地球科学进展 ›› 2017, Vol. 32 ›› Issue (6): 615 -629. doi: 10.11867/j.issn.1001-8166.2017.06.0615

上一篇    下一篇

卫星遥感地表温度的真实性检验研究进展
马晋 1, 2( ), 周纪 1, 2, *( ), 刘绍民 3, 王钰佳 1, 2   
  1. 1.电子科技大学 资源与环境学院, 四川 成都 611731
    2.电子科技大学 信息地学研究中心,四川 成都 611731
    3.北京师范大学 地理科学学部, 北京 100875
  • 收稿日期:2017-02-09 修回日期:2017-05-15 出版日期:2017-06-20
  • 通讯作者: 周纪 E-mail:jinm92@126.com;jzhou233@uestc.edu.cn
  • 基金资助:
    国家自然科学基金面上项目“基于三维建模与组分发射辐射分离的异质性场景像元尺度表面温度模拟研究”(编号:41371341);国家自然科学基金重点项目“陆表遥感产品真实性检验中的关键理论与方法研究”(编号:41531174)资助

Review on Validation of Remotely Sensed Land Surface Temperature

Jin Ma 1, 2( ), Ji Zhou 1, 2, *( ), Shaomin Liu 3, Yujia Wang 1, 2   

  1. 1.School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China
    2.Center for Information Geoscience, University of Electronic Science and Technology of China, Chengdu 611731, China
    3.Faculty of Geographical Science, Beijing Normal University, Beijing 100875,China
  • Received:2017-02-09 Revised:2017-05-15 Online:2017-06-20 Published:2017-06-10
  • Contact: Ji Zhou E-mail:jinm92@126.com;jzhou233@uestc.edu.cn
  • About author:

    First author:Ma Jin(1992-), male, Bazhong City, Sichuan Province, Master student. Research areas include validation of remotely sensed land surface temperature product.E-mail:jinm92@126.com

  • Supported by:
    Project supported by the National Natural Science Foundation of China “Surface temperature simulation at the pixel scale for heterogeneous surfaces based on 3D modeling and component emissions separation”(No.41371341) and “Key theory and methods for validation of land surface remote sensing products”(No.41531174)

地表温度是多种地表过程模型的输入参数,遥感反演地表温度是估算区域及全球尺度上地表辐射平衡和能量收支的关键手段。对遥感地表温度开展真实性检验有利于客观评价其精度和稳定性,对遥感地表温度的反演及应用都具有重要意义。简单回顾了通过遥感手段反演地表温度的基本原理和常用方法。回顾并分析了基于实测地表温度的检验方法、基于辐亮度的检验方法、交叉比较以及时间序列分析4种典型地表温度真实性检验方法的优缺点。在此基础上,重点总结了地表温度直接检验方法中地面观测数据获取方法、检验对象,分析了直接检验中的不确定来源。最后,对地表温度真实性检验中存在的问题进行了讨论。

Land Surface Temperature (LST) is an important input parameter for many land surface models. Retrieving LST from remote sensing is the main approach for modelling the radiance balance and energy budget at both regional and global scales. Validation of remotely sensed LST is helpful to evaluate its accuracy and stability. Furthermore, it is meaningful for the retrieval and application of remotely sensed LST. Here, first, theories and methods of LST retrieval were reviewed. Second, four validation methods, including the Temperature-based (T-based), Radiance-based (R-based), cross comparison and Time-series analysis, were reviewed and compared. An in-depth examination was conducted for the T-based method from the aspects including the approaches for acquiring the ground truth value, the target LST products, the uncertainty sources. Finally, some important issues in LST validation were discussed.

