Please wait a minute...
img img
高级检索
地球科学进展  2017, Vol. 32 Issue (6): 599-614    DOI: 10.11867/j.issn.1001-8166.2017.06.0599
综述与评述     
滩涂围垦对盐沼湿地碳收支的影响研究进展
李建国1, 王文超1, 濮励杰2, 3, *, 刘丽丽1, 张忠启1, 李强1
1.江苏师范大学地理测绘与城乡规划学院,江苏 徐州 221116;
2.南京大学地理与海洋科学学院, 江苏 南京 210023;
3.国土资源部海岸带开发与保护重点实验室,江苏 南京 210023
Coastal Reclamation and Saltmarsh Carbon Budget: Advances and Prospects
Li Jianguo1, Wang Wenchao1, Pu Lijie2, 3, *, Liu Lili1, Zhang Zhongqi1, Li Qiang1
1.School of Geography, Geomatics, Planning, Jiangsu Normal University, Xuzhou Jiangsu 221116, China;
2. School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210023, China;
3. The Key Laboratory of the Coastal Zone Exploitation and Protection, Ministry of Land and Resources, Nanjing 210023, China
 全文: PDF(1865 KB)   HTML
摘要: 滨海盐沼湿地是全球重要的碳库,也是典型的脆弱生态系统。近年来,随着人口的增加,滨海盐沼湿地围垦开发已经成为缓解区域人口压力,保障粮食安全,促进经济发展的一项重要措施,特别是在发展中国家。围垦活动过程中必然会改变原有生态系统碳循环的路径和模式,进而影响全球的碳收支平衡。通过对大量文献的检索与总结,对国内外3种滨海盐沼湿地类型(红树林盐沼湿地、河口潮滩盐沼湿地和海岸潮滩盐沼湿地)土壤有机碳含量、固碳速率、碳排放速率以及围垦后的变化进行梳理和概括,给出滨海盐沼湿地围垦后土壤碳循环的一般规律与变化趋势,结果表明:①欧美长期滩涂开发形成的认识与滩涂围垦后的生态环境效应演变不适用于东亚发展中国家的短期高强度农业围垦,应注重东亚地区海岸围垦方式下的碳效应研究;②从滩涂湿地有机碳含量及其固碳速率来看,红树林盐沼湿地最高,河口潮滩盐沼湿地次之,海岸潮滩盐沼湿地最低。土壤黏粒、团聚体和埋藏速率对其具有较为明显的正向效应;淹水频率、盐分、地下水位反之。滩涂围垦后土壤有机碳含量呈先降后增的趋势,其转折点在围垦后30年左右,水田耕作对滩涂土壤有机碳富集效果最明显;③滩涂盐沼湿地的主要碳排放方式是CH4和CO2,其中CO2的排放强度和通量都较大,且以红树林盐沼湿地最高。芦苇和互花米草的土壤碳排放强度相比于光滩要大很多。涨潮的过程中湿地碳排放强度要明显低于涨潮前后。滩涂围垦后的土壤碳排放强度要明显高于自然滩涂土壤,特别是围垦后的旱田耕作下的CO2排放。从监测的结果来看,围垦前滩涂湿地表现为较强的碳汇,而围垦后表现出较为明显的碳源。最后,提出今后研究的重点方向和内容:抓紧开展滨海盐沼湿地碳收支清单的制定;不同围垦方式对滨海盐沼湿地碳循环影响的定量表达;加强开展未来滨海围垦模式及其土壤碳循环响应的刻画与模拟研究。
关键词: 碳收支滩涂围垦滨海盐沼湿地    
Abstract: As an important carbon pool and fragile eco-system of earth system, more and more coastal saltmarshes have been reclaimed for releasing population pressure and promoting food safety and economic development, especially in developing countries. During reclamation, original soil carbon cycling pattern and pathway in saltmarshs would be changed, which furthermore could change global carbon budget. In this study, a great amounts of literature and data were summerized to generalize the changes of soil organic carbon, carbon sequestration rate and carbon flux in three main kinds of saltmarshes (Mangrove saltmarsh, Estuary saltmarsh and coastal saltmarsh) during reclamation. The results are as shown: ①The conclusions collected from Europe and America are not suitable to eastern Asia’s coast and more attention should be paid to eastern Asia’s coastal reclamation; ②Mangrove saltmarshes have higher Soil Organic Carbon (SOC) and carbon sequestration rate, followed by estuary saltmarshes and coastal saltmarshes. Soil clay, aggregate, burial rate usually have positive effect on SOC sequestration in coastal areas. Flood frequency, salinity and underground water level generally have negative effect on it. After reclamation, coastal SOC first shows a decrease followed by an increase. Nearly 30 years of reclamation is the turning point where paddy fields can significantly promote SOC; ③CH4 and CO2 are the main ways of carbon emission in coastal areas of which CO2 flux usually is the largest. Mangrove saltmarshes’ carbon emissions are the highest. In natural sites, the carbon emissions in Spartina alterniflora Loisel. and Phragmites australis are higher than those in bare flat areas. Carbon fluxes in flood tide usually are lower than those in other periods. Otherwise, carbon fluxes in natural saltmarshes are far lower than those in reclamation zones, especially upland tillage zones. The results acquired from field monitoring, saltmarshes are the carbon sinks and become the carbon sources when reclamation activities happen. Finally, three main aspects of coastal study were given as follows: much more attention should be paid to carbon budget inventory in saltmarshes; the effect of reclamation activity (i.e., anthropogenic activity, tillage practice, land use, etc.) on carbon cycling in ocean-inland system; the study of land use and reclamation process simulation and its impact on carbon cycling in coastal zone should be strengthened.
Key words: Saltmarsh    Reclamation activity    Carbon budget.
收稿日期: 2016-12-22 出版日期: 2017-06-10
ZTFLH:  P748  
基金资助: 国家自然科学基金项目“江苏沿海滩涂围垦土地质量变化过程和生态响应”(编号:41230751); 江苏师范大学高校博士科研启动基金项目“沿海滩涂围垦土地土壤碳库时空演变及其机制——以江苏省如东县为例”(编号:15XLR017)资助
通讯作者: 濮励杰(1965-),男,江苏吴江人,教授,主要从事土地利用与环境效应研究.E-mail: ljpu@nju.edu.cn   
作者简介: 李建国(1986-),男,江苏泗阳人,讲师,主要从事滩涂开发及其生态环境效应研究.E-mail:lijianguo531@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李建国
刘丽丽
李强
王文超
濮励杰
张忠启

引用本文:

李建国, 王文超, 濮励杰, 刘丽丽, 张忠启, 李强. 滩涂围垦对盐沼湿地碳收支的影响研究进展[J]. 地球科学进展, 2017, 32(6): 599-614.

Li Jianguo, Wang Wenchao, Pu Lijie, Liu Lili, Zhang Zhongqi, Li Qiang. Coastal Reclamation and Saltmarsh Carbon Budget: Advances and Prospects. Advances in Earth Science, 2017, 32(6): 599-614.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2017.06.0599        http://www.adearth.ac.cn/CN/Y2017/V32/I6/599

[1] Cao Lei,Song Jinming,Li Xuegang, et al . Research progresses in carbon budget and carbon cycle of the coastal salt marshes in China[J]. Acta Ecologica Sinica , 2013, 33(17):5 141-5 152.[曹磊, 宋金明, 李学刚, 等. 中国滨海盐沼湿地碳收支与碳循环过程研究进展[J]. 生态学报, 2013, 33(17): 5 141-5 152.]
[2] Chmura G L, Anisfeld S C, Cahoon D R, et al . Global carbon sequestration in tidal, saline wetland soils[J]. Global Biogeochemical Cycles , 2003, 17(4): 182-195.
[3] Zhang G. Changes of soil labile organic carbon in different land uses in Sanjiang Plain, Heilongjiang Province[J]. Chinese Geographical Science , 2010, 20(2): 139-143.
[4] Howe A, Rodriguez J, Saco P. Surface evolution and carbon sequestration in disturbed and undisturbed wetland soils of the Hunter estuary, southeast Australia[J]. Estuarine , Coastal and Shelf Science , 2009, 84(1): 75-83.
[5] Cao Lei, Song Jinming, Li Xuegang, et al . Deposition and burial of organic carbon in coastal salt marsh: Research progress[J]. Chinese Journal of Applied Ecology , 2013,24(7):2 040-2 048.[曹磊, 宋金明, 李学刚, 等. 滨海盐沼湿地有机碳的沉积与埋藏研究进展[J]. 应用生态学报, 2013, 24(7): 2 040-2 048.]
[6] Clough B. Primary productivity and growth of mangrove forests[J]. Tropical Mangrove Ecosystems , 1992, 41:225-249.
[7] Gallagher J L, Plumley F G. Underground biomass profiles and productivity in Atlantic coastal marshes[J]. American Journal of Botany , 1979,66(2): 156-161.
[8] Lu Jianjian,He Wenshan,Tong Chunfu, et al . Wetlands Ecology[M].Beijing:Higher Education Press,2006.[陆健健, 何文珊, 童春富, 等. 湿地生态学[M].北京:高等教育出版社, 2006.]
[9] Nicholls R J. Coastal flooding and wetland loss in the 21st century: Changes under the SRES climate and socio-economic scenarios[J]. Global Environmental Change , 2004, 14(1): 69-86.
[10] Xu Yan, Pu Lijie, Zhang Runsen, et al . Spatial-temporal dynamics of landuse and land cover change in the coastal zone of Jiangsu[J]. Resourses and Environment in the Yangtze Basin , 2012, 21(5): 565-571.[许艳, 濮励杰, 张润森, 等. 近年来江苏省海岸带土地利用/覆被变化时空动态研究[J].长江流域资源与环境, 2012, 21(5): 565-571.]
[11] Rhew R C, Miller B R, Weiss R F. Natural methyl bromide and methyl chloride emissions from coastal salt marshes[J]. Nature , 2000, 403(6 767): 292-295.
[12] Drewer J, Heal M R, Heal K V, et al . Temporal and spatial variation in methyl bromide flux from a salt marsh[J]. Geophysical Research Letters , 2006, 33(16): L16808.
