives and experimental design[J]. Bulletin of the American Meteorological Society, 2013, 94(8): 1 145-1 160.
[44] Xu Z, Liu S, Li X, et al.Intercomparison of surface energy flux measurement systems used during the HiWATER-MUSOEXE[J]. Journal of Geophysical Research-Atmospheres, 2013, 118(23): 13 140-13 157.
[45] Ma M, Che T, Li X, et al.A prototype network for remote sensing validation in China[J]. Remote Sensing, 2015, 7(5): 5 187-5 202.
[46] Wang S, Li X, Ge Y, et al.Validation of regional-scale remote sensing products in China: From site to network[J]. Remote Sensing, 2016, 8(12): 980.
[1] 马晋, 周纪, 刘绍民, 王钰佳. 卫星遥感地表温度的真实性检验研究进展[J]. 地球科学进展, 2017, 32(6): 615-629.
[2] 晋 锐,李 新,阎保平,罗万明,李秀红,郭建文,马明国,亢 健,张艳林. 黑河流域生态水文传感器网络设计[J]. 地球科学进展, 2012, 27(9): 993-1005.
[3] 李新,刘绍民,马明国,肖青,柳钦火,晋锐,车涛,王维真,祁元,李弘毅,朱高峰,郭建文,冉有华. 黑河流域生态—水文过程综合遥感观测联合试验总体设计[J]. 地球科学进展, 2012, 27(5): 481-498.
阅读次数
全文


摘要