中图分类号: 

图1 在Google Scholar上对(a)“Land surface temperature validation”和(b)“Land skin temperature validation”检索的结果条目数(检索时间:2017年1月4日)
Fig.1 The item numbers of (a)“land surface temperature validation” and (b)“land skin temperature validation” searched via Google Scholar (search time: January 4, 2017)
表1 交叉比较对象及参考数据
Table 1 The target and reference in cross comparison
表2 4种真实性检验方法比较
Table 2 Comparison of the four methods for LST validation
表3 站点地表温度观测仪器对比
Table 3 Comparison of instruments for LST observation
图2 常见的地表温度观测仪器(图片来源于HiWATER试验)
Fig.2 Frequently used instruments for LST observation (Figures are from HiWATER)
表4 典型的地表温度真实性检验站点
Table 4 Typical ground sites for LST validation
序号 站点名称 位置 下垫面 观测仪器 观测计划/机构
1 Tharandt, Germany[ 30 ] 欧洲 针叶林 Heitronics IR CarboEurope-IP
2 Hainich,Germany[ 30 ] 欧洲 混合阔叶林 Schulzet Radiometer CarboEurope-IP
3 Maqu[ 72 ] 青藏高原 高寒草甸 CNR1 CEOP-AEGIS
4 Nagqu(BJ)[ 26 ] 青藏高原 高寒草甸 CG3 CEOP-AEGIS
5 Dahra, Senegal[ 73 ] 北非 荒漠 KT-15.85 IIP LSA LAF
6 Évora, Portugal[ 63 ] 欧洲 草地和林地 KT-15.85 IIP LSA LAF
7 Gobabeb, Namibia[ 34 , 51 ] 西非 荒漠 KT-15.85 IIP LSA LAF
8 Lake Tahoe, CA/NV[ 10 , 74 ] 北美洲 内陆水域 TCM (MODEL 7008-IR ) & TSP (MODEL 5643-R) JPL
9 Mono Lake, CA[ 10 ] 北美洲 内陆水域 Heitronics IR (KT15) JPL
10 Bondville, IL[ 75 , 76 ] 北美洲 农田 Eppley PIR SURFRAD/FluxNET
11 Boulder, CO[ 75 , 76 ] 北美洲 农田 Eppley PIR SURFRAD/FluxNET
12 Penn State, PA[ 75 , 76 ] 北美洲 混合林地 Eppley PIR SURFRAD/FluxNET
13 Goodwin Creek, MS[ 75 , 76 ] 北美洲 常绿针叶林 Eppley PIR SURFRAD/FluxNET
14 Fort Peck, MT[ 75 , 76 ] 北美洲 草地 Eppley PIR SURFRAD/FluxNET
15 Desert Rock, NV[ 75 , 76 ] 北美洲 灌木林地 Eppley PIR SURFRAD/FluxNET
16 Valencia, Spain [ 16 , 77 ] 欧洲 农田 Everest 112.2L&
AGA 80 thermometer
University of Valencia
17 花寨子站[ 9 , 78 ] 黑河流域 荒漠草原 CG3/CNR1 WATER/HiWATER
18 盈科站[ 78 ] 黑河流域 农田(玉米) CG3/CNR1 WATER
19 阿柔站[ 9 , 78 ] 黑河流域 草地 PIR WATER/HiWATER
20 馆陶站[ 79 , 80 ] 海河流域 农田 CNR1 北京师范大学
21 密云站[ 79 , 80 ] 海河流域 农田 CNR1 北京师范大学
22 大兴站[ 79 , 80 ] 海河流域 农田 CNR1 北京师范大学
[1] Voogt J A, Oke T R.Thermal remote sensing of urban climates[J]. Remote Sensing of Environment, 2003, 86(3): 370-384.
[2] Kalma J D, Mcvicar T R, Mccabe M F.Estimating land surface Evaporation: A review of methods using remotely sensed surface temperature data[J]. Surveys in Geophysics, 2008, 29(4): 421-469.
[3] Liang S, Wang K, Zhang X,et al.Review on estimation of land surface radiation and energy budgets from ground measurement, remote sensing and model simulations[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2010, 3(3): 225-240.
[4] Tomlinson C J, Chapman L, Thornes J E, et al.Remote sensing land surface temperature for meteorology and climatology: A review[J]. Meteorological Applications, 2011, 18(3): 296-306.
[5] Sellers P J, Meeson B W, Hall F G, et al.Remote sensing of the land surface for studies of global change: Models-algorithms-experiments[J]. Remote Sensing of Environment, 1995, 51(1): 3-26.
[6] Kustas W P, Norman J M.Use of remote sensing for evapotranspiration monitoring over land surfaces[J]. Hydrological Sciences Journal, 1996, 41(4): 495-516.
[7] GCOS. Systematic Observation Requirements for Satellite—Based Products for Climate[R]. Geneva: World Meteorological Organization, 2006.
[8] Njoku E G.Encyclopedia of Remote Sensing[M]. New York: Springer, 2014.
[9] Li X, Cheng G, Liu S,et al.Heihe Watershed Allied Telemetry Experimental Research (HiWATER): Scientific objectives and experimental design[J]. Bulletin of the American Meteorological Society, 2013, 94(8): 1 145-1 160.
[10] Wan Z, Zhang Y, Zhang Q,et al.Validation of the land-surface temperature products retrieved from Terra moderate resolution imaging spectroradiometer data[J]. Remote Sensing of Environment, 2002, 83(1/2): 163-180.
[11] Wan Z.New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product[J]. Remote Sensing of Environment, 2014, 140: 36-45.
