地球科学进展 ›› 2020, Vol. 35 ›› Issue (12): 1211 -1221. doi: 10.11867/j.issn.1001-8166.2020.103

综述与评述    下一篇

太赫兹波被动遥感冰云研究现状及进展
刘磊 1, 2( ),翁陈思 3,李书磊 1, 2,胡帅 1, 2,叶进 1,窦芳丽 4,商建 4   
  1. 1.国防科技大学气象海洋学院,湖南 长沙 410073
    2.电磁环境效应与光电工程国家级重点实验室,江苏 南京 211101
    3.61287部队,四川 成都 610036
    4.国家卫星气象中心,北京 100081
  • 收稿日期:2020-09-27 修回日期:2020-10-28 出版日期:2020-12-10
  • 基金资助:
    国家自然科学基金面上项目“利用远红外—太赫兹波高光谱辐射反演冰云微物理参数(41875025);“十三五”民用航天项目资助

Review of Terahertz Passive Remote Sensing of Ice Clouds

Lei Liu 1, 2( ),Chensi Weng 3,Shulei Li 1, 2,Shuai Hu 1, 2,Jin Ye 1,Fangli Dou 4,Jian Shang 4   

  1. 1.College of Meteorology and Oceanography,National University of Defense Technology,Changsha 410073,China
    2.National Key Laboratory on Electromagnetic Environment and Electro-optical Engineering,Nanjing 211101,China
    3.Unit No. 61287 of PLA,Chengdu 610036,China
    4.National Satellite Meteorological Center,Beijing 100081,China
  • Received:2020-09-27 Revised:2020-10-28 Online:2020-12-10 Published:2021-02-09
  • About author:Liu Lei (1983-), male, Rizhao City, Shandong Province, Associate professor. Research areas include atmospheric physics and the atmospheric environment. E-mail: liuleidll@gmail.com
  • Supported by:
    the National Natural Science Foundation of China "Retrieval of microphysical properties of ice clouds from high-resolution far-infrared and terahertz radiation"(41875025);the Civil Aerospace 13th Five-Year Project

太赫兹波(频率0.1~10 THz,波长3 mm~30 μm)位于微波与红外波段之间,其波长与典型冰云粒子尺度处于同一量级,是理论上遥感冰云微物理参数的最佳波段,利用该波段进行冰云探测已成为重要的前沿领域和研究热点。首先,概述了太赫兹波被动遥感冰云微物理参数的基本原理;然后,从太赫兹波冰云探测仪器、太赫兹波段大气辐射传输模拟器和太赫兹波被动遥感冰云的反演方法等3个方面详细介绍了太赫兹波被动遥感冰云的关键技术,尤其是对已有太赫兹波辐射计的关键参数、太赫兹辐射传输模拟器的特点和不同反演方法的优缺点进行了探讨分析;最后,对太赫兹波被动遥感冰云技术进行了总结和展望,以期能为今后太赫兹波被动遥感冰云相关研究提供参考依据。

The frequency of terahertz wave is in the range of 0.1~10 THz (wavelength 3 mm~30 μm), which is located between the microwave and infrared bands. Its wavelength is similar to the size of typical ice cloud particles, and it has great potential in ice cloud remote sensing. Terahertz region is expected to have a promising prospect concerning measuring cirrus microphysical parameters, which has broad application prospects and application values for Terahertz wave passive remote sensing of ice clouds. Firstly, the basic principle of terahertz remote sensing of ice clouds was summarized. Then, the key technologies were introduced in detail from three aspects, including the measurement instrument, the forward radiative transfer model and the inversion method of the terahertz remote sensing of ice clouds. In particular, the key parameters of the existing terahertz radiometers, the characteristics of terahertz radiative transfer simulators and the advantages and disadvantages of different inversion methods were discussed and analyzed. Finally, the summary and prospect of the terahertz remote sensing of ice clouds were proposed, in order to provide a reference for the future research of terahertz wave passive remote sensing of ice clouds.

中图分类号: 

图1 太赫兹波被动遥感反演冰云的主要流程
Fig.1 Process for terahertz passive remote sensing of ice clouds
表1 IceCube冰云辐射计载荷的基本参数表
Table 1 Parameter information of IceCube radiometer
表2 TWICE冰云成像仪的通道参数
Table 2 Fundamental parameters of TWICE channels
表3 ICI冰云成像仪的通道参数
Table 3 Fundamental parameters of ICI channels
表4 CoSSIRISMAR机载太赫兹波测云仪通道参数
Table 4 Channel information of airborne terahertz cloud sensors CoSSIR and ISMAR
图2 太赫兹波大气传输正向模型的基本结构
Fig.2 Structure of terahertz forward radiative transfer model
表5 典型冰云粒子太赫兹波散射特性库
Table 5 Typical terahertz wave scattering properties databases of ice cloud particles
1 Rossow W B,Schiffer R A. ISCCP cloud data products [J]. Bulletin of the American Meteorological Society,1991,72(1): 2-22.
2 Dou Fangli,Lu Qifeng,Guo Yang. Overview of researches on all-sky satellite microwave data variational assimilation [J]. Advances in Earth Science,2019,34(11):1 120-1 130.
窦芳丽,陆其峰,郭杨. 全天候卫星微波观测资料变分同化研究进展 [J]. 地球科学进展,2019,34(11): 1 120-1 130.
3 Li Xiucang,Jiang Tong,Wu Ping. Progress and prospect of the moisture recycling models [J]. Advances in Earth Science,2020,35(10):1 029-1 040.
李修仓,姜彤,吴萍. 水分再循环计算模型的研究进展及其展望 [J]. 地球科学进展,2020,35(10): 1 029-1 040.
4 Waliser D E,Li J-L F,Woods C P,et al. Cloud ice: A climate model challenge with signs and expectations of progress [J]. Journal of Geophysical Research,2009,114(8): 1-21.
5 Eliasson S,Holl G,Buehler S A,et al. Systematic and random errors between collocated satellite ice water path observations [J]. Journal of Geophysical Research: Atmospheres,2013,118(6): 2 629-2 642.
6 Duncan D I,Eriksson P. An update on global atmospheric ice estimates from satellite observations and reanalyses [J]. Atmospheric Chemistry and Physics,2018,18(15): 11 205-11 219.
7 Delano? J,Hogan R J. Combined CloudSat-CALIPSO-MODIS retrievals of the properties of ice clouds [J]. Journal of Geophysical Research,2010,115(D00H29): 1-17.
8 Holl G,Eliasson S,Mendrok J,et al. SPARE-ICE: Synergistic ice water path from passive operational sensors [J]. Journal of Geophysical Research: Atmospheres,2014,119(3): 1 504-1 523.
9 Jiménez C,Buehler S A,Rydberg B,et al. Performance simulations for a submillimetre-wave satellite instrument to measure cloud ice [J]. Quarterly Journal of the Royal Meteorological Society,2007,133(): 129-149.
10 Evans K F,Walter S J,Heymsfield A J,et al. Modeling of submillimeter passive remote sensing of cirrus clouds [J]. Journal of Applied Meteorology,1998,37(2): 184-205.
11 Evans K F,Stephens G L. Microweve radiative transfer through clouds composed of realistically shaped ice crystals. Part II. Remote sensing of ice clouds [J]. Journal of the Atmospheric Sciences,1995,52(11): 2 058-2 072.
12 Buehler S A,Jiménez C,Evans K F,et al. A concept for a satellite mission to measure cloud ice water path,ice particle size,and cloud altitude [J]. Quarterly Journal of the Royal Meteorological Society,2007,133(): 109-128.
13 Yao Jianquan,Wang Jingli,Zhong Kai,et al. Study and outlook of THz radiation atmospheric propagation [J]. Journal of Optoelectronics Laser,2010,10: 1 582-1 588.
姚建铨,汪静丽,钟凯,等. THz辐射大气传输研究和展望 [J]. 光电子·激光,2010,10: 1 582-1 588.
14 Li Shulei,Liu Lei,Gao Taichang,et al. Research progress of THz technology application in the atmospheric sounding field [J]. Infrared and Laser Engineering,2016,45(11): 277-282.
李书磊,刘磊,高太长,等. THz 技术在大气探测领域的应用研究进展 [J]. 红外与激光工程,2016,45(11): 277-282.
15 Evans K F,Walter S J,Heymsfield A J,et al. Submillimeter-wave cloud ice radiometer: Simulations of retrieval algorithm performance [J]. Journal of Geophysical Research,2002,107(D3): 4 028.