[13] Liu Yuanxin, Zhao Wenwu. Future Earth—Global sustainable research plan[J]. Acta Ecologica Sinica , 2013,33(23): 7 610-7 613.[刘源鑫, 赵文武. 未来地球——全球可持续性研究计划[J]. 生态学报, 2013, 33(23): 7 610-7 613.]
[14] Xu Yan, Cao Ke, Li Mian, et al . Coastal ecological risk assessment: Its research progress and prospect[J]. Advances in Earth Science ,2016,31(2):137-146.[许妍, 曹可, 李冕, 等. 海岸带生态风险评价研究进展[J]. 地球科学进展, 2016, 31(2): 137-146.]
[15] Donato D C, Kauffman J B, Murdiyarso D, et al . Mangroves among the most carbon-rich forests in the tropics[J]. Nature Geoscience , 2011, 4(5): 293-297.
[16] Fernandez S, Santin C, Marquinez J, et al . Saltmarsh soil evolution after land reclamation in Atlantic estuaries (Bay of Biscay, North coast of Spain)[J]. Geomorphology , 2010, 114(4): 497-507.
[17] Kareiva P M, Kingsolver J G, Huey R B. Biotic Interactions and Global Change[M]. Sunderland MA:Sinauer Associates Incorporated, 1993.
[18] Murphy J M, Sexton D M, Barnett D N, et al . Quantification of modelling uncertainties in a large ensemble of climate change simulations[J]. Nature , 2004, 430(7 001): 768-772.
[19] Zhang Changkuan, Chen Jun, Lin Kang, et al . Spatial layout of reclamation of coastal tidal flats in Jiangsu Province[J]. Journal of Hohai University ( Natural Sciences ), 2011,39(2): 206-212.[张长宽, 陈君, 林康, 等. 江苏沿海滩涂围垦空间布局研究[J].河海大学学报:自然科学版, 2011, 39(2): 206-212.]
[20] Li Jianguo, Pu Lijie, Xu Caiyao, et al . The changes and dynamics of coastal wetlands and reclamation areas in central Jiangsu from 1977 to 2014[J]. Acta Geographica Sinica , 2015, 70(1): 17-28.[李建国, 濮励杰, 徐彩瑶, 等. 1977—2014年江苏中部滨海湿地演化与围垦空间演变趋势[J].地理学报, 2015, 70(1): 17-28.]
[21] Laudicina V A, Hurtado M D, Badalucco L, et al . Soil chemical and biochemical properties of a salt-marsh alluvial Spanish area after long-term reclamation[J]. Biology and Fertility of Soils , 2009, 45(7): 691-700.
[22] Portnoy J, Giblin A. Effects of historic tidal restrictions on salt marsh sediment chemistry[J]. Biogeochemistry , 1997, 36(3): 275-303.
[23] Schalles J F, Hladik C M, Lynes A A, et al . Landscape estimates of habitat types, plant biomass, and invertebrate densities in a Georgia salt marsh[J]. Oceanography , 2013, 26(3): 88-97.
[24] Duke N C, Meynecke J-O, Dittmann S, et al . A world without mangroves?[J]. Science , 2007, 317(5 834): 41-42.
[25] Sun Z, Sun W, Tong C, et al . China’s coastal wetlands: Conservation history, implementation efforts, existing issues and strategies for future improvement[J]. Environment International , 2015, 79:25-41.
[26] Wolters M, Garbutt A, Bakker J P. Salt-marsh restoration: Evaluating the success of de-embankments in north-west Europe[J]. Biological Conservation , 2005, 123(2): 249-268.
[27] Moreno F, Martín J, Mudarra J. A soil sequence in the natural and reclaimed marshes of the Guadalquivir River, Seville (Spain)[J]. Catena , 1981, 8(1): 201-221.
[28] Craft C, Broome S, Campbell C. Fifteen years of vegetation and soil development after brackish-water marsh creation[J]. Restoration Ecology , 2002, 10(2): 248-258.
[29] Bernhardt K G, Koch M. Restoration of a salt marsh system: Temporal change of plant species diversity and composition[J]. Basic and Applied Ecology , 2003, 4(5): 441-451.
[30] Jalali M, Merikhpour H, Kaledhonkar M, et al . Effects of wastewater irrigation on soil sodicity and nutrient leaching in calcareous soils[J]. Agricultural Water Management , 2008, 95(2): 143-153.
[31] Wright G, Smith C, Woodroofe M. The effect of irrigation and nitrogen fertilizer on rapeseed ( Brassica napes ) production in South-Eastern Australia[J]. Irrigation Science , 1988, 9(1): 1-13.
[32] Laegdsgaard P. Ecology, disturbance and restoration of coastal saltmarsh in Australia: A review[J]. Wetlands Ecology and Management , 2006, 14(5): 379-399.
[33] Sun Y, Li X, Mander Ü, et al . Effect of reclamation time and land use on soil properties in Changjiang River Estuary, China[J]. Chinese Geographical Science , 2011, 21(4): 403-416.
[34] Yang J, Gao J, Liu B, et al . Sediment deposits and organic carbon sequestration along mangrove coasts of the Leizhou Peninsula, Southern China[J]. Estuarine , Coastal and Shelf Science , 2013, 136(1): 3-10.
[35] Kathilankal J C, Mozdzer T J, Fuentes J D, et al . Tidal influences on carbon assimilation by a salt marsh[J]. Environmental Research Letters , 2008, 3(4): 1-6.
[36] Connor R F, Chmura G L, Beecher C B. Carbon accumulation in Bay of Fundy salt marshes: Implications for restoration of reclaimed marshes[J]. Global Biogeochemical Cycles , 2001, 15(4): 943-954.
[37] Bai J H, Wang J J, Yan D H, et al . Spatial and temporal distributions of soil organic carbon and total nitrogen in two marsh wetlands with different flooding frequencies of the Yellow River Delta, China[J]. Clean-Soil Air Water , 2012, 40(10): 1 137-1 144.
[38] Zhao Q, Liu S, Deng L, et al . Soil degradation associated with water-level fluctuations in the Manwan Reservoir, Lancang River Basin[J]. Catena , 2014, 113:226-235.
[39] Li Zhongpei, Zhang Taolin, Chen Biyun. Dynamics of soluble organic carbon and its relation to mineralization of soil organic carbon[J]. Acta Pedologica Sinica , 2004, 41(4): 544-552.[李忠佩, 张桃林, 陈碧云. 可溶性有机碳的含量动态及其与土壤有机碳矿化的关系[J].土壤学报, 2004, 41(4): 544-552.]
[40] Zhou J L, Wu Y, Kang Q S, et al . Spatial variations of carbon, nitrogen, phosphorous and sulfur in the salt marsh sediments of the Yangtze Estuary in China[J]. Estuarine Coastal and Shelf Science , 2007, 71(1/2): 47-59.
[41] Hou Xiaojing, Yang Jinsong, Zhao Man, et al . Effects of tillage on soil organic carbon and stability of soil aggregates in costal saline soil region[J]. Soils ,2015, 47(4): 781-789.[侯晓静, 杨劲松, 赵曼, 等. 耕作方式对滨海盐渍土有机碳含量及团聚体特性的影响[J].土壤, 2015, 47(4): 781-789.]
[42] Li J, Pu L, Zhu M, et al . Evolution of soil properties following reclamation in coastal areas: A review[J]. Geoderma , 2014, (226/227): 130-139.
[43] Yang P, He Q, Huang J, et al . Fluxes of greenhouse gases at two different aquaculture ponds in thecoastal zone of southeastern China[J]. Atmospheric Environment , 2015, 115:269-277.
[44] Wang Jinxin, Sun Shucun, Wang Jinshu, et al . Characteristcs of DMS, CS 2 and CH 4 fluxes along an elevational gradient of coastal saltmarsh, Eastern China[J]. Scientia Geographica Sinica , 2009, 29(4): 535-539.[王进欣, 孙书存, 王今殊, 等. 苏北盐沼DMS、CS 2 和CH 4 排放通量沿高程梯度的变化[J]. 地理科学, 2009, 29(4): 535-539.]
[45] Twilley R, Chen R, Hargis T. Carbon sinks in mangroves and their implications to carbon budget of tropical coastal ecosystems[J]. Water , Air , and Soil Pollution , 1992, 64(1/2): 265-288.
[46] Xin Kun, Yan Kui, Li Zhen, et al . Distibution of soil organic carbon in mangrove wetlands of hainan island and its influencing factors[J]. Acta Pedologica Sinica , 2014, 51(5): 1 078-1 086.[辛琨, 颜葵, 李真, 等. 海南岛红树林湿地土壤有机碳分布规律及影响因素研究[J].土壤学报, 2014,51(5): 1 078-1 086.]
[47] Alongi D, Wattayakorn G, Pfitzner J, et al . Organic carbon accumulation and metabolic pathways in sediments of mangrove forests in southern Thailand[J]. Marine Geology , 2001, 179(1): 85-103.
[48] Li Y L, Wang L, Zhang W Q, et al . Variability of soil carbon sequestration capability and microbial activity of different types of salt marsh soils at Chongming Dongtan[J]. Ecological Engineering , 2010, 36(12): 1 754-1 760.
[49] Bai J, Xiao R, Zhang K, et al . Soil organic carbon as affected by land use in young and old reclaimed regions of a coastal estuary wetland, China[J]. Soil Use and Management , 2013, 29(1): 57-64.
[50] Iost S, Landgraf D, Makeschin F. Chemical soil properties of reclaimed marsh soil from Zhejiang Province PR China[J]. Geoderma , 2007, 142(3): 245-250.
[51] Saint-Laurent D, Beaulac-Gervais V, Berthelot J S. Comparison of soil organic carbon and total nitrogen contents in inundated and non-inundated zones in southern Québec, Canada[J]. Catena , 2014, 113:1-8.
[52] Zhou H, Liu J, Zhou J, et al . Effect of an Alien species spartina alterniflora Loisel on biogeochemical processes of intertidal ecosystem in the Jiangsu Coastal region, China[J]. Pedosphere , 2008, 18(1): 77-85.
[53] Zhang Y, Ding W, Luo J, et al . Changes in soil organic carbon dynamics in an Eastern Chinese coastal wetland following invasion by a C 4 plant Spartina alterniflora[J]. Soil Biology and Biochemistry , 2010, 42(10): 1 712-1 720.
[54] Ren Lijuan,Wang Guoxiang, He Dan, et al . Spatial distributions of soil organic matter in ferent vegetation zones of the Yancheng Tidal Flat[J]. Advances in Marine Science , 2011, 29(1): 54-61.[任丽娟, 王国祥, 何聃, 等. 盐城潮滩湿地不同植被带土壤有机质空间分布特征[J].海洋科学进展, 2011, 29(1): 54-61.]
[55] Romic M, Bragato G, Zovko M, et al . The characteristics of cultivated soils developed from coastal paleosand (Korcula Island, Croatia)[J]. Catena , 2013, 113(2): 218-291.
[56] Ke Jinhu, Piao Shilong, Fang Jingyun. NPP and its spatio-temporal patterns in Yangtze River watershe[J]. Acta Phytoecologica Sinica , 2003, 27(6): 764-770.[柯金虎, 朴世龙, 方精云. 长江流域植被净第一性生产力及其时空格局研究[J].植物生态学报, 2003, 27(6): 764-770.]
[57] Nyman J, DeLaune R, Pezeshki S, et al . Organic matter fluxes and marsh stability in a rapidly submerging estuarine marsh[J]. Estuaries , 1995, 18(1): 207-218.
[58] Shen Yongming, Zeng Hua, Wang Hui, et al . Characteristics of halophyte and associated soil along aggradational muddy coasts in Jiangsu Province[J]. Acta Ecolog ica Sinica , 2005, 25(1): 1-6.[沈永明, 曾华, 王辉, 等. 江苏典型淤长岸段潮滩盐生植被及其土壤肥力特征[J].生态学报, 2005, 25(1): 1-6.]
[59] He Yanlong. The Mechnism of Vegetation Differentiation in the Lower Saltmarsh of Yangtze Esturay[D]. Shanghai:Eastern China of Normal University, 2014.[何彦龙. 中低潮滩盐沼植被分异的形成机制研究[D].上海:华东师范大学, 2014.]
[60] Cui J, Liu C, Li Z, et al . Long-term changes in topsoil chemical properties under centuries of cultivation after reclamation of coastal wetlands in the Yangtze Estuary, China[J]. Soil & Tillage Research , 2012, 123:50-60.
[61] Tan J, Kang Y. Changes in soil properties under the influences of cropping and drip irrigation during the reclamation of severe salt-affected soils[J]. Agricultural Sciences in China , 2009, 8(10): 1 228-1 237.
[62] Shao Xuexin, Yang Wenying, Wu Ming, et al . Soil organic carbon content and its distribution pattern in coastal wetlands of Hangzhou Bay[J]. Chinese Journal of Applied Ecology , 2011, 22(3): 658-664.[邵学新, 杨文英, 吴明, 等. 杭州湾滨海湿地土壤有机碳含量及其分布格局[J]. 应用生态学报, 2011, 22(3): 658-664.]
[63] Cooper S R. Chesapeake Bay watershed historical land use: Impact on water quality and diatom communities[J]. Ecological Applications , 1995,5(3): 703-723.
[64] Jin Wenhui, Yang Jinsong, Wang Xiangping. Spatial distribution of organic carbon in coastal saline soil and its correlation with reclamation age[J]. Chinese Society of Agricultural Engineering ,2013, 29(5): 89-94.[金雯晖, 杨劲松, 王相平. 滩涂土壤有机碳空间分布与围垦年限相关性分析[J].农业工程学报, 2013, 29(5): 89-94.]
[65] Zhou Xuefeng. Effect of Land Use on SOC in Yangtze River Estuar[D]. Shanghai:Eastern China of Normal University,2010.[周学峰. 围垦后不同土地利用方式对长江口滩地土壤有机碳的影响[D].上海:华东师范大学, 2010.]
[66] Bull I D, van Bergen P F, Bol R, et al . Estimating the contribution of Spartina anglica biomass to salt-marsh sediments using compound specific stable carbon isotope measurements[J]. Organic Geochemistry , 1999, 30(7): 477-483.
[67] Zhao Xiaolei, Ling Yun, Zhang Guangfu, et al . Community characteristics of wetland vegetation in different habitats of Dafeng elk reserve[J]. Chinese Journal of Ecology , 2010, 29(2): 244-249.[赵小雷, 凌云, 张光富, 等. 大丰麋鹿保护区不同生境梯度下滩涂湿地植被的群落特征[J]. 生态学杂志, 2010, 29(2): 244-249.]
[68] Mavi M S, Marschner P, Chittleborough D J, et al . Salinity and sodicity affect soil respiration and dissolved organic matter dynamics differentially in soils varying in texture[J]. Soil Biology & Biochemistry , 2012, 45:8-13.
[69] Wong V N, Dalal R C, Greene R S. Salinity and sodicity effects on respiration and microbial biomass of soil[J]. Biology and Fertility of Soils , 2008, 44(7): 943-953.
[70] Kang Jian, Meng Xianfa, Xu Yanyan, et al . The effect of different vegetation types on saline soil organic carbon[J]. Soils , 2012, 44(2): 260-266.[康健, 孟宪法, 许妍妍, 等. 不同植被类型对滨海盐碱土壤有机碳库的影响[J].土壤,2012, 44(2): 260-266.]
[71] Yan Y, Zhao B, Chen J, et al . Closing the carbon budget of estuarine wetlands with tower-based measurements and MODIS time series[J]. Global Change Biology , 2008, 14(7): 1 690-1 702.
[72] Andrews J E, Samways G, Shimmield G B. Historical storage budgets of organic carbon, nutrient and contaminant elements in saltmarsh sediments: Biogeochemical context for managed realignment, Humber Estuary, UK[J]. Science of the Total Environment , 2008, 405(1/3): 1-13.
[73] Li Jianguo, Pu Lijie, Zhu Ming, et al . Soil salinization research in China:Advances and prospects[J]. Acta Geographica Sinica , 2012, 67(9): 1 233-1 245.[李建国, 濮励杰, 朱明, 等.土壤盐渍化研究现状及未来研究热点[J].地理学报, 2012, 67(9): 1 233-1 245.]
[74] Li X, Sun Y, Mander Ü, et al . Effects of land use intensity on soil nutrient distribution after reclamation in an estuary landscape[J]. Landscape Ecology , 2013, 28(4): 699-707.
[75] Tripathi S, Kumari S, Chakraborty A, et al . Microbial biomass and its activities in salt-affected coastal soils[J]. Biology and Fertility of Soils , 2006, 42(3): 273-277.
[76] Wu Ming, Shao Xuexin, Hu Feng, et al . Effects of reclamation on soil nutrients distribution of coastal wetland in south Hangzhou Bay[J]. Soils , 2008, 40(5): 760-764.[吴明, 邵学新, 胡锋, 等. 围垦对杭州湾南岸滨海湿地土壤养分分布的影响[J].土壤, 2008, 40(5): 760-764.]
[77] Jin Wenhui. The Study of SOC Pools and Carbon Sequestration Rate in Typic Reclaimed Saltmarsh[D].Beijing: University of Chinese Academy of Sciences, 2013.[金雯晖. 典型滨海盐渍区土壤有机碳储量与固碳速率研究[D].北京:中国科学院大学, 2013.]
[78] Zhang J B, Yang J S, Yao R J, et al . The effects of farmyard manure and mulch on soil physical properties in a reclaimed coastal tidal flat salt-affected soil[J]. Journal of Integrative Agriculture , 2014, 13(8): 1 782-1 790.
[79] Zhang T, Wang T, Liu K S, et al . Effects of different amendments for the reclamation of coastal saline soil on soil nutrient dynamics and electrical conductivity responses[J]. Agricultural Water Management , 2015, 159:115-122.
[80] Han Lin, Zhang Yulong, Jin Shuo, et al . Effects of irrigation patterns on soil soluble organic carbon and microbial biomass carbon[J]. Chinese Agricultural Science , 2010, 43(8): 1 625-1 633.[韩琳, 张玉龙, 金烁, 等. 灌溉模式对保护地土壤可溶性有机碳与微生物量碳的影响[J]. 中国农业科学, 2010, 43(8): 1 625-1 633.]
[81] Zhang Rongjuan, Bu Naishun,Cui Jun, et al . Effects of landuse on soil organic carbonand soil respiration in the soil reclaimed from wetland in the Chongming Island[J]. Acta Ecologica Sinica , 2010, 30(24): 6 698-6 706.[张容娟, 布乃顺, 崔军, 等. 土地利用对崇明岛围垦区土壤有机碳库和土壤呼吸的影响[J]. 生态学报, 2010, 30(24): 6 698-6 706.]
[82] Wu Xiaodan, Cai Lixiang, Lu Yanhong, et al . Research status and prospect of soil active organic matter[J]. Hunan Agricultural Sciences , 2009, (3): 39-42.[吴小丹, 蔡立湘, 鲁艳红, 等. 土壤活性有机质的研究现状与展望[J]. 湖南农业科学, 2009, (3): 39-42.]
[83] Magenheimer J, Moore T, Chmura G, et al . Methane and carbon dioxide flux from a macrotidal salt marsh, Bay of Fundy, New Brunswick[J]. Estuaries , 1996, 19(1): 139-145.
[84] Kristensen E, Flindt M R, Ulomi S, et al . Emission of CO 2 and CH 4 to the atmosphere by sediments and open waters in two Tanzanian mangrove forests[J]. Marine Ecology Progress , 2008, 370(1): 53-67.
[85] Kreuzwieser J, Buchholz J, Rennenberg H. Emission of methane and nitrous oxide by Australian mangrove ecosystems[J]. Plant Biology , 2003, 5(4): 423-431.
[86] Matthews E, Fung I. Methane emission from natural wetlands: Global distribution, area, and environmental characteristics of sources[J]. Global Biogeochemical Cycles , 1987, 1(1): 61-86.
[87] Heyer J, Berger U. Methane emission from the coastal area in the southern Baltic Sea[J]. Estuarine , Coastal and Shelf Science , 2000, 51(1): 13-30.