[12] Ottle C, Stoll M.Effect of atmospheric absorption and surface emissivity on the determination of land surface temperature from infrared satellite data[J]. International Journal of Remote Sensing, 1993, 14(10): 2 025-2 037.
[13] Li Z L, Tang B H, Wu H,et al.Satellite-derived land surface temperature: Current status and perspectives[J]. Remote Sensing of Environment, 2013, 131: 14-37.
[14] Zhang Renhua, Tian Jing, Li Zhaoliang, et al.Principles and methods for the validation of quantitative remote sensing products[J]. Science in China (Series D), 2010, 40(2): 211-222.
[张仁华, 田静, 李召良,等. 定量遥感产品真实性检验的基础与方法[J]. 中国科学:D辑, 2010, 40(2): 211-222.]
[15] Yu Y, Tarpley D, Privette J L,et al.Validation of GOES-R satellite land surface temperature Algorithm using SURFRAD ground measurements and statistical estimates of error properties[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(3): 704-713.
[16] Coll C, Caselles V, Galve J M,et al.Ground measurements for the validation of land surface temperatures derived from AATSR and MODIS data[J]. Remote Sensing of Environment, 2005, 97(3): 288-300.
[17] Qin Z, Dall’Olmo G, Karnieli A,et al. Derivation of split window algorithm and its sensitivity analysis for retrieving land surface temperature from NOAA-advanced very high resolution radiometer data[J]. Journal of Geophysical Research, 2001, 106: 22.
[18] Sun D, Pinker R T.Estimation of land surface temperature from a Geostationary Operational Environmental Satellite (GOES-8)[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D11): 4 326.
[19] Coll C, Caselles V, Valor E,et al.Temperature and emissivity separation from ASTER data for low spectral contrast surfaces[J]. Remote Sensing of Environment, 2007, 110(2): 162-175.
[20] Coll C, Galve J M, Sanchez J M,et al.Validation of Landsat-7/ETM+ Thermal-Band calibration and atmospheric correction with ground-Based measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(1): 547-555.
[21] Sòria G, Sobrino J A.ENVISAT/AATSR derived land surface temperature over a heterogeneous region[J]. Remote Sensing of Environment, 2007, 111(4): 409-422.
[22] Wan Z.New refinements and validation of the MODIS land-surface temperature/emissivity products[J]. Remote Sensing of Environment, 2008, 112(1): 59-74.
[23] Windahl E, de Beurs K. An intercomparison of Landsat land surface temperature retrieval methods under variable atmospheric conditions using in situ skin temperature[J]. International Journal of Applied Earth Observation and Geoinformation, 2016, 51: 11-27.
[24] Bai Jie, Liu Shaomin, Hu Guang.Inversion and verification of land surface temperature with remote sensing TM/ETM+ data[J]. Transactions of the CSAE, 2008, 24(9): 148-154.
[白洁, 刘绍民, 扈光. 针对TM/ETM+遥感数据的地表温度反演与验证[J]. 农业工程学报, 2008, 24(9): 148-154.]
[25] Zhou Ji, Li Jing, Zhang Lixin.Validation of algorithms for retrieving land surface temperature based on MODIS data—A case study in the upper reaches of Heihe River[J]. Journal of Glaciology and Geocryilogy, 2009, 31(2): 55-62.
[周纪, 李京, 张立新. 针对MODIS数据的地表温度反演算法检验——以黑河流域上游为例[J]. 冰川冻土, 2009, 31(2): 55-62.]
[26] Wang Binbin, Ma Yaoming, Ma Weiqiang.Estimation of land surface temperature retrieved from EOS/MODIS in Naqu area over Tibetan Plateau[J]. Journal of Remote Sensing, 2012, 16(6): 1 289-1 309.
[王宾宾, 马耀明, 马伟强. 青藏高原那曲地区MODIS地表温度估算[J]. 遥感学报, 2012, 16(6): 1 289-1 309.]
[27] Yu Wenping, Ma Mingguo.Retrieving the high-spatial-resolution land surface temperature products from thermal infrared domain of Tiangong-1[J]. Journal of Remote Sensing, 2014, 18(Suppl.1): 144-151.
[于文凭, 马明国. 应用天宫一号高光谱红外谱段数据反演地表温度产品及验证[J]. 遥感学报, 2014, 18(增刊1): 144-151.]
[28] Sobrino J A, Jiménez-Muñoz J C, Balick L,et al. Accuracy of ASTER Level-2 thermal-infrared Standard Products of an agricultural area in Spain[J]. Remote Sensing of Environment, 2007, 106(2): 146-153.
[29] Wang K, Wan Z, Wang P, et al.Evaluation and improvement of the MODIS land surface temperature/emissivity products using ground-based measurements at a semidesert site on the western Tibetan Plateau[J]. International Journal of Remote Sensing, 2007, 28(11): 2 549-2 565.
[30] Wang K, Liang S.Evaluation of ASTER and MODIS land surface temperature and emissivity products using long-term surface longwave radiation observations at SURFRAD sites[J]. Remote Sensing of Environment, 2009, 113(7): 1 556-1 565.
[31] Zhou J, Li J, Zhang L, et al.Intercomparison of methods for estimating land surface temperature from a Landsat-5 TM image in an arid region with low water vapour in the atmosphere[J]. International Journal of Remote Sensing, 2012, 33(8): 2 582-2 602.
[32] Trigo I F, Monteiro I T, Olesen F, et al.An assessment of remotely sensed land surface temperature[J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D17): D17108.
[33] Yu Y, Tarpley D, Privette J L, et al.Developing Algorithm for Operational GOES-R land surface temperature product[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47: 936-951.
[34] Göttsche F M, Olesen F S, Bork-Unkelbach A.Validation of land surface temperature derived from MSG/SEVIRI with in situ measurements at Gobabeb, Namibia[J]. International Journal of Remote Sensing, 2013, 34(9/10): 3 069-3 083.
[35] Sun D, Yu Y, Yang H, et al.Comparison between GOES-east and -west for land surface temperature retrieval from a Dual-Window Algorithm[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10: 578-582.
[36] Wan Z, Li Z.Radiance-based validation of the V5 MODIS land-surface temperature product[J]. International Journal of Remote Sensing, 2008, 29(17/18): 5 373-5 395.
[37] Coll C, Wan Z, Galve J M.Temperature-based and radiance-based validations of the V5 MODIS land surface temperature product[J]. Journal of Geophysical Research, 2009, 114(D20),doi:10.1029/2009JD012038.
[38] Niclòs R, Galve J M, Valiente J A, et al.Accuracy assessment of land surface temperature retrievals from MSG2-SEVIRI data[J]. Remote Sensing of Environment, 2011, 115(8): 2 126-2 140.
[39] Hulley G C, Hook S J.A radiance-based method for estimating uncertainties in the Atmospheric Infrared Sounder (AIRS) land surface temperature product: AIRS LST VALIDATION[J]. Journal of Geophysical Research: Atmospheres, 2012, 117(D20): 20 117.
[40] Li Z L, Duan S B, Tang B H, et al.Review of methids for land surface temperature deriverd from thermal infrared remotely sensed data[J].Journal of Remote Sensing, 2016, 20(5): 899-920.
[41] Gao Maofang, Qin Zhihao.The validation of Chinese land surface temperature products retrieved from moderate resolution imaging Spectrometer data[J]. Remote Sensing for Land & Resources, 2006,(3): 15-18.
[高懋芳, 覃志豪. 中国MODIS地表温度产品验证[J]. 国土资源遥感, 2006,(3): 15-18.]
[42] Zhu Linqing, Zhou Ji, Liu Shaomin, et al.Temporal normalization research of airborne land Surface temperature[J]. Journal of Remote Sensing, 2017, 21(2):1 993-2 002.
[朱琳清, 周纪, 刘绍民,等. 航空遥感地表温度时间归一化研究[J]. 遥感学报, 2017, 21(2):1 993-2 002.]
[43] Zhou J, Li M, Liu S, et al.Validation and performance evaluations of methods for estimating land surface temperatures from ASTER data in the Middle Reach of the Heihe River Basin, Northwest China[J]. Remote Sensing, 2015, 7(6): 7 126-7 156.
[44] Prata A J, Cechet R P.An assessment of the accuracy of land surface temperature determination from the GMS-5 VISSR[J]. Remote Sensing of Environment, 1999, 67(1): 1-14.
[45] Yang H, Yang Z.A modified land surface temperature split window retrieval algorithm and its applications over China[J]. Global and Planetary Change, 2006, 52(1/4): 207-215.
[46] Liu Y, Yamaguchi Y, Ke C.Reducing the discrepancy between ASTER and MODIS land surface temperature products[J]. Sensors, 2007, 7(12): 3 043-3 057.
[47] Wang W, Liang S, Meyers T.Validating MODIS land surface temperature products using long-term nighttime ground measurements[J]. Remote Sensing of Environment, 2008, 112(3): 623-635.
[48] Tang B H, Shao K, Li Z L, et al.Estimation and validation of land surface temperatures from Chinese second-generation polar-Orbit FY-3A VIRR data[J]. Remote Sensing, 2015, 7(3):3 250-3 273.
