地球科学进展 ›› 2015, Vol. 30 ›› Issue (8): 891 -903. doi: 10.11867/j.issn.1001-8166.2015.08.0891

综述与评述 上一篇    下一篇

多传感器联合反演高分辨率降水方法综述
郭瑞芳 1, 2, 刘元波 1, *   
  1. 1.中国科学院南京地理与湖泊研究所湖泊与环境国家重点实验室,江苏 南京210008; 2. 中国科学院大学, 北京 100049
  • 收稿日期:2015-04-15 出版日期:2015-09-15
  • 通讯作者: 刘元波(1969-),男,山东济宁人,研究员,主要从事水文遥感研究. E-mail:ybliu@niglas.ac.cn
  • 基金资助:

    国家自然科学基金重点项目“通江湖泊干旱的多成因机制研究”(编号:41430855); 国家高技术研究发展计划项目“星基地综合定量遥感系统与应用示范”(编号:2013AA12A301)资助

Multi-Satellite Retrieval of High Resolution Precipitation: Anoverview

Guo Ruifang 1, 2, Liu Yuanbo 1   

  1. (1. State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China)
  • Received:2015-04-15 Online:2015-09-15 Published:2015-09-15

精确测量具有强烈时空变异性的降水,是水文气象学颇具挑战的科学研究目标之一。基于多传感器联合反演降水(Multi-sensor Precipitation Estimation,MPE)的方法已成为卫星反演降水的主流趋势。首先介绍MPE方法的定义与分类,回顾MPE方法的历史发展阶段及研究现状;然后介绍主要的MPE算法,包括TRMM多卫星降水分析算法(TMPA)、气候预测中心算法(CMORPH)、全球卫星降水制图算法(GSMaP)、美国海军研究实验室联合算法(NRLB)和神经网络降水算法(PERSIANN);对比这5种主要算法的优缺点和反演精度(PERSIANN精度范围为-56%~200%,其他产品为-67%~10%),指出存在的主要问题,并且评价不同类型MPE算法的性能;最后结合目前存在的问题探讨MPE方法研究发展趋势。

Precipitation is a basic output flux of atmospheric process and a driving force of hydrological process. Accurate observation of precipitation with highly spatial and temporal variability has long been a challenging scientific goal in the field of hydrometeorology. Multi-sensor Precipitation Estimation (MPE) has been the mainstream trend for retrieving precipitation. And it has been a unique way of providing global high accuracy and High Resolution Precipitation Products (HRPPs). This paper describes the definition and classification of MPE, and briefly summarizes the development and status of its history. The development of MPE can be divided into two parts based on the year 1997. The commonly used MPE algorithms to produce global HRPPs include TRMM Multi-satellite Precipitation Analysis (TMPA) algorithm, climate prediction center morphing (CMORPH) algorithm, Global Satellite Mapping of Precipitation (GSMaP) algorithm, Naval Research Laboratory Blended (NRLB) algorithm and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Network (PERSIANN). Then, the existing problems are put forward through comparing assets and liabilities and accuracy of the five algorithms. The MPE can be roughly categorized into two methodologies: adjustment-based techniques (TMPA and NRLB) and the motion-based techniques (CMORPH and GSMaP). The adjustment-based techniques have the longest data record, but inherently rely upon an assumption of indirect relationship between IR temperatures and rainfall rates. The motion-based techniques can provide rain rate at desired intervals. One disadvantage of this approach, however, is that the cloud tops detected by the IR imagery can move at speeds different than the precipitation features below them, and precipitation may not be properly accounted for. At present, no one algorithm performs best in any regime. HRPPs algorithms generally tend to perform best in the convective situations during summer but dropped off considerably when moving into winter and higher latitudes with varied orography. PERSIANN overestimates heavy rainfall (200%) while underestimates rainfall (56%) in the mountains. The other four HRPPs underestimate rainfall ranging from 3 to 7 mm/d(10%~67%). For future development, advanced and/or new MPE algorithms will be proposed with analyzing existing algorithms. Furthermore, the Global Precipitation Measurement (GPM) mission will be improved and extend the TRMM measurement to high latitudes, with a more frequent sampling and higher sensitivity to light and heavy rainfalls. In addition, more focus will be taken on quantitatively evaluating accuracy of HRPPs.