[88] Song Luping, Zhang Lihua, Shao Hongbo. Fluses characteristics of CO 2 ,CH 4 and their correlating factors in coastal saltmarsh of the Yellow River Delta[J]. Journal of Wuhan University ( Natural Science Edition ), 2014, 60(4): 349-355.[宋鲁萍, 张立华, 邵宏波. 黄河三角洲滨海盐沼CO 2 ,CH 4 通量特征及其影响因素[J].武汉大学学报:理学版, 2014, 60(4): 349-355.]
[89] Smith C, DeLaune R, Patrick Jr W. Carbon dioxide emission and carbon accumulation in coastal wetlands[J]. Estuarine , Coastal and Shelf Science , 1983, 17(1): 21-29.
[90] Morris J T, Whiting G J. Emission of gaseous carbon dioxide from salt-marsh sediments and its relation to other carbon losses[J]. Estuaries , 1986, 9(1): 9-19.
[91] Brantley S T, Young D R. Shrub expansion stimulates soil C and N storage along a coastal soil chronosequence[J]. Global Change Biology , 2010, 16(7): 2 052-2 061.
[92] Tong Chuan, E Yan, Liao Ji, et al . Carbon dioxide emission from tidal marshes in the Min River Estuary[J]. Acta Scientiae Circumstantiae , 2011,31(12):2 830-2 840.[仝川, 鄂焱, 廖稷, 等. 闽江河口潮汐沼泽湿地CO 2 排放通量特征[J].环境科学学报, 2011, 31(12): 2 830-2 840.]
[93] Wang Qing, Liu Min, Hou Lijun, et al . Spatial and temporal variation of CO 2 , CH 4 and N 2 O emissions in Dongtan wetland, Chongming, China[J]. Geographical Research , 2010, 29(5): 935-946.[汪青, 刘敏, 侯立军, 等. 崇明东滩湿地CO 2 、CH 4 和N 2 O排放的时空差异[J]. 地理研究, 2010, 29(5): 935-946.]
[94] Sidik F, Lovelock C E. CO 2 efflux from shrimp ponds in Indonesia[J]. PLoS ONE , 2013, 8(6): e66329.
[95] Purvaja R, Ramesh R. Natural and anthropogenic methane emission from coastal wetlands of South India[J]. Environmental Management , 2001, 27(4): 547-557.
[96] Bartlett K B, Bartlett D S, Harriss R C, et al . Methane emissions along a salt marsh salinity gradient[J]. Biogeochemistry , 1987, 4(3): 183-202.
[97] Daniela I, DeGrandpre M, Farías L. Greenhouse gas emissions from the Tubul-Raqui Estuary (central Chile 36°S)[J]. Estuarine , Coastal and Shelf Science ,2013, 134(1): 31-44.
[98] Bartlett K B, Harriss R C, Sebacher D I. Methane flux from coastal salt marshes[J]. Journal of Geophysical Research : Atmospheres (1984-2012), 1985, 90(D3): 5 710-5 720.
[99] Tong C, Wang W Q, Zeng C S, et al . Methane (CH 4 ) emission from a tidal marsh in the Min River estuary, southeast China[J]. Journal of Environmental Science and Health Part A — Toxic/Hazardous Substances & Environmental Engineering ,2010, 45(4): 506-516.
[100] Ren Wenling, Hou Ying, Yang Shuhui, et al . Research on soil respiration of different use-lands in new reclaimed soils in the Chongming Island[J]. Ecology and Environmental Sciences , 2011, 20(1): 97-101.[任文玲, 侯颖, 杨淑慧, 等. 崇明岛新围垦区不同土地利用条件下的土壤呼吸研究[J].生态环境学报, 2011, 20(1): 97-101.]
[101] Wang D Q, Chen Z L, Wang J, et al . Summer-time denitrification and nitrous oxide exchange in the intertidal zone of the Yangtze Estuary[J]. Estuarine Coastal and Shelf Science , 2007, 73(1/2): 43-53.
[102] Yang Wenying. The Research on Soil Respiration and Soil Active Organic Carbon of Four Kinds of Wetland Environment in Hangzhou Bay[D]. Chongqing:Southwest University, 2011.[杨文英. 杭州湾湿地四种湿地环境土壤呼吸特征以及土壤活性有机碳研究[D].重庆:西南大学, 2011.]
[103] Kang Wenxing, Zhao Zhonghui, Tian Dalun, et al . CO 2 exchanges between mangrove and shoal wetlande cosystems and atmosphere in Guangzhou[J]. Chinese Journal of Applied Ecology , 2008, 19(12): 2 605-2 610.[康文星, 赵仲辉, 田大伦, 等. 广州市红树林和滩涂湿地生态系统与大气二氧化碳交换[J].应用生态学报, 2008, 19(12): 2 605-2 610.]
[104] Jin L, Lu C Y, Ye Y, et al . Soil respiration in a Subtropical Mangrove Wetland in the Jiulong River Estuary, China[J]. Pedosphere , 2013, 23(5): 678-685.
[105] Pan Xiaocui, Guan Ming, Zhang Chongbang. Effects of spartina alterniflora invasion on methane emission from tidal flat wetlands[J]. Chinese Journal of Applied Ecology , 2016, 27(4): 1 145-1 152.[潘小翠, 管铭, 张崇邦. 互花米草入侵对滩涂湿地甲烷排放的影响[J]. 应用生态学报, 2016, 27(4): 1 145-1 152.]
[106] Wang Lingling, Sun Zhigao, Mou Xiaojie, et al . A preliminary study on the characteristics of CO 2 , CH 4 and N 2 O fluxes in the tidal flat wetland of the Yellow River Estuary[J]. Acta Prataculturae Sinica , 2010, 20(3): 51-61.[王玲玲, 孙志高, 牟晓杰, 等. 黄河口滨岸潮滩湿地CO 2 、CH 4 和N 2 O 通量特征初步研究[J]. 草业学报, 2010, 20(3): 51-61.]
[107] Ren Wenling. Research on Soil Respiration of Different Use-Lands in the Chongming Island[D].Shanghai:East China Normal Univrsity, 2011.[任文玲. 崇明东滩土壤呼吸动态研究[D].上海:华东师范大学, 2011.]
[108] Yang Wenying, Shao Xuexin,Liang Wei, et al . The correlation between enzyme activity and carbon component in saltmarsh of Hangzhou Bay[J]. Wetland Science & Management , 2011, 7(2): 54-58.[杨文英, 邵学新, 梁威, 等. 杭州湾湿地土壤酶活性分布特征及其与活性有机碳组分的关系[J]. 湿地科学与管理, 2011,7(2): 54-58.]
[109] Burden A, Garbutt R A, Evans C D, et al . Carbon sequestration and biogeochemical cycling in a saltmarsh Subject to coastal managed realignment[J]. Estuarine Coastal and Shelf Science , 2013, 120:12-20.
[110] Ettema C H, Lowrance R, Coleman D C. Riparian soil response to surface nitrogen input: The indicator potential of free-living soil nematode populations[J]. Soil Biology & Biochemistry , 1999, 31(12): 1 625-1 638.
[111] Yan Y E, Guo Haiqiang, Gao Yu, et al . Variations of net ecosystem CO 2 exchange in a tidal inundated wetland: Coupling MODIS and tower-based fluxes[J]. Journal of Geophysical Research Atmospheres ,2010, 115(D15): 346-361.
[112] Liu Y, Yu G, Wen X, et al . Seasonal dynamics of CO 2 fluxes from subtropical plantation coniferous ecosystem[J]. Science in China ( Series D ), 2006, 49(2): 99-109.
[113] Lovelock C E. Soil respiration and belowground carbon allocation in mangrove forests[J]. Ecosystems ,2008, 11(2): 342-354.
[114] Gong W, Yan X Y, Wang J Y, et al . Long-term manuring and fertilization effects on soil organic carbon pools under a wheat-maize cropping system in North China Plain[J]. Plant and Soil , 2009, 314(1): 67-76.
[115] Plaza C, Hernandez D, Garciagil J C, et al . Microbial activity in pig slurry-amended soils under semiarid conditions[J]. Soil Biology & Biochemistry , 2004, 36(10): 1 577-1 585.
[116] Cambardella C, Elliott E. Particulate soil organic-matter changes across a grassland cultivation sequence[J]. Soil Science Society of America Journal , 1992, 56(3): 777-783.
[117] Tong X, Xu M, Wang X, et al . Long-term fertilization effects on organic carbon fractions in a red soil of China[J]. Catena , 2014, 113(1):251-259.
[118] Huang Xiaoping, Zhang Jingping, Jiang Zhijian. Eco-environmental effects of nutrients input caused by human activities on the semi-enclosed bay and its management strategy[J]. Advances in Earth Science ,2015,30(9): 961-969.[黄小平, 张景平, 江志坚. 人类活动引起的营养物质输入对海湾生态环境的影响机理与调控原理[J]. 地球科学进展, 2015, 30(9): 961-969.]
[119] Li Jianguo. Effect of Reclamation on Soil Organic Carbon Evolution—A Case Study of Rudong, Jiangsu[D]. Nanjing:Nanjing University, 2015.[李建国. 沿海滩涂围垦利用对土壤有机碳的影响——以江苏省如东县围垦区为例[D]. 南京:南京大学, 2015.]
[120] Zhang Chengyang. Analysis and Simulation of Land Use/Cover Change in the Yellow River Delta Under the Background of Urbanization[D]. Beijing:Peking University, 2014.[张成扬. 城镇化背景下黄河三角洲土地利用/覆盖变化分析与模拟[D]. 北京:北京大学, 2014.]
[121] Cao Min. Dynamic Simulation of Land Use Change on the North Bank of Yangtze River Estuary[D]. Xuzhou:China University of Mining and Technology, 2009.[曹敏. 长江口北岸土地利用动态演化模拟研究[D]. 徐州:中国矿业大学, 2009.]
[1] 何洪林,张黎, 黎建辉, 周园春,任小丽,于贵瑞. 中国陆地生态系统碳收支集成研究的e-Science 系统构建[J]. 地球科学进展, 2012, 27(2): 246-254.