[49] Soliman A, Duguay C, Saunders W, et al.Pan-Arctic land surface temperature from MODIS and AATSR: Product development and intercomparison[J]. Remote Sensing, 2012, 4(12): 3 833-3 856.
[50] Cho A R, Suh M S.Evaluation of land surface temperature operationally retrieved from Korean geostationary satellite (COMS) data[J]. Remote Sensing, 2013, 5(8): 3 951-3 970.
[51] Guillevic P C, Biard J C, Hulley G C, et al.Validation of land surface temperature products derived from the Visible Infrared Imaging Radiometer Suite (VIIRS) using ground-based and heritage satellite measurements[J]. Remote Sensing of Environment, 2014, 154: 19-37.
[52] Simó G, Garci A-Santos V, Jiménez M A, et al. Landsat and local land surface temperatures in a Heterogeneous Terrain compared to MODIS values[J]. Remote Sensing, 2016, 8(10): 849.
[53] Frey C M, Kuenzer C, Dech S.Quantitative comparison of the operational NOAA-AVHRR LST product of DLR and the MODIS LST product V005[J]. International Journal of Remote Sensing, 2012, 33(22): 7 165-7 183.
[54] Duan S B, Li Z L.Intercomparison of operational land surface temperature products derived from MSG-SEVIRI and Terra/Aqua-MODIS data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(8): 4 163-4 170.
[55] Hulley G C, Hook S J.Intercomparison of versions 4, 4.1 and 5 of the MODIS land surface temperature and emissivity products and validation with laboratory measurements of sand samples from the Namib Desert, Namibia[J]. Remote Sensing of Environment, 2009, 113(6): 1 313-1 318.
[56] Gao C, Jiang X, Wu H,et al.Comparison of land surface temperatures from MSG-2/SEVIRI and Terra/MODIS[J]. Journal of Applied Remote Sensing, 2012, 6(1),doi:10.1117/1.JRS.6.063606.
[57] Wang Yawei, Song Xiaoning, Tang Bohui, et al.Validation of FY-2C derived land surface temperature over the source region of Yellow River: A case study of Maqu County[J]. Remote Sensing for Land & Resources, 2015, 27(4): 68-72.
[王亚维, 宋小宁, 唐伯惠,等. 基于FY-2C数据的地表温度反演验证——以黄河源区玛曲为例[J]. 国土资源遥感, 2015, 27(4): 68-72.]
[58] Sun D, Yu Y, Yang H, et al.A case study for intercomparison of land surface temperature retrieved from GOES and MODIS[J]. International Journal of Digital Earth, 2015, 8(6): 476-494.
[59] Zhou J, Dai F, Zhang X, et al.Developing a Temporally Land cover-based Look-Up Table (TL-LUT) method for estimating land surface temperature based on AMSR-E data over the Chinese landmass[J]. International Journal of Applied Earth Observation and Geoinformation, 2015, 34: 35-50.
[60] Gao Zhiqiang, Liu Jiyuan.The comparison of land surface temperature with CLM and Split window retrieving method[J]. Acta Geographica Sinica, 2003, 58(4):494-502.
[高志强, 刘纪远. 基于陆面模式和遥感技术的地表温度比较[J]. 地理学报, 2003, 58(4): 494-502.]
[61] Zheng Xucheng, Chen Haishan.Characteristics of global land surface thermal conditions in spring and summer: Comparison between NCEP/NCAR and ERA40 reanalysis data[J].Transactions of Atmospheric Sciences, 2012, 35(1): 41-50.
[郑旭程, 陈海山. 全球春、夏陆面热力状况变化特征:NCEP/NCAR与ERA40再分析资料的比较[J]. 大气科学学报, 2012, 35(1): 41-50.]
[62] Pan X, Li X, Shi X, et al.Dynamic downscaling of near-surface air temperature at the basin scale using WRF—A case study in the Heihe River Basin, China[J]. Frontiers of Earth Science, 2012, 6(3): 314-323.
[63] Ermida S L, Trigo I F, Dacamara C C, et al.Validation of remotely sensed surface temperature over an oak woodland landscape—The problem of viewing and illumination geometries[J]. Remote Sensing of Environment, 2014, 148: 16-27.
[64] Peng Zhixing, Zhou Ji, Li Mingsong.Review of methods for simulating land surface temperature at the pixel scale based on ground measurements over heterogeneous surface[J]. Advances in Earth Science, 2016, 31(5): 471-480.
[彭志兴, 周纪, 李明松. 基于地面观测的异质性下垫面像元尺度地表温度模拟研究进展[J]. 地球科学进展, 2016, 31(5): 471-480.]
[65] Schneider P, Ghent D, Corlett G K, et al.AATSR Validation: LST Validation Protocol[R].Leicester: University of Leicester, 2012.
[66] Liu S, Xu Z, Song L, et al. Upscaling evapotranspiration measurements from multi-site to the satellite pixel scale over heterogeneous land surfaces[J]. Agricultural and Forest Meteorology, 2016, 230/231: 97-113.
[67] Ma Y, Wang Y, Wu R, et al.Recent advances on the study of atmosphere-land interaction observations on the Tibetan Plateau[J]. Hydrology & Earth System Sciences, 2009, 13(6): 1 103-1 111.
[68] Huang G, Li X, Huang C, et al.Representativeness errors of point-scale ground-based solar radiation measurements in the validation of remote sensing products[J]. Remote Sensing of Environment, 2016, 181: 198-206.
[69] Xu Z, Liu S, Li X, et al. Intercomparison of surface energy flux measurement systems used during the HiWATER-MUSOEXE[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(23): 2013 JD020260.
[70] Raissouni N, Sobrino J A, Chahboun A, et al.First results towards building up a reliable in situ measurements database for LST algorithm validations using modular WSN: Northern Morocco campaigns case study[J]. International Journal of Remote Sensing, 2013, 34(9/10): 3 153-3 163.
[71] Jin R, Li X, Yan B, et al.A nested ecohydrological wireless sensor network for capturing the surface heterogeneity in the Midstream areas of the Heihe River Basin, China[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(11): 2 015-2 019.
[72] Yu W, Ma M, Wang X, et al.Evaluation of MODIS LST products using longwave radiation ground measurements in the northern arid region of China[J]. Remote Sensing, 2014, 6(11): 11 494-11 517.
[73] Göttsche F M, Hulley G C.Validation of six satellite-retrieved land surface emissivity products over two land cover types in a hyper-arid region[J]. Remote Sensing of Environment, 2012, 124: 149-158.
[74] Hook S J, Clodius W B, Balick L, et al.In-flight validation of mid- and thermal infrared data from the Multispectral Thermal Imager (MTI) using an automated high-altitude validation site at Lake Tahoe CA/NV, USA[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(9): 1 991-1 999.
[75] Li S, Yu Y, Sun D, et al.Evaluation of 10 year AQUA/MODIS land surface temperature with SURFRAD observations[J]. International Journal of Remote Sensing, 2014, 35(3): 830-856.
[76] Pinker R T, Sun D, Hung M P, et al.Evaluation of satellite estimates of land surface temperature from GOES over the United States[J]. Journal of Applied Meteorology and Climatology, 2009, 48(1): 167-180.
[77] Barreto Á, Arbelo M, HernÁNDEZ-LEAL P A, et al. Evaluation of surface temperature and emissivity derived from ASTER data: A case study using ground—Based measurements at a Volcanic site[J]. Journal of Atmospheric and Oceanic Technology, 2010, 27(10): 1 677-1 688.
[78] Li X, Li X, Li Z, et al.Watershed allied telemetry experimental research[J]. Journal of Geophysical Research, 2009, 114(D22),doi:10.1029/2008JD011590.
[79] Jia Z, Liu S, Xu Z, et al.Validation of remotely sensed evapotranspiration over the Hai River Basin, China[J]. Journal of Geophysical Research: Atmospheres, 2012, 113(D13),doi:10.1029/2011JD017037.
[80] Liu S M, Xu Z W, Zhu Z L, et al.Measurements of evapotranspiration from eddy-covariance systems and large aperture scintillometers in the Hai River Basin, China[J]. Journal of Hydrology, 2013, 487: 24-38.
[81] Meng Xianhong, Lü Shihua, Zhang Yu, et al.Retrieving of land surface temperature over Jinta area using LANDSAT- 5 TM data[J]. Platea Meteorology, 2005,24(5):721-726.
[孟宪红, 吕世华, 张宇,等. 使用LANDSAT-5TM数据反演金塔地表温度[J]. 高原气象, 2005, 24(5): 721-726.]
[82] Srivastava P K, Majumdar T J, Bhattacharya A K.Surface temperature estimation in Singhbhum Shear Zone of India using Landsat-7 ETM+ thermal infrared data[J]. Advances in Space Research, 2009, 43(10): 1 563-1 574.
[83] Wang Y, Zhou J, Li M, et al.Validation of Landsat-8 TIRS LAND surface temperature retrieved from multiple algorithms in an extremely arid region[C]//2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Beijing,2016: 6 934-6 937.
[84] Hook S J, Vaughan R G, Tonooka H, et al.Absolute radiometric in-flight validation of mid infrared and thermal infrared data from ASTER and MODIS on the terra spacecraft using the Lake Tahoe, CA/NV, USA, automated validation site[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(6): 1 798-1 807.
[85] Sabol Jr D E, Gillespie A R, Abbott E, et al. Field validation of the ASTER temperature-emissivity separation algorithm[J]. Remote Sensing of Environment, 2009, 113(11): 2 328-2 344.
[86] Hulley G C, Hughes C G, Hook S J.Quantifying uncertainties in land surface temperature and emissivity retrievals from ASTER and MODIS thermal infrared data[J]. Journal of Geophysical Research: Atmospheres, 2012, 117(D23): 23 113,doi:10.1029/2012JD018506.
[87] Coll C, Valor E, Galve J M, et al.Long-term accuracy assessment of land surface temperatures derived from the advanced along-track scanning radiometer[J]. Remote Sensing of Environment, 2012, 116(2): 211-225.
[88] Ouyang X, Chen D, Duan S B, et al.Validation and analysis of long-term AATSR land surface temperature product in the Heihe River Basin, China[J]. Remote Sensing, 2017, 9(2): 152.
[89] Coll C, Caselles V, Valor E, et al.Validation of land surface temperatures derived from AATSR data at the valencia test site[J]. Minerva Ginecologica, 2005, 597: 405-410.
[90] Noyes E J, Sòria G, Sobrino J A, et al.AATSR land surface temperature product algorithm verification over a WATERMED site[J]. Advances in Space Research, 2007, 39(1): 171-178.
[91] Yu Wenping, Ma Mingguo.Validation of the MODIS land surface temperature products—A case study of the Heihe River Basin[J]. Remote Sensing Technology and Application, 2011, 26(6): 705-712.
[于文凭, 马明国. MODIS 地表温度产品的验证研究——以黑河流域为例[J]. 遥感技术与应用, 2011, 26(6): 705-712.]
[92] Li H, Sun D, Yu Y, et al.Evaluation of the VIIRS and MODIS LST products in an arid area of Northwest China[J]. Remote Sensing of Environment, 2014, 142(1): 111-121.
[93] Jiang J, Li H, Liu Q, et al.Evaluation of land surface temperature retrieval from FY-3B/VIRR data in an arid area of Northwestern China[J]. Remote Sensing, 2015, 7(6): 7 080-7 104.
[94] Freitas S C, Trigo I F, Bioucas-Dias J M, et al. Quantifying the uncertainty of land surface temperature retrievals from SEVIRI/Meteosat[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(1): 523-534.
[95] Anderson M.A two-source time-integrated model for estimating surface fluxes using thermal infrared remote sensing[J]. Remote Sensing of Environment, 1997, 60(2): 195-216.
[96] Zhou J, Liu S, Li M, et al.Quantification of the scale effect in downscaling remotely sensed land surface temperature[J]. Remote Sensing, 2016, 8(12): 975.
[97] Min Wenbin, Li Yaoqing, Zhou Ji.Validation of MODIS land surface temperature products in east of the Qinghai Xizang Plateau[J]. Plateau Meteorology, 2015, 34(6): 1 511-1 516.
[闵文彬, 李跃清, 周纪. 青藏高原东侧MODIS地表温度产品验证[J]. 高原气象, 2015, 34(6): 1 511-1 516.]
[98] Li Z L, Wu H, Wang N, et al.Land surface emissivity retrieval from satellite data[J]. International Journal of Remote Sensing, 2013, 34(9/10): 3 084-3 127.
[99] Yu W, Ma M.Scale mismatch between in situ and remote sensing observations of land surface temperature:Implications for the validation of remote sensing LST products[J].IEEE Geoscience and Remote Sensing Letters, 2015, 12(3): 497-501.
[100] Ren H, Liang S, Yan G, et al.Empirical Algorithms to map global broadband emissivities over vegetated surfaces[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(5): 2 619-2 631.
[101] Liang S, Fang H, Chen M, et al.Validating MODIS land surface reflectance and albedo products: Methods and preliminary results[J]. Remote Sensing of Environment, 2002, 83(1): 149-162.
[102] Wu Xiaodan, Xiao Qing, Wen Jianguang, et al.Advances in uncertainty analysis for the validation of remote sensing products: Take leaf area index for example[J]. Journal of Remote Sensing, 2014, 18(5): 1 011-1 023.
[吴小丹, 肖青, 闻建光,等.遥感数据产品真实性检验不确定性分析研究进展[J]. 遥感学报, 2014, 18(5): 1 011-1 023.]
[103] Prata A J.Land Surface Temperature Measurement from Space: AATSR Algorithm Theoretical Basis Document[R].Aspendale: CSIRO Atmospheric Research, 2002.