中图分类号: 

[1] Kidd C. Satellite rainfall climatology: A review[J]. International Journal of Climatology,2001, 21(9): 1 041-1 066.
[2] Barrett E C, Beaumont M J. Satellite rainfall monitoring: An overview[J].Remote Sensing Reviews,1994, 11(1/4): 23-48.
[3] Liu Yuanbo, Fu Qiaoni, Song Ping, et al. Satellite retrieval of precipitation: An overview[J].Advances in Earth Science,2011, 26(11): 1 162-1 172.[刘元波, 傅巧妮, 宋平, 等. 卫星遥感反演降水研究综述[J]. 地球科学进展, 2011, 26(11): 1 162-1 172.]
[4] Kidd C, Levizzani V, Laviola S. Quantitative precipitation estimation from Earth observation satellites[M]∥Testik F Y, Gebrenichael M, eds. Rainfall: State of the Science.USA: AGU,2011: 127-158.
[5] Petty G W. The status of satellite-based rainfall estimation over land[J]. Remote Sensing of Environment, 1995, 51(1): 125-137.
[6] Kummerow C, Barnes W, Kozu T, et al. The Tropical Rainfall Measuring Mission (TRMM) sensor package[J]. Journal of Atmospheric and Oceanic Technology, 1998, 15(3): 809-817.
[7] Arkin P A, Ardanuy P E. Estimating climatic-scale precipitation from space: A review[J]. Journal of Climate, 1989, 2(11): 1 229-1 238.
[8] Kidd C, Barrett E C. The use of passive microwave imagery in rainfall monitoring[J]. Remote Sensing Reviews,1990, 4(2): 415-450.
[9] Barrett E C, Beaumont M J. Satellite rainfall monitoring for agrometeorology: Operational problems, practices and prospects[J]. EARSeL Advances in Remote Sensing, 1993, 2(2): 66-72.
[10] Wang Jiankang. Review on the techniques for estimation of precipitation with satellite data[J]. Meteorological Monthly, 1993, 5: 3-8.[王健康. 用卫星资料估计降水方法的评述[J]. 气象, 1993, 5: 3-8.]
[11] Wilheit T, Adler R, Avery S, et al. Algorithms for the retrieval of rainfall from passive microwave measurements[J]. Remote Sensing Reviews, 1994, 11(1/4): 163-194.
[12] Petty G W, Krajewski W F. Satellite estimation of precipitation over land[J]. Hydrological Sciences Journal, 1996, 41(4): 433-451.
[13] Levizzani V, Amorati R, Meneguzzo F. A Review of Satellite-based Rainfall Estimation Methods[R].European Commission Project MUSIC Report (EVK1-CT-2000-00058), 2002.
[14] Anagnostou E N. Overview of overland satellite rainfall estimation for hydro-meteorological applications[J]. Surveys in Geophysics, 2004, 25(5/6): 511-537.
[15] Li Xiaoqing. Review of Algorithms for retrieving rainfall from spaceborne passive microwave measurements[J]. Meteorological Science and Technology, 2004, 32(3): 149-154.[李小青. 星载被动微波遥感反演降水算法回顾[J].气象科技, 2004, 32(3): 149-154.]
[16] Stephens G L, Kummerow C D. The remote sensing of clouds and precipitation from space: A review[J]. Journal of the Atmospheric Sciences, 2007, 64(11): 3 742-3 765.
[17] Michaelides S C. Precipitation: Advances in Measurement, Estimation and Prediction[M]. Berlin: Springer, 2008.
[18] Kidd C, Levizzani V, Bauer P. A review of satellite meteorology and climatology at the start of the twenty-first century[J]. Progress in Physical Geography,2009, 33(4): 474-489.
[19] Kidd C, Levizzani V, Turk J, et al. Satellite precipitation measurements for water resource monitoring1[J]. Journal of the Americal Water Resources Association, 2009, 45(3): 567-579.
[20] Michaelides S, Levizzani V, Anagnostou E, et al. Precipitation: Measurement, remote sensing, climatology and modeling[J]. Atmospheric Research, 2009, 94(4): 512-533.
[21] Durkee J. Precipitation measurement and the advancement toward global observations[J]. Geography Compass, 2010, 4(8): 956-978.
[22] Prigent C. Precipitation retrieval from space: An overview[J]. Comptes Rendus Geoscience, 2010, 342(4): 380-389.
[23] Kidd C, Levizzani V. Status of satellite precipitation retrievals[J]. Hydrology and Earth System Sciences, 2011, 15(4): 1 109-1 116.
[24] Arkin P A, Joyce R, Janowiak J E. The estimation of global monthly mean rainfall using infrared satellite data: The GOES Precipitation Index (GPI)[J]. Remote Sensing Reviews, 1994, 11(1/4): 107-124.
[25] Ba M B, Gruber A. GOES multispectral rainfall algorithm (GMSRA)[J]. Journal of Applied Meteorology, 2001, 40(8): 1 500-1 514.
[26] Xie P, Arkin P A. Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs[J]. Bulletin of the American Meteorological Society, 1997, 78(11): 2 539-2 558.
[27] Griffith C G, Woodley W L, Grube P G, et al. Rain estimation from geosynchronous satellite imagery-visible and infrared studies[J]. Monthly Weather Review, 1978, 106(8): 1 153-1 171.
[28] Wilheit T, Kummerow C D, Ferraro R. Rainfall algorithms for AMSR-E[J]. Geoscience and Remote Sensing, IEEE Transactions on, 2003, 41(2): 204-214.
[29] Ferraro R R. Special sensor microwave imager derived global rainfall estimates for climatological applications[J]. Journal of Geophysical Research: Atmospheres(1984-2012), 1997, 102(D14): 16 715-16 735.
[30] Kummerow C, Hong Y, Olson W S, et al. The evolution of the Goddard Profiling Algorithm (GPROF) for rainfall estimation from passive microwave sensors[J]. Journal of Applied Meteorology, 2001, 40(11): 1 801-1 820.
[31] Kummerow C, Olson W S, Giglio L.A simplified scheme for obtaining precipitation and vertical hydrometeorprofiles from passive microwave sensors[J]. Geoscience and Remote Sensing, IEEE Transactions on, 1996,34: 1 213-1 232.
[32] Weng F, Zhao L, Ferraro R, et al. Advanced microwave sounding unit cloud and precipitation algorithms[J]. Radio Science, 2003, 38:8 068-8 079.
[33] Zhao L, Weng F. Retrieval of ice cloud parametersusing the Advanced Microwave Sounding Unit[J]. Journal of Applied Meteorology, 2002,41: 384-395.
[34] Iguchi T, Kozu T, Meneghini R, et al. Rain-profiling algorithm for the TRMM precipitation radar[J]. Journal of Applied Meteorology, 2000, 39(12): 2 038-2 052.
[35] Huffman G J, Bolvin D T, Nelkin E J, et al. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales[J]. Journal of Hydrometeorology, 2007, 8(1): 38-55.
[36] Joyce R J, Janowiak J E, Arkin P A, et al. CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution[J]. Journal of Hydrometeorology, 2004, 5(3): 487-503.
[37] Ushio T, Sasashige K, Kubota T, et al. A Kalman filter approach to the Global Satellite Mapping of Precipitation (GSMaP) from combined passive microwave and infrared radiometric data[J]. Journal of the Meteorological Society of Japan, 2009, 87: 137-151.
[38] Aonashi K, Awaka J, Hirose M, et al. GSMaP passive microwave precipitation retrieval algorithm: Algorithm description and validation[J]. Journal of the Meteorological Society of Japan, 2009, 87: 119-136.
[39] Turk F J, Miller S D. Toward improved characterization of remotely sensed precipitation regimes with MODIS/AMSR-E blended data techniques[J]. Geoscience and Remote Sensing, IEEE Transactions on, 2005, 43(5): 1 059-1 069.
[40] Hsu K, Gao X, Sorooshian S, et al. Precipitation estimation from remotely sensed information using artificial neural networks[J]. Journal of Applied Meteorology, 1997, 36(9): 1 176-1 190.
[41] Sorooshian S, Hsu K L, Gao X, et al. Evaluation of PERSIANN system satellite-based estimates of tropical rainfall[J]. Bulletin of the American Meteorological Society, 2000, 81(9): 2 035-2 046.
[42] Hong Y. Precipitation estimation from remotely sensed information using Artificial Neural Network-Cloud Classification System[J]. Journal of Hydrometeorology, 2004, 43:1 834-1 852.
[43] Sorooshian S, AghaKouchak A, Arkin P, et al. Advanced concepts on remote sensing of precipitation at multiple scales[J]. Bulletin of the American Meteorological Society, 2011, 92(10):1 353-1 357.
[44] Kucera P A, Ebert E E, Turk F J, et al. Precipitation from space: Advancing Earth system science[J]. Bulletin of the American Meteorological Society, 2013, 94(3): 365-375.
[45] Ebert E E, Manton M J, Arkin P A, et al. Results from the GPCP algorithm intercomparison programme[J]. Bulletin of the American Meteorological Society, 1996, 77(12): 2 875-2 887.
[46] Ebert E E, Manton M J. Performance of satellite rainfall estimation algorithms during TOGA COARE[J]. Journal of the Atmospheric Sciences, 1998, 55(9): 1 537-1 557.
[47] Turk F J, Ebert E E, Oh H J, et al. Validation of an operational global precipitation analysis at short time scales[C]∥Preprints, 12th Conference on Satellite Meteorology and Oceanography, Long Beach, CA, American Meteorological Society, CD-ROM J. 2003.
[48] Turk F J, Arkin P, Sapiano M R P, et al. Evaluating high-resolution precipitation products[J]. Bulletin of the American Meteorological Society, 2008, 89(12): 1 911-1 916.
[49] Adler R F, Negri A J, Keehn P R, et al. Estimation of monthly rainfall over Japan and surrounding waters from a combination of low-orbit microwave and geosynchronous IR data[J]. Journal of Applied Meteorology, 1993, 32(2): 335-356.
[50] Kummerow C, Giglio L. A method for combining passive microwave and infrared rainfall observations[J]. Journal of Atmospheric and Oceanic Technology, 1995, 12(1): 33-45.
[51] Xu L, Gao X, Sorooshian S, et al. A microwave infrared threshold technique to improve the GOES precipitation index[J]. Journal of Applied Meteorology, 1999, 38(5): 569-579.
[52] Vicente G A, Anderson J R. A new rain retrieval technique that combines geosynchronous IR and MW polar orbit data for hourly rainfall estimates[C]∥7th Conference Satellite Meteorology and Oceanography. AMS,1994:34-37.
[53] Vicente G A, Scofield R A, Menzel W P. The operational GOES infrared rainfall estimation technique[J].Bulletin of the American Meteorological Society, 1998, 79: 1 883-1 898.
[54] Miller S W, Arkin P A, Joyce R. A combined microwave/infrared rain rate algorithm[J]. International Journal of Remote Sensing, 2001, 22(17): 3 285-3 307.
[55] Kuligowski R J. A self-calibrating real-time GOES rainfall algorithm for short-term rainfall estimates[J]. Journal of Hydrometeorology, 2002, 3(2): 112-130.
[56] Anagnostou E N, Negri A J, Adler R F. A satellite infrared technique for diurnal rainfall variability studies[J]. Journal of Geophysical Research: Atmospheres(1984-2012), 1999, 104(D24): 31 477-31 488.
[57] Todd M C, Kidd C, Kniveton D, et al. A combined satellite infrared and passive microwave technique for estimation of small-scale rainfall[J]. Journal of Atmospheric and Oceanic Technology, 2001, 18(5): 742-755.
[58] Adler R F, Negri A J, Hakkarinen I M. Rain estimation from combining geosychronous IR and low-orbit microwave data[J]. Global and Planetary Change, 1991, 4(1): 87-92.
[59] Adler R F, Huffman G J, Keehn P R. Global tropical rain estimates from microwave-adjusted geosynchronous IR data[J]. Remote Sensing Reviews, 1994, 11(1/4): 125-152.
[60] Huffman G J, Adler R F, Rudolf B, et al. Global precipitation estimates based on a technique for combining satellite-based estimates, rain gauge analysis, and NWP model precipitation inform ation[J]. Journal of Climate, 1995, 8(5): 1 284-1 295.
[61] Huffman G J, Adler R F, Arkin P, et al. The Global Precipitation Climatology Project (GPCP) combined precipitation dataset[J]. Bulletin of the American Meteorological Society, 1997, 78(1): 5-20.
[62] Adler R F, Huffman G J, Chang A, et al. The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979-present)[J]. Journal of Hydrometeorology, 2003, 4(6): 1 147-1 167.
[63] Huffman G J, Adler R F, Morrissey M M, et al. Global precipitation at one-degree daily resolution from multisatellite observations[J]. Journal of Hydrometeorology, 2001, 2(1): 36-50.
[64] Marzano F S, Palmacci M, Cimini D, et al. Multivariate statistical integration of satellite infrared and microwave radiometric measurements for rainfall retrieval at the geostationary scale[J]. Geoscience and Remote Sensing, IEEE Transactions on, 2004, 42(5): 1 018-1 032.
[65] [65]Kidd C, Muller C. The combined passive microwave-infrared (PMIR) algorithm[M]∥Satellite Rainfall Applications for Surface Hydrology.Netherlands: Springer Netherlands, 2010: 69-83.
[66] Behrangi A, Imam B, Hsu K, et al. REFAME: Rain estimation using forward-adjusted advection of microwave estimates[J]. Journal of Hydrometeorology, 2010, 11(6): 1 305-1 321.
[67] Arkin P A, Xie P. The global precipitation climatology project: First algorithm intercomparison project[J]. Bulletin of the American Meteorological Society, 1994, 75(3): 401-419.
[68] Xie P, Arkin P A. An intercomparison of gauge observations and satellite estimates of monthly precipitation[J]. Journal of Applied Meteorology, 1995, 34(5): 1 143-1 160.
[69] Xie P, Arkin P A. Analyses of global monthly precipitation using gauge observations, satellite estimates, and numerical model predictions[J]. Journal of Climate, 1996, 9(4): 840-858.
[70] Janowiak J E, Xie P. CAMS-OPI: A global satellite-rain gauge merged product for real-time precipitation monitoring applications[J]. Journal of Climate, 1999, 12(11): 3 335-3 342.
[71] Jobard I, Desbois M. Satellite estimation of the tropical precipitation using the METEOSTAT and SSM/I data[J]. Atmospheric Research, 1994, 34(1): 285-298.
[72] Levizzani V, Setvák M. Multispectral, high-resolution satellite observations of plumes on top of convective storms[J]. Journal of the Atmospheric Sciences, 1996, 53(3): 361-369.
[73] Sheu R S, Curry J A, Liu G. Satellite retrieval of tropical precipitation using combined International Satellite Cloud Climatology Project DX and SSM/I data[J]. Journal of Geophysical Research: Atmospheres(1984-2012), 1996, 101(D16): 21 291-21 301.
[74] Liu G, Curry J A, Sheu R S. Classification of clouds over the western equatorial Pacific Ocean using combined infrared and microwave satellite data[J]. Journal of Geophysical Research: Atmospheres(1984-2012), 1995, 100(D7): 13 811-13 826.
[75] Bauer P, Schanz L, Bennartz R, et al. Outlook for combined TMI-VIRS algorithms for TRMM: Lessons learned from the PIP and AIP projects[J]. Journal of Atmosphere Science, 1998, 55:1 714-1 729.
[76] Kuligowski R J. The Self-Calibrating Multivariate Precipitation Retrieval (SCaMPR) for high-resolution, low-latency satellite-based rainfall estimates[M]∥Satellite Rainfall Applications for Surface Hydrology. Netherlands:Springer Netherlands, 2010: 39-48.
[77] Levizzani V, Rosenfeld D, Cattani E, et al. multispectral observations of cloud top as a powerful tool for rainfall estimations[C]∥Preprints, 12th Conference on Satellite Meteorology and Oceanography, Long Beach, CA, American Meteorological Society, CD-ROM J. 2003.
[78] Bellerby T J. High-resolution 2-D cloud-top advection from geostationary satellite imagery[J]. Geoscience and Remote Sensing, IEEE Transactions on, 2006, 44(12): 3 639-3 648.
[79] Turk F J, Marzano F S, Smith E A. Combining geostationary and SSM/I data for rapid rain rate estimation and accumulation[C]∥Conference on Satellite Meteorology and Oceanography, 9th. Paris, France,1999: 462-465.
[80] Turk F J, Hawkins J, Smith E A, et al. Combining SSM/I, TRMM and infrared geostationary satellite data in a near-realtime fashion for rapid precipitation updates: Advantages and limitations[C]∥Proceedings of the 2000 EUMETSAT Meteorological Satellite Data Users’ Conference.2000, 2: 705-707.
[81] Manobianco J, Koch S, Karyampudi V M, et al. The impact of assimilating satellite-derived precipitation rates on numerical simulations of the ERICA IOP 4 cyclone[J]. Monthly Weather Review, 1994, 122(2): 341-365.
[82] Haddad Z S, Short D A, Durden S L, et al. A new parametrization of the rain drop size distribution[J]. Geoscience and Remote Sensing, IEEE Transactions on, 1997, 35(3): 532-539.
[83] Bellerby T, Todd M, Kniveton D, et al. Rainfall estimation from a combination of TRMM precipitation radar and GOES multispectral satellite imagery through the use of an artificial neural network[J]. Journal of Applied Meteorology, 2000, 39(12): 2 115-2 128.
[84] Grecu M, Anagnostou E N, Adler R F. Assessment of the use of lightning information in satellite infrared rainfall estimation[J]. Journal of Hydrometeorology, 2000, 1(3): 211-221.
[85] Krajewski W F, Smith J A. On the estimation of climatological Z-R relationships[J]. Journal of Applied Meteorology, 1991, 30(10): 1 436-1 445.
[86] Okamoto K, Ushio T, Iguchi T, et al. The Global Satellite Mapping of Precipitation (GSMaP) project[C]∥Geoscience and Remote Sensing Symposium, IGARSS’05. Proceedings. 2005 IEEE International, 2005,5: 3 414-3 416,doi:10.1109/IGARSS.2005.1526575.
[87] Tian Y, Peters-Lidard C D, Eylander J B, et al. Component analysis of errors in satellite-based precipitation estimates[J]. Journal of Geophysical Research: Atmospheres(1984-2012), 2009, 114(D24),doi:10.1029/2009JD011949.
[88] Tian Y, Peters-Lidard C D. A global map of uncertainties in satellite-based precipitation measurements[J]. Geophysical Research Letters, 2010, 37(24),doi:10.1029/2010GL046008.
[89] Arkin P, Turk J, Ebert B, et al. Evaluation of high resolution precipitation forecasts and analyses from satellite observations[C]∥AGU Fall Meeting Abstracts,2006, 1: 4.
[90] Ebert E E, Janowiak J E, Kidd C. Comparison of near-real-time precipitation estimates from satellite observations and numerical models[J]. Bulletin of the American Meteorological Society, 2007, 88(1): 47-64.
[91] Gottschalck J, Meng J, Rodell M, et al. Analysis of multiple precipitation products and preliminary assessment of their impact on global land data assimilation system land surface states[J]. Journal of Hydrometeorology, 2005, 6(5): 573-598.
[92] Sohn B J, Han H J, Seo E K. Validation of satellite-based high-resolution rainfall products over the Korean Peninsula using data from a dense rain gauge network[J]. Journal of Applied Meteorology and Climatology, 2010, 49(4): 701-714.
[93] Brown J E M. An analysis of the performance of hybrid infrared and microwave satellite precipitation algorithms over India and adjacent regions[J]. Remote Sensing of Environment, 2006, 101(1): 63-81.
[94] Qu Wei,Lu Jingxuan, Song Wenlong, et al. Research on accuracy validation and calibration methods of TRMM remote sensing precipitation data in Irrawaddy Basin[J].Advances in Earth Science,2014,29(11):1 262-1 270.[曲伟,路京选,宋文龙,等.TRMM遥感降水数据在伊洛瓦底江流域的精度检验和校正方法研究[J].地球科学进展,2014,29(11):1 262-1 270.]
[95] Lü Yang, Yang Shengtian, Cai Mingyong, et al. The applicability analysis of TRMM precipitation data in the Yarlung Zangbo River basin[J]. Journal of Natural Resources, 2013, 28(8): 1 414-1 425.[吕洋, 杨胜天, 蔡明勇, 等. TRMM 卫星降水数据在雅鲁藏布江流域的适用性分析[J]. 自然资源学报, 2013, 28(8): 1 414-1 425.]
[96] Liu Junfeng, Chen Rensheng, Han Chuntan, et al. Evaluating TRMM multi-satellite precipitation analysis using gauge precipitation and MODIS snow-cover products[J]. Advances in Water Science, 2010, 21(3): 343-348.[刘俊峰, 陈仁升, 韩春坛, 等. 多卫星遥感降水数据精度评价[J]. 水科学进展, 2010, 21(3): 343-348.]
[97] Li Xianghu, Zhang Qi, Shao Min. Spatio-temