Please wait a minute...
img img
高级检索
地球科学进展  2017, Vol. 32 Issue (6): 615-629    DOI: 10.11867/j.issn.1001-8166.2017.06.0615
综述与评述     
卫星遥感地表温度的真实性检验研究进展
马晋1, 2, 周纪1, 2, *, 刘绍民3, 王钰佳1, 2
1.电子科技大学 资源与环境学院, 四川 成都 611731;
2.电子科技大学 信息地学研究中心,四川 成都 611731;
3.北京师范大学 地理科学学部, 北京 100875
Review on Validation of Remotely Sensed Land Surface Temperature
Ma Jin1, 2, Zhou Ji1, 2, *, Liu Shaomin3, Wang Yujia1, 2
1.School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China;
2.Center for Information Geoscience, University of Electronic Science and Technology of China, Chengdu 611731, China;
3.Faculty of Geographical Science, Beijing Normal University, Beijing 100875,China
 全文: PDF(2606 KB)   HTML
摘要: 地表温度是多种地表过程模型的输入参数,遥感反演地表温度是估算区域及全球尺度上地表辐射平衡和能量收支的关键手段。对遥感地表温度开展真实性检验有利于客观评价其精度和稳定性,对遥感地表温度的反演及应用都具有重要意义。简单回顾了通过遥感手段反演地表温度的基本原理和常用方法。回顾并分析了基于实测地表温度的检验方法、基于辐亮度的检验方法、交叉比较以及时间序列分析4种典型地表温度真实性检验方法的优缺点。在此基础上,重点总结了地表温度直接检验方法中地面观测数据获取方法、检验对象,分析了直接检验中的不确定来源。最后,对地表温度真实性检验中存在的问题进行了讨论。
关键词: 地表温度不确定性遥感真实性检验    
Abstract: Land Surface Temperature (LST) is an important input parameter for many land surface models. Retrieving LST from remote sensing is the main approach for modelling the radiance balance and energy budget at both regional and global scales. Validation of remotely sensed LST is helpful to evaluate its accuracy and stability. Furthermore, it is meaningful for the retrieval and application of remotely sensed LST. Here, first, theories and methods of LST retrieval were reviewed. Second, four validation methods, including the Temperature-based (T-based), Radiance-based (R-based), cross comparison and Time-series analysis, were reviewed and compared. An in-depth examination was conducted for the T-based method from the aspects including the approaches for acquiring the ground truth value, the target LST products, the uncertainty sources. Finally, some important issues in LST validation were discussed.
Key words: Remote sensing.    LST    Validation    Uncertainty
收稿日期: 2017-02-09 出版日期: 2017-06-10
ZTFLH:  P423.7  
基金资助: 国家自然科学基金面上项目“基于三维建模与组分发射辐射分离的异质性场景像元尺度表面温度模拟研究”(编号:41371341); 国家自然科学基金重点项目“陆表遥感产品真实性检验中的关键理论与方法研究”(编号:41531174)资助
通讯作者: 周纪(1983-),男,四川南充人,副教授,主要从事定量遥感研究.E-mail:jzhou233@uestc.edu.cn   
作者简介: 马晋(1992-),男,四川巴中人,硕士研究生,主要从事遥感地表温度真实性检验研究.E-mail:jinm92@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
周纪
王钰佳
马晋
刘绍民

引用本文:

马晋, 周纪, 刘绍民, 王钰佳. 卫星遥感地表温度的真实性检验研究进展[J]. 地球科学进展, 2017, 32(6): 615-629.

Ma Jin, Zhou Ji, Liu Shaomin, Wang Yujia. Review on Validation of Remotely Sensed Land Surface Temperature. Advances in Earth Science, 2017, 32(6): 615-629.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2017.06.0615        http://www.adearth.ac.cn/CN/Y2017/V32/I6/615

[1] Voogt J A, Oke T R. Thermal remote sensing of urban climates[J]. Remote Sensing of Environment , 2003, 86(3): 370-384.
[2] Kalma J D, Mcvicar T R, Mccabe M F. Estimating land surface Evaporation: A review of methods using remotely sensed surface temperature data[J]. Surveys in Geophysics , 2008, 29(4): 421-469.
[3] Liang S, Wang K, Zhang X, et al . Review on estimation of land surface radiation and energy budgets from ground measurement, remote sensing and model simulations[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , 2010, 3(3): 225-240.
[4] Tomlinson C J, Chapman L, Thornes J E, et al . Remote sensing land surface temperature for meteorology and climatology: A review[J]. Meteorological Applications , 2011, 18(3): 296-306.
[5] Sellers P J, Meeson B W, Hall F G, et al . Remote sensing of the land surface for studies of global change: Models-algorithms-experiments[J]. Remote Sensing of Environment , 1995, 51(1): 3-26.
[6] Kustas W P, Norman J M. Use of remote sensing for evapotranspiration monitoring over land surfaces[J]. Hydrological Sciences Journal , 1996, 41(4): 495-516.
[7] GCOS. Systematic Observation Requirements for Satellite—Based Products for Climate[R]. Geneva: World Meteorological Organization, 2006.
[8] Njoku E G.Encyclopedia of Remote Sensing[M]. New York: Springer, 2014.
[9] Li X, Cheng G, Liu S, et al . Heihe Watershed Allied Telemetry Experimental Research (HiWATER): Scientific objectives and experimental design[J]. Bulletin of the American Meteorological Society , 2013, 94(8): 1 145-1 160.
[10] Wan Z, Zhang Y, Zhang Q, et al . Validation of the land-surface temperature products retrieved from Terra moderate resolution imaging spectroradiometer data[J]. Remote Sensing of Environment , 2002, 83(1/2): 163-180.
[11] Wan Z. New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product[J]. Remote Sensing of Environment , 2014, 140: 36-45.
[12] Ottle C, Stoll M. Effect of atmospheric absorption and surface emissivity on the determination of land surface temperature from infrared satellite data[J]. International Journal of Remote Sensing , 1993, 14(10): 2 025-2 037.
[13] Li Z L, Tang B H, Wu H, et al . Satellite-derived land surface temperature: Current status and perspectives[J]. Remote Sensing of Environment , 2013, 131: 14-37.
[14] Zhang Renhua, Tian Jing, Li Zhaoliang, et al . Principles and methods for the validation of quantitative remote sensing products[J]. Science in China ( Series D ), 2010, 40(2): 211-222.
. 中国科学:D辑, 2010, 40(2): 211-222.]
[15] Yu Y, Tarpley D, Privette J L, et al . Validation of GOES-R satellite land surface temperature Algorithm using SURFRAD ground measurements and statistical estimates of error properties[J]. IEEE Transactions on Geoscience and Remote Sensing , 2012, 50(3): 704-713.
[16] Coll C, Caselles V, Galve J M, et al . Ground measurements for the validation of land surface temperatures derived from AATSR and MODIS data[J]. Remote Sensing of Environment , 2005, 97(3): 288-300.
[17] Qin Z, Dall’Olmo G, Karnieli A, et al . Derivation of split window algorithm and its sensitivity analysis for retrieving land surface temperature from NOAA-advanced very high resolution radiometer data[J]. Journal of Geophysical Research , 2001, 106: 22.
[18] Sun D, Pinker R T. Estimation of land surface temperature from a Geostationary Operational Environmental Satellite (GOES-8)[J]. Journal of Geophysical Research : Atmospheres , 2003, 108(D11): 4 326.
[19] Coll C, Caselles V, Valor E, et al . Temperature and emissivity separation from ASTER data for low spectral contrast surfaces[J]. Remote Sensing of Environment , 2007, 110(2): 162-175.
[20] Coll C, Galve J M, Sanchez J M, et al . Validation of Landsat-7/ETM+ Thermal-Band calibration and atmospheric correction with ground-Based measurements[J]. IEEE Transactions on Geoscience and Remote Sensing , 2010, 48(1): 547-555.
[21] Sòria G, Sobrino J A. ENVISAT/AATSR derived land surface temperature over a heterogeneous region[J]. Remote Sensing of Environment , 2007, 111(4): 409-422.
[22] Wan Z. New refinements and validation of the MODIS land-surface temperature/emissivity products[J]. Remote Sensing of Environment , 2008, 112(1): 59-74.
[23] Windahl E, de Beurs K. An intercomparison of Landsat land surface temperature retrieval methods under variable atmospheric conditions using in situ skin temperature[J]. International Journal of Applied Earth Observation and Geoinformation , 2016, 51: 11-27.
[24] Bai Jie, Liu Shaomin, Hu Guang. Inversion and verification of land surface temperature with remote sensing TM/ETM+ data[J]. Transactions of the CSAE , 2008, 24(9): 148-154.
. 农业工程学报, 2008, 24(9): 148-154.]
[25] Zhou Ji, Li Jing, Zhang Lixin. Validation of algorithms for retrieving land surface temperature based on MODIS data—A case study in the upper reaches of Heihe River[J]. Journal of Glaciology and Geocryilogy , 2009, 31(2): 55-62.
. 冰川冻土, 2009, 31(2): 55-62.]
[26] Wang Binbin, Ma Yaoming, Ma Weiqiang. Estimation of land surface temperature retrieved from EOS/MODIS in Naqu area over Tibetan Plateau[J]. Journal of Remote Sensing , 2012, 16(6): 1 289-1 309.
. 遥感学报, 2012, 16(6): 1 289-1 309.]
[27] Yu Wenping, Ma Mingguo. Retrieving the high-spatial-resolution land surface temperature products from thermal infrared domain of Tiangong-1[J]. Journal of Remote Sensing , 2014, 18(Suppl.1): 144-151.
. 遥感学报, 2014, 18(增刊1): 144-151.]
[28] Sobrino J A, Jiménez-Muñoz J C, Balick L, et al . Accuracy of ASTER Level-2 thermal-infrared Standard Products of an agricultural area in Spain[J]. Remote Sensing of Environment , 2007, 106(2): 146-153.
[29] Wang K, Wan Z, Wang P, et al . Evaluation and improvement of the MODIS land surface temperature/emissivity products using ground-based measurements at a semidesert site on the western Tibetan Plateau[J]. International Journal of Remote Sensing , 2007, 28(11): 2 549-2 565.
[30] Wang K, Liang S. Evaluation of ASTER and MODIS land surface temperature and emissivity products using long-term surface longwave radiation observations at SURFRAD sites[J]. Remote Sensing of Environment , 2009, 113(7): 1 556-1 565.
[31] Zhou J, Li J, Zhang L, et al . Intercomparison of methods for estimating land surface temperature from a Landsat-5 TM image in an arid region with low water vapour in the atmosphere[J]. International Journal of Remote Sensing , 2012, 33(8): 2 582-2 602.
[32] Trigo I F, Monteiro I T, Olesen F, et al . An assessment of remotely sensed land surface temperature[J]. Journal of Geophysical Research : Atmospheres , 2008, 113(D17): D17108.
[33] Yu Y, Tarpley D, Privette J L, et al . Developing Algorithm for Operational GOES-R land surface temperature product[J]. IEEE Transactions on Geoscience and Remote Sensing , 2009, 47: 936-951.
[34] Göttsche F M, Olesen F S, Bork-Unkelbach A. Validation of land surface temperature derived from MSG/SEVIRI with in situ measurements at Gobabeb, Namibia[J]. International Journal of Remote Sensing , 2013, 34(9/10): 3 069-3 083.
[35] Sun D, Yu Y, Yang H, et al . Comparison between GOES-east and -west for land surface temperature retrieval from a Dual-Window Algorithm[J]. IEEE Geoscience and Remote Sensing Letters , 2013, 10: 578-582.
[36] Wan Z, Li Z. Radiance-based validation of the V5 MODIS land-surface temperature product[J]. International Journal of Remote Sensing , 2008, 29(17/18): 5 373-5 395.
[37] Coll C, Wan Z, Galve J M. Temperature-based and radiance-based validations of the V5 MODIS land surface temperature product[J]. Journal of Geophysical Research , 2009, 114(D20),doi:10.1029/2009JD012038.
[38] Niclòs R, Galve J M, Valiente J A, et al . Accuracy assessment of land surface temperature retrievals from MSG2-SEVIRI data[J]. Remote Sensing of Environment , 2011, 115(8): 2 126-2 140.
[39] Hulley G C, Hook S J. A radiance-based method for estimating uncertainties in the Atmospheric Infrared Sounder (AIRS) land surface temperature product: AIRS LST VALIDATION[J]. Journal of Geophysical Research : Atmospheres , 2012, 117(D20): 20 117.
[40] Li Z L, Duan S B, Tang B H, et al . Review of methids for land surface temperature deriverd from thermal infrared remotely sensed data[J]. Journal of Remote Sensing , 2016, 20(5): 899-920.
[41] Gao Maofang, Qin Zhihao. The validation of Chinese land surface temperature products retrieved from moderate resolution imaging Spectrometer data[J]. Remote Sensing for Land & Resources , 2006,(3): 15-18.
. 国土资源遥感, 2006,(3): 15-18.]
[42] Zhu Linqing, Zhou Ji, Liu Shaomin, et al . Temporal normalization research of airborne land Surface temperature[J]. Journal of Remote Sensing , 2017, 21(2):1 993-2 002.
. 遥感学报, 2017, 21(2):1 993-2 002.]
[43] Zhou J, Li M, Liu S, et al . Validation and performance evaluations of methods for estimating land surface temperatures from ASTER data in the Middle Reach of the Heihe River Basin, Northwest China[J]. Remote Sensing , 2015, 7(6): 7 126-7 156.
[44] Prata A J, Cechet R P. An assessment of the accuracy of land surface temperature determination from the GMS-5 VISSR[J]. Remote Sensing of Environment , 1999, 67(1): 1-14.
[45] Yang H, Yang Z. A modified land surface temperature split window retrieval algorithm and its applications over China[J]. Global and Planetary Change , 2006, 52(1/4): 207-215.
[46] Liu Y, Yamaguchi Y, Ke C. Reducing the discrepancy between ASTER and MODIS land surface temperature products[J]. Sensors , 2007, 7(12): 3 043-3 057.
[47] Wang W, Liang S, Meyers T. Validating MODIS land surface temperature products using long-term nighttime ground measurements[J]. Remote Sensing of Environment , 2008, 112(3): 623-635.
[48] Tang B H, Shao K, Li Z L, et al . Estimation and validation of land surface temperatures from Chinese second-generation polar-Orbit FY-3A VIRR data[J]. Remote Sensing , 2015, 7(3):3 250-3 273.
[49] Soliman A, Duguay C, Saunders W, et al . Pan-Arctic land surface temperature from MODIS and AATSR: Product development and intercomparison[J]. Remote Sensing , 2012, 4(12): 3 833-3 856.
[50] Cho A R, Suh M S. Evaluation of land surface temperature operationally retrieved from Korean geostationary satellite (COMS) data[J]. Remote Sensing , 2013, 5(8): 3 951-3 970.
[51] Guillevic P C, Biard J C, Hulley G C, et al . Validation of land surface temperature products derived from the Visible Infrared Imaging Radiometer Suite (VIIRS) using ground-based and heritage satellite measurements[J]. Remote Sensing of Environment , 2014, 154: 19-37.
[52] Simó G, Garci A-Santos V, Jiménez M A, et al . Landsat and local land surface temperatures in a Heterogeneous Terrain compared to MODIS values[J]. Remote Sensing , 2016, 8(10): 849.
[53] Frey C M, Kuenzer C, Dech S. Quantitative comparison of the operational NOAA-AVHRR LST product of DLR and the MODIS LST product V005[J]. International Journal of Remote Sensing , 2012, 33(22): 7 165-7 183.
[54] Duan S B, Li Z L. Intercomparison of operational land surface temperature products derived from MSG-SEVIRI and Terra/Aqua-MODIS data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , 2015, 8(8): 4 163-4 170.
[55] Hulley G C, Hook S J. Intercomparison of versions 4, 4.1 and 5 of the MODIS land surface temperature and emissivity products and validation with laboratory measurements of sand samples from the Namib Desert, Namibia[J]. Remote Sensing of Environment , 2009, 113(6): 1 313-1 318.
[56] Gao C, Jiang X, Wu H, et al . Comparison of land surface temperatures from MSG-2/SEVIRI and Terra/MODIS[J]. Journal of Applied Remote Sensing , 2012, 6(1),doi:10.1117/1.JRS.6.063606.
[57] Wang Yawei, Song Xiaoning, Tang Bohui, et al . Validation of FY-2C derived land surface temperature over the source region of Yellow River: A case study of Maqu County[J]. Remote Sensing for Land & Resources , 2015, 27(4): 68-72.
. 国土资源遥感, 2015, 27(4): 68-72.]
[58] Sun D, Yu Y, Yang H, et al . A case study for intercomparison of land surface temperature retrieved from GOES and MODIS[J]. International Journal of Digital Earth , 2015, 8(6): 476-494.
[59] Zhou J, Dai F, Zhang X, et al . Developing a Temporally Land cover-based Look-Up Table (TL-LUT) method for estimating land surface temperature based on AMSR-E data over the Chinese landmass[J]. International Journal of Applied Earth Observation and Geoinformation , 2015, 34: 35-50.
[60] Gao Zhiqiang, Liu Jiyuan. The comparison of land surface temperature with CLM and Split window retrieving method[J]. Acta Geographica Sinica , 2003, 58(4):494-502.
. 地理学报, 2003, 58(4): 494-502.]
[61] Zheng Xucheng, Chen Haishan. Characteristics of global land surface thermal conditions in spring and summer: Comparison between NCEP/NCAR and ERA40 reanalysis data[J]. Transactions of Atmospheric Sciences , 2012, 35(1): 41-50.
. 大气科学学报, 2012, 35(1): 41-50.]
[62] Pan X, Li X, Shi X, et al . Dynamic downscaling of near-surface air temperature at the basin scale using WRF—A case study in the Heihe River Basin, China[J]. Frontiers of Earth Science , 2012, 6(3): 314-323.
[63] Ermida S L, Trigo I F, Dacamara C C, et al . Validation of remotely sensed surface temperature over an oak woodland landscape—The problem of viewing and illumination geometries[J]. Remote Sensing of Environment , 2014, 148: 16-27.
[64] Peng Zhixing, Zhou Ji, Li Mingsong. Review of methods for simulating land surface temperature at the pixel scale based on ground measurements over heterogeneous surface[J]. Advances in Earth Science , 2016, 31(5): 471-480.
. 地球科学进展, 2016, 31(5): 471-480.]
[65] Schneider P, Ghent D, Corlett G K, et al . AATSR Validation: LST Validation Protocol[R].Leicester: University of Leicester, 2012.
[66] Liu S, Xu Z, Song L, et al . Upscaling evapotranspiration measurements from multi-site to the satellite pixel scale over heterogeneous land surfaces[J]. Agricultural and Forest Meteorology , 2016, 230/231: 97-113.
[67] Ma Y, Wang Y, Wu R, et al . Recent advances on the study of atmosphere-land interaction observations on the Tibetan Plateau[J]. Hydrology & Earth System Sciences , 2009, 13(6): 1 103-1 111.
[68] Huang G, Li X, Huang C, et al . Representativeness errors of point-scale ground-based solar radiation measurements in the validation of remote sensing products[J]. Remote Sensing of Environment , 2016, 181: 198-206.
[69] Xu Z, Liu S, Li X, et al . Intercomparison of surface energy flux measurement systems used during the HiWATER-MUSOEXE[J]. Journal of Geophysical Research : Atmospheres , 2013, 118(23): 2013JD020260.
[70] Raissouni N, Sobrino J A, Chahboun A, et al . First results towards building up a reliable in situ measurements database for LST algorithm validations using modular WSN: Northern Morocco campaigns case study[J]. International Journal of Remote Sensing , 2013, 34(9/10): 3 153-3 163.
[71] Jin R, Li X, Yan B, et al . A nested ecohydrological wireless sensor network for capturing the surface heterogeneity in the Midstream areas of the Heihe River Basin, China[J]. IEEE Geoscience and Remote Sensing Letters , 2014, 11(11): 2 015-2 019.
[72] Yu W, Ma M, Wang X, et al . Evaluation of MODIS LST products using longwave radiation ground measurements in the northern arid region of China[J]. Remote Sensing , 2014, 6(11): 11 494-11 517.
[73] Göttsche F M, Hulley G C. Validation of six satellite-retrieved land surface emissivity products over two land cover types in a hyper-arid region[J]. Remote Sensing of Environment , 2012, 124: 149-158.
[74] Hook S J, Clodius W B, Balick L, et al . In-flight validation of mid- and thermal infrared data from the Multispectral Thermal Imager (MTI) using an automated high-altitude validation site at Lake Tahoe CA/NV, USA[J]. IEEE Transactions on Geoscience and Remote Sensing , 2005, 43(9): 1 991-1 999.
[75] Li S, Yu Y, Sun D, et al . Evaluation of 10 year AQUA/MODIS land surface temperature with SURFRAD observations[J]. International Journal of Remote Sensing , 2014, 35(3): 830-856.
[76] Pinker R T, Sun D, Hung M P, et al . Evaluation of satellite estimates of land surface temperature from GOES over the United States[J]. Journal of Applied Meteorology and Climatology , 2009, 48(1): 167-180.
[77] Barreto Á, Arbelo M, HernÁNDEZ-LEAL P A, et al . Evaluation of surface temperature and emissivity derived from ASTER data: A case study using ground—Based measurements at a Volcanic site[J]. Journal of Atmospheric and Oceanic Technology , 2010, 27(10): 1 677-1 688.
[78] Li X, Li X, Li Z, et al . Watershed allied telemetry experimental research[J]. Journal of Geophysical Research , 2009, 114(D22),doi:10.1029/2008JD011590.
[79] Jia Z, Liu S, Xu Z, et al . Validation of remotely sensed evapotranspiration over the Hai River Basin, China[J]. Journal of Geophysical Research : Atmospheres , 2012, 113(D13),doi:10.1029/2011JD017037.
[80] Liu S M, Xu Z W, Zhu Z L, et al . Measurements of evapotranspiration from eddy-covariance systems and large aperture scintillometers in the Hai River Basin, China[J]. Journal of Hydrology , 2013, 487: 24-38.
[81] Meng Xianhong, Lü Shihua, Zhang Yu, et al . Retrieving of land surface temperature over Jinta area using LANDSAT- 5 TM data[J]. Platea Meteorology , 2005,24(5):721-726.
. 高原气象, 2005, 24(5): 721-726.]
[82] Srivastava P K, Majumdar T J, Bhattacharya A K. Surface temperature estimation in Singhbhum Shear Zone of India using Landsat-7 ETM+ thermal infrared data[J]. Advances in Space Research , 2009, 43(10): 1 563-1 574.
[83] Wang Y, Zhou J, Li M, et al . Validation of Landsat-8 TIRS LAND surface temperature retrieved from multiple algorithms in an extremely arid region[C]∥2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Beijing,2016: 6 934-6 937.
[84] Hook S J, Vaughan R G, Tonooka H, et al . Absolute radiometric in-flight validation of mid infrared and thermal infrared data from ASTER and MODIS on the terra spacecraft using the Lake Tahoe, CA/NV, USA, automated validation site[J]. IEEE Transactions on Geoscience and Remote Sensing , 2007, 45(6): 1 798-1 807.
[85] Sabol Jr D E, Gillespie A R, Abbott E, et al . Field validation of the ASTER temperature-emissivity separation algorithm[J]. Remote Sensing of Environment , 2009, 113(11): 2 328-2 344.
[86] Hulley G C, Hughes C G, Hook S J. Quantifying uncertainties in land surface temperature and emissivity retrievals from ASTER and MODIS thermal infrared data[J]. Journal of Geophysical Research : Atmospheres , 2012, 117(D23): 23 113,doi:10.1029/2012JD018506.
[87] Coll C, Valor E, Galve J M, et al . Long-term accuracy assessment of land surface temperatures derived from the advanced along-track scanning radiometer[J]. Remote Sensing of Environment , 2012, 116(2): 211-225.
[88] Ouyang X, Chen D, Duan S B, et al . Validation and analysis of long-term AATSR land surface temperature product in the Heihe River Basin, China[J]. Remote Sensing , 2017, 9(2): 152.
[89] Coll C, Caselles V, Valor E, et al . Validation of land surface temperatures derived from AATSR data at the valencia test site[J]. Minerva Ginecologica , 2005, 597: 405-410.
[90] Noyes E J, Sòria G, Sobrino J A, et al . AATSR land surface temperature product algorithm verification over a WATERMED site[J]. Advances in Space Research , 2007, 39(1): 171-178.
[91] Yu Wenping, Ma Mingguo. Validation of the MODIS land surface temperature products—A case study of the Heihe River Basin[J]. Remote Sensing Technology and Application , 2011, 26(6): 705-712.
. 遥感技术与应用, 2011, 26(6): 705-712.]
[92] Li H, Sun D, Yu Y, et al . Evaluation of the VIIRS and MODIS LST products in an arid area of Northwest China[J]. Remote Sensing of Environment , 2014, 142(1): 111-121.
[93] Jiang J, Li H, Liu Q, et al . Evaluation of land surface temperature retrieval from FY-3B/VIRR data in an arid area of Northwestern China[J]. Remote Sensing , 2015, 7(6): 7 080-7 104.
[94] Freitas S C, Trigo I F, Bioucas-Dias J M, et al . Quantifying the uncertainty of land surface temperature retrievals from SEVIRI/Meteosat[J]. IEEE Transactions on Geoscience and Remote Sensing , 2010, 48(1): 523-534.
[95] Anderson M. A two-source time-integrated model for estimating surface fluxes using thermal infrared remote sensing[J]. Remote Sensing of Environment , 1997, 60(2): 195-216.
[96] Zhou J, Liu S, Li M, et al . Quantification of the scale effect in downscaling remotely sensed land surface temperature[J]. Remote Sensing , 2016, 8(12): 975.
[97] Min Wenbin, Li Yaoqing, Zhou Ji. Validation of MODIS land surface temperature products in east of the Qinghai Xizang Plateau[J]. Plateau Meteorology , 2015, 34(6): 1 511-1 516.
. 高原气象, 2015, 34(6): 1 511-1 516.]
[98] Li Z L, Wu H, Wang N, et al . Land surface emissivity retrieval from satellite data[J]. International Journal of Remote Sensing , 2013, 34(9/10): 3 084-3 127.
[99] Yu W, Ma M. Scale mismatch between in situ and remote sensing observations of land surface temperature:Implications for the validation of remote sensing LST products[J]. IEEE Geoscience and Remote Sensing Letters , 2015, 12(3): 497-501.
[100] Ren H, Liang S, Yan G, et al . Empirical Algorithms to map global broadband emissivities over vegetated surfaces[J]. IEEE Transactions on Geoscience and Remote Sensing , 2013, 51(5): 2 619-2 631.
[101] Liang S, Fang H, Chen M, et al . Validating MODIS land surface reflectance and albedo products: Methods and preliminary results[J]. Remote Sensing of Environment , 2002, 83(1): 149-162.
[102] Wu Xiaodan, Xiao Qing, Wen Jianguang, et al . Advances in uncertainty analysis for the validation of remote sensing products: Take leaf area index for example[J]. Journal of Remote Sensing , 2014, 18(5): 1 011-1 023.
. 遥感学报, 2014, 18(5): 1 011-1 023.]
[103] Prata A J. Land Surface Temperature Measurement from Space: AATSR Algorithm Theoretical Basis Document[R].Aspendale: CSIRO Atmospheric Research, 2002.
[104] Rosborough G W, Baldwin D G, Enery W J. Precise AVHRR image navigation[J]. IEEE Transactions on Geoscience and Remote Sensing , 1994, 32: 644-657.
[105] Wolfe R E, Nishihama M, Fleig A J, et al . Achieving sub-pixel geolocation accuracy in support of MODIS land science[J]. Remote Sensing of Environment , 2002, 83(1/2): 31-49.
[106] Guan Min, Wu Ronghua. Geolocation approach for FY-3A MERSI remote sensing image[J]. Journal of Applied Meteorological Science , 2012,(5): 534-542.
. 应用气象学报, 2012,(5): 534-542.]
[107] Liu Yani, Xin Xiaozhou, Liu Qinhuo, et al . Method and validation for surface fluxes estimation based on multi-scale remotely sensed data[J]. Advances in Earth Science , 2010, 25(11): 1 261-1 272.
. 地球科学进展, 2010, 25(11): 1 261-1 272.]
[108] Ermida S L, Dacamara C C, Trigo I F, et al . Modelling directional effects on remotely sensed land surface temperature[J]. Remote Sensing of Environment , 2017, 190: 56-69.
[109] Zhang Renhua, Sun Xiaomin, Su Hongbo, et al . Remote sensing and scale transfering of levity parameters on earth surface[J]. Remote Sensing for Land & Resources , 1999,10(3):51-58.
. 国土资源遥感, 1999,10(3):51-58.]
[1] 栾海军, 田庆久, 章欣欣, 聂芹, 朱晓玲. 定量遥感地表参数尺度转换研究趋势探讨[J]. 地球科学进展, 2018, 33(5): 483-492.
[2] 王建, 车涛, 李震, 李弘毅, 郝晓华, 郑照军, 肖鹏峰, 李晓峰, 黄晓东, 钟歆玥, 戴礼云, 李红星, 柯长青, 李兰海. 中国积雪特性及分布调查[J]. 地球科学进展, 2018, 33(1): 12-15.
[3] 晋锐, 李新, 马明国, 葛咏, 刘绍民, 肖青, 闻建光, 赵凯, 辛晓平, 冉有华, 柳钦火, 张仁华. 陆地定量遥感产品的真实性检验关键技术与试验验证[J]. 地球科学进展, 2017, 32(6): 630-642.
[4] 李青, 雷连发, 王振会, 魏鸣, 李东帅. 雷电流热效应的遥感观测研究进展[J]. 地球科学进展, 2017, 32(5): 481-487.
[5] 卿文武, 刘俊峰, 杨钰泉, 陈仁升, 韩春坛. 基于气温的物质平衡模型的参数不确定性分析——以祁连山十一冰川为例[J]. 地球科学进展, 2016, 31(9): 937-945.
[6] 李正泉, 宋丽莉, 马浩, 冯涛, 王阔. 海上风能资源观测与评估研究进展[J]. 地球科学进展, 2016, 31(8): 800-810.
[7] 彭志兴, 周纪, 李明松. 基于地面观测的异质性下垫面像元尺度地表温度模拟研究进展[J]. 地球科学进展, 2016, 31(5): 471-480.
[8] 张 勇, 戎志国, 闵 敏. 中国遥感卫星辐射校正场热红外通道在轨场地辐射定标方法精度评估[J]. 地球科学进展, 2016, 31(2): 171-179.
[9] 崔月菊, 杜建国, 李营, 刘雷, 周晓成, 陈扬, 陈志, 韩晓昆. 张渤地震带高光谱气体地球化学特征[J]. 地球科学进展, 2016, 31(1): 59-65.
[10] 吴炳方, 邢强. 遥感的科学推动作用与重点应用领域[J]. 地球科学进展, 2015, 30(7): 751-762.
[11] 鲁易, 张稳, 李婷婷, 周筠珺. 大气甲烷浓度变化的源汇因素模拟研究进展[J]. 地球科学进展, 2015, 30(7): 763-772.
[12] 兰鑫宇, 郭子祺, 田野, 雷霞, 王婕. 土壤湿度遥感估算同化研究综述[J]. 地球科学进展, 2015, 30(6): 668-679.
[13] 吴珊珊, 姚治君, 姜丽光, 刘兆飞. 现代冰川体积变化研究方法综述[J]. 地球科学进展, 2015, 30(2): 237-246.
[14] 尹剑, 占车生, 顾洪亮, 王飞宇. 基于水文模型的蒸散发数据同化实验研究[J]. 地球科学进展, 2014, 29(9): 1075-1084.
[15] 黄磊, 李震, 周建民, 田帮森. SAR监测冰川变化研究进展[J]. 地球科学进展, 2014, 29(9): 985-994.