[104] Rosborough G W, Baldwin D G, Enery W J.Precise AVHRR image navigation[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32: 644-657.
[105] Wolfe R E, Nishihama M, Fleig A J, et al.Achieving sub-pixel geolocation accuracy in support of MODIS land science[J]. Remote Sensing of Environment, 2002, 83(1/2): 31-49.
[106] Guan Min, Wu Ronghua.Geolocation approach for FY-3A MERSI remote sensing image[J]. Journal of Applied Meteorological Science, 2012,(5): 534-542.
[关敏, 吴荣华. FY-3A中分辨率光谱成像仪图像地理定位方法[J]. 应用气象学报, 2012,(5): 534-542.]
[107] Liu Yani, Xin Xiaozhou, Liu Qinhuo, et al.Method and validation for surface fluxes estimation based on multi-scale remotely sensed data[J]. Advances in Earth Science, 2010, 25(11): 1 261-1 272.
[刘雅妮, 辛晓洲, 柳钦火,等. 基于多尺度遥感数据估算地表通量的方法及其验证分析[J]. 地球科学进展, 2010, 25(11): 1 261-1 272.]
[108] Ermida S L, Dacamara C C, Trigo I F, et al.Modelling directional effects on remotely sensed land surface temperature[J]. Remote Sensing of Environment, 2017, 190: 56-69.
[109] Zhang Renhua, Sun Xiaomin, Su Hongbo, et al.Remote sensing and scale transfering of levity parameters on earth surface[J]. Remote Sensing for Land & Resources, 1999,10(3):51-58.
[张仁华, 孙晓敏, 苏红波,等. 遥感及其地球表面时空多变要素的区域尺度转换[J]. 国土资源遥感, 1999,10(3):51-58.]
[1] 单薪蒙, 温家洪, 王军, 胡恒智. 深度不确定性下的灾害风险稳健决策方法评述[J]. 地球科学进展, 2021, 36(9): 911-921.
[2] 王忠静,石羽佳,张腾. TRMM遥感降水低估还是高估中国大陆地区的降水?[J]. 地球科学进展, 2021, 36(6): 604-615.
[3] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[4] 吴佳梅,彭秋志,黄义忠,黄亮. 中国植被覆盖变化研究遥感数据源及研究区域时空热度分析[J]. 地球科学进展, 2020, 35(9): 978-989.
[5] 董治宝, 吕萍, 李超. 火星风沙地貌研究方法[J]. 地球科学进展, 2020, 35(8): 771-788.
[6] 刘元波, 吴桂平, 赵晓松, 范兴旺, 潘鑫, 甘国靖, 刘永伟, 郭瑞芳, 周晗, 王颖, 王若男, 崔逸凡. 流域水文遥感的科学问题与挑战[J]. 地球科学进展, 2020, 35(5): 488-496.
[7] 刘磊,翁陈思,李书磊,胡帅,叶进,窦芳丽,商建. 太赫兹波被动遥感冰云研究现状及进展[J]. 地球科学进展, 2020, 35(12): 1211-1221.
[8] 李浩杰,李弘毅,王建,郝晓华. 河冰遥感监测研究进展[J]. 地球科学进展, 2020, 35(10): 1041-1051.
[9] WangJingfeng,刘元波,张珂. 最大熵增地表蒸散模型:原理及应用综述[J]. 地球科学进展, 2019, 34(6): 596-605.
[10] 尤元红,黄春林,张莹,侯金亮. Noah-MP模型中积雪模拟对参数化方案的敏感性评估[J]. 地球科学进展, 2019, 34(4): 356-365.
[11] 陈泽青,刘诚,胡启后,洪茜茜,刘浩然,邢成志,苏文静. 大气成分的遥感监测方法与应用[J]. 地球科学进展, 2019, 34(3): 255-264.
[12] 冉有华,李新. 中国多年冻土制图:进展、挑战与机遇[J]. 地球科学进展, 2019, 34(10): 1015-1027.
[13] 陈云浩, 吴佳桐, 王丹丹. 广义地表热辐射方向性计算机模拟研究进展[J]. 地球科学进展, 2018, 33(6): 555-567.
[14] 肖雄新, 张廷军. 基于被动微波遥感的积雪深度和雪水当量反演研究进展[J]. 地球科学进展, 2018, 33(6): 590-605.
[15] 栾海军, 田庆久, 章欣欣, 聂芹, 朱晓玲. 定量遥感地表参数尺度转换研究趋势探讨[J]. 地球科学进展, 2018, 33(5): 483-492.
阅读次数
全文


摘要