16 Li Shulei,Liu Lei,Gao Taichang,et al. Sensitivity analysis of terahertz wave passive remote sensing of cirrus microphysical parameters [J]. Acta Physica Sinica,2016,65(13): 100-110.
李书磊,刘磊,高太长,等. 太赫兹波被动遥感卷云微物理参数的敏感性试验分析 [J]. 物理学报,2016,65(13): 100-110.
17 Grützun V,Buehler S A,Kluft L,et al. All-sky information content analysis for novel passive microwave instruments in the range from 23.8 to 874.4 GHz[J]. Atmospheric Measurement Techniques,2018,11(7): 4 217-4 237.
18 Birman C,Mahfouf J-F,Milz M,et al. Information content on hydrometeors from millimeter and sub-millimeter wavelengths [J]. Tellus A: Dynamic Meteorology and Oceanography,2017,69(1): 1-12.
19 Aires F,Prigent C,Buehler S A,et al. Towards more realistic hypotheses for the information content analysis of cloudy/precipitating situations—Application to a hyperspectral instrument in the microwave [J]. Quarterly Journal of the Royal Meteorological Society,2018,145(718): 1-14.
20 Gong J,Wu D L. Microphysical properties of frozen particles inferred from Global Precipitation Measurement (GPM) Microwave Imager (GMI) polarimetric measurements [J]. Atmospheric Chemistry and Physics,2017,17(4): 2 741-2 757.
21 Gao Taichang,Li Shulei,Liu Lei,et al. Development study of THz instruments for atmospheric sounding[J]. Infrared and Laser Engineering,2016,45(4): 56-67.
高太长,李书磊,刘磊,等. THz 波大气探测仪器发展现状研究 [J]. 红外与激光工程,2016,45(4): 56-67.
22 Murtagh D,Frisk U,Merino F,et al. An overview of the Odin atmospheric mission [J]. Canadian Journal of Physics,2002,80(4): 309-319.
23 Waters J W,Froidevaux L,Harwood R S,et al. The Earth Observing System Microwave Limb Sounder (EOS MLS) on the aura Satellite [J]. IEEE Transactions on Geoscience and Remote sensing,2006,44(5): 1 075-1 092.
24 Cimini D,Westwater E R,Gasiewski A J,et al. Ground-Based millimeter- and submillimeter-wave observations of low vapor and liquid water contents [J]. IEEE Transactions on Geoscience and Remote Sensing,2007,45(7): 2 169-2 180.
25 Cimini D, Westwater E R, Gasiewski A J, et al. Ground-Based Millimeter-and Submillimiter Wave Observations of the Arctic Atmosphere[C]//2006 IEEE MicroRad. IEEE, 2006: 247-251.
26 Eriksson P,Rydberg B,Mattioli V,et al. Towards an operational Ice Cloud Imager (ICI) retrieval product [J]. Atmospheric Measurement Techniques,2020,13(1): 53-71.
27 Liu Y,Buehler S A,Brath M,et al. Ensemble optimization retrieval algorithm of hydrometeor profiles for the ice cloud imager submillimeter-wave radiometer[J]. Journal of Geophysical Research: Atmospheres,2018,123(9): 4 594-4 612.
28 Jiang J H,Yue Q,Su H,et al. A simulation of ice cloud particle size,humidity,and temperature measurements from the TWICE CubeSat [J]. Earth Space Science,2017,4(8): 574-587.
29 Ogut M,Reising S C,Goncharenko Y V,et al. Design,testing and reliability analysis of Command and Data Handling (C&DH) Subsystem for the Tropospheric water and cloud ice (Twice) instrument for a 6U-Class small satellite [M]//IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium. Valencia, Spain, 2018.
30 Kangas V,D'Addio S,Betto M. Metop Second Generation microwave sounding and microware imaging missions[C]//Proceedings of the Proceeding of the 2012 EUMETSAT Meteorological Satellite Conference. Sopot, Poland, F, 2012.
31 Wang J R,Liu G,Spinhirne J D,et al. Observations and retrievals of cirrus cloud parameters using multichannel millimeter-wave radiometric measurements [J]. Journal of Geophysical Research Atmospheres,2001,106(D14): 15 251-15 263.
32 Vanek M D,Nolt I G,Tappan N D,et al. Far-Infrared Sensor for Cirrus (FIRSC): An aircraft-based fourier-transform spectrometer to measure cloud radiance: Erratum[J]. Applied Optics, 2001, 40(22): 2 169-2 176.
33 Evans K F,Walter S J,Heymsfield A J,et al. Submillimeter-wave cloud ice radiometer: Simulations of retrieval algorithm performance [J]. Journal of Geophysical Research Atmospheres,2002,107(D3): AAC 2-1-AAC 2-21.
34 Evans K F,Wang J R,Racette P E,et al. Ice cloud retrievals and analysis with the compact scanning submillimeter imaging radiometer and the cloud radar system during CRYSTAL FACE [J]. Journal of Applied Meteorology,2005,44(6): 839-859.
35 Evans K F,Wang J R,David O'C S,et al. Ice hydrometeor profile retrieval algorithm for high-frequency microwave radiometers: Application to the CoSSIR instrument during TC4 [J]. Atmospheric Measurement Techniques,2012,5(9): 2 277-2 306.
36 Charlton J,Buehler S,Defer E,et al. A sub-millimetre wave airborne demonstrator for the observation of precipitation and ice clouds[C]//Proceedings of the Geoscience & Remote Sensing Symposium. Oxford, UK, F, 2010.
37 Fox S,Lee C,Moyna B,et al. ISMAR: An airborne submillimetre radiometer [J]. Atmospheric Measurement Techniques,2017,10(2): 477-490.
38 Jacquinet-Husson N,Scott N A,Chédin A,et al. The GEISA spectroscopic database: Current and future archive for Earth and planetary atmosphere studies [J]. Journal of Quantitative Spectroscopy and Radiative Transfer,2008,109(6): 1 043-1 059.
39 Gordon I E,Rothman L S,Hill C,et al. The HITRAN2016 molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,2017,203:3-69.
40 Liu G. A database of microwave single-scattering properties for nonspherical ice particles [J]. Bulletin of the American Meteorological Society,2008,89(10): 1 563-1 570.
41 Hong G,Yang P,Baum B A,et al. Scattering database in the millimeter and submillimeter wave range of 100-1000 GHz for nonspherical ice particles [J]. Journal of Geophysical Research,2009,114(D6): D06201.
42 Nowell H,Liu G,Honeyager R. Modeling the microwave single-scattering properties of aggregate snowflakes [J]. Journal of Geophysical Research: Atmospheres,2013,118(14): 7 873-7 885.
43 Mendrok J,Eriksson P,Ekelund R,et al. ARTS Microwave Single Scattering Properties Database Interfaces (Version 1.0.0) [DS]. Zenodo, 2018. DOI:10.5281/zenodo.1175573.
doi: 10.5281/zenodo.1175573    
44 Hu S,Gao T,Liu L,et al. Application of the weighted total field-scattering field technique to 3D-PSTD light scattering model [J]. Journal of Quantitative Spectroscopy and Radiative Transfer,2018,209:58-72.
45 Hu S,Gao T,Li H,et al. Light-scattering model for aerosol particles with irregular shapes and inhomogeneous compositions using a parallelized pseudo-spectral time-domain technique [J]. Chinese Physics B,2018,27(5): 54215.
46 Hu S,Gao T C,Li H,et al. Light scattering computation model for nonspherical aerosol particles based on multi-resolution time-domain scheme: Model development and validation [J]. Optics Express,2017,25(2): 1 463-1 486.
47 Hu S,Gao T C,Li H,et al. Simultaneously simulating the scattering properties of nonspherical aerosol particles with different sizes by the MRTD scattering model [J]. Opticis Express,2017,25(15): 17 872-17 891.
48 Hu S,Gao T,Li H,et al. Application of Convolution Perfectly Matched Layer in MRTD scattering model for non-spherical aerosol particles and its performance analysis [J]. Journal of Quantitative Spectroscopy and Radiative Transfer,2017,200:1-11.
49 Hu Shuai. Research on the Numerical Computational Models and Application of the Scattering Properties of Nonspherical Atmospheric Particles [D]. Beijing: National University of Defense Technology,2018.
胡帅. 大气非球形粒子散射计算模型研究及其应用[D]. 北京:国防科技大学,2018.
50 Pardo J R,Cernicharo J,Serabyn E. Atmospheric Transmission at Microwaves (ATM): An improved model for millimeter/submillimeter applications[J]. IEEE Transactions on Antennas and Propagation,2001,49(12): 1 683-1 694.
51 Liebe H J,Hufford G A,Cotton M G. Propagation modeling of moist air and suspended water/ice particles at frequencies below 1000 GHz[C]//Proceedings of the Atmospheric Propagation Effects Through Natural and Man-Made Obscurants for Visible to MM-Wave Radiation,AGARD,F,1993.
52 Mendrok J,Baron P,Yasuko K. 7-5 the AMATERASU scattering module [J]. Journal of the National Institute of Information and Communications Technology,2008,55(1): 122-133.
53 Urban J, Baron P, Lautié N,et al. Moliere (v5): A versatile forward- and inversion model for the millimeter and sub-millimeter wavelength range [J]. Journal of Quantitative Spectroscopy,2004,83(3): 529-554.
54 Mendrok J. The SARTre Model for Radiative Transfer in Spherical Atmospheres and Its Application to the Derivation of Cirrus Cloud Properties [D]. Germany: Freie Universit?t Berlin,2006.
55 Clough S A,Shephard M W,Mlawer E J,et al. Atmospheric radiative transfer modeling: A summary of the AER codes [J]. Journal of Quantitative Spectroscopy and Radiative Transfer,2005,91(2): 233-244.
56 Deeter M N,Evans K F. A hybrid Eddington-single scattering radiative transfer model for computing radiances from thermally emitting atmospheres [J]. Journal of Quantitative Spectroscopy and Radiative Transfer,1998,60(4): 635-648.
57 Evans K F. SHDOMPPDA: A radiative transfer model for cloudy sky data assimilation[J]. Journal of the Atmospheric Sciences,2007,64(11): 3 854-3 864.
58 Eriksson P,Buehler S A,Davis C P,et al. ARTS,the atmospheric radiative transfer simulator,version 2 [J]. Journal of Quantitative Spectroscopy and Radiative Transfer,2011,112(10): 1 551-1 558.
59 Buehler S A,Mendrok J,Eriksson P,et al. ARTS,the atmospheric radiative transfer simulator-version 2.2,the planetary toolbox edition [J]. Geoscientific Model Development,2017,11(4): 1 537-1 556.
60 Li Shulei,Liu Lei,Gao Taichang. Introduction of atmospheric radiative transfer simulator software [J]. Jouranl of Atmospheric and Environment Optics,2016,11(4): 241-248.
李书磊,刘磊,高太长. 大气辐射传输模拟器(ARTS)软件的介绍[J]. 大气与环境光学学报,2016,11(4): 241-248.
61 Fox S,Mendrok J,Eriksson P,et al. Airborne validation of radiative transfer modelling of ice clouds at millimetre and sub-millimetre wavelengths [J]. Atmospheric Measurement Techniques,2019,12(3): 1 599-1 617.
62 Liu G,Curry J A. Determination of ice water path and mass median particle size using multichannel microwave measurements[J]. Journal of Applied Meteorology,2010,39(8): 1 318-1 329.
63 Deeter M N,Evans K F. A novel ice-cloud retrieval algorithm based on the Millimeter-wave Imaging Radiometer (MIR) 150- and 220-GHz channels[J]. Journal of Applied Meteorology,2000,39(5): 623-633.
64 Li Shulei,Liu Lei,Gao Taichang,et al. Retrieval method of cirrus microphysical parameters at terahertz wave based on multiple lookup tables [J]. Acta Physica Sinica,2017,66(5): 72-81.
李书磊,刘磊,高太长,等. 基于多重查找表的太赫兹波段卷云微物理参数的反演方法 [J]. 物理学报,2017,66(5): 72-81.
65 Li Shulei,Liu Lei,Gao Taichang,et al. Study on the radiation characteristics of the selected channels for cirrus remote sensing in terahertz waveband and the influence factors for the retrieval method [J]. Journal of Infrared and Millimeter Waves,2018,37(1): 60-65.
李书磊,刘磊,高太长,等. 用于星载太赫兹波被动遥感卷云参数的通道辐射特性及反演影响因素 [J]. 红外与毫米波学报,2018,37(1): 60-65.
66 Jiménez C,Eriksson P,Murtagh D. First inversions of observed submillimeter limb sounding radiances by neural networks [J]. Journal of Geophysical Research Atmospheres,2003,108(D24): 1-23.
67 Brath M,Fox S,Eriksson P,et al. Retrieval of an ice water path over the ocean from ISMAR and MARSS millimeter and submillimeter brightness temperatures [J]. Atmospheric Measurement Techniques,2018,11(1): 611-632.
68 Wu D L,Jiang J H,Read W G,et al. Validation of the Aura MLS cloud ice water content measurements [J]. Journal of Geophysical Research,2008,113(D15): 1-20.
69 Rydberg B,Eriksson P,Buehler S A,et al. Non-Gaussian Bayesian retrieval of tropical upper tropospheric cloud ice and water vapour from Odin-SMR measurements [J]. Atmospheric Measurement Techniques,2009,2(2): 621-637.
70 Ekstr?m M,Eriksson P,Rydberg B,et al. First Odin sub-mm retrievals in the tropical upper troposphere: Humidity and cloud ice signals[J]. Atmospheric Chemistry and Physics,2007,7(2): 459-469.
71 Rodgers C D,Connor B J. Intercomparison of remote sounding instruments[J]. Journal of Geophysical Research: Atmospheres,2003,108(D3): 4 116.
72 Rodgers C D. Inverse Methods for Atmospheric Sounding: Theory and Practice [M]. NewJersey: World Scientific,2000.
73 Weng C,Liu L,Gao T,et al. Multi-Channel regression inversion method for passive remote sensing of ice water path in the terahertz band [J]. Atmosphere,2019,10(8): 437.
74 Rydberg B,Eriksson P,Buehler S A. Prediction of cloud ice signatures in submillimetre emission spectra by means of ground-based radar and in situ microphysical data [J]. Quarterly Journal of the Royal Meteorological Society,2007,133(): 151-162.
[1] 宋朝清,刘伟,陆海波,袁文平. 基于通量测量的稻田甲烷排放特征及影响因素研究[J]. 地球科学进展, 2019, 34(11): 1141-1151.
[2] 刘西川, 高太长, 贺彬晟, 刘磊, 印敏, 宋堃. 智能手机参与大气探测的研究进展与展望 *[J]. 地球科学进展, 2018, 33(12): 1223-1236.
[3] 孙丽, 赵姝慧. 探空仪湿度测量误差研究现状及其对云识别的影响[J]. 地球科学进展, 2018, 33(1): 85-92.
[4] 郭瑞芳, 刘元波. 多传感器联合反演高分辨率降水方法综述[J]. 地球科学进展, 2015, 30(8): 891-903.
[5] 刘元波,傅巧妮,宋平,赵晓松,豆翠翠. 卫星遥感反演降水研究综述[J]. 地球科学进展, 2011, 26(11): 1162-1172.
[6] 朱好,张宏升. 沙尘天气过程临界起沙因子的研究进展[J]. 地球科学进展, 2011, 26(1): 30-38.
[7] 刘新,刘晓汝,马耀明,李伟平. 喜马拉雅北部地区春季大气特征及日变化分析[J]. 地球科学进展, 2010, 25(8): 836-843.
[8] 周海光. 机载多普勒天气雷达及应用研究进展[J]. 地球科学进展, 2010, 25(5): 453-462.
[9] 蒋德明,董超华. 大气廓线物理反演的最优化方法进展[J]. 地球科学进展, 2010, 25(2): 133-139.
[10] 卞建春. 上对流层/下平流层大气垂直结构研究进展[J]. 地球科学进展, 2009, 24(3): 262-271.
[11] 陈泽宇,吕达仁. 利用卫星数据考察平流层传播性行星波活动特征[J]. 地球科学进展, 2009, 24(3): 320-330.
[12] 吕达仁,卞建春,陈洪滨,陈月娟,陈泽宇,胡永云,刘毅,任荣彩,田文寿. 平流层大气过程研究的前沿与重要性[J]. 地球科学进展, 2009, 24(3): 221-227.
[13] 胡永云,丁 峰,夏 炎. 全球变化条件下的平流层大气长期变化趋势[J]. 地球科学进展, 2009, 24(3): 242-251.
[14] 陈洪滨,朱彦良. 大气下投探空技术的发展与应用[J]. 地球科学进展, 2008, 23(4): 337-341.
[15] 凌晓良,LEEBelbin,张洁,朱建钢,张侠,汪大立. 澳大利亚南极科学数据管理综述[J]. 地球科学进展, 2007, 22(5): 532-539.
阅读次数
全文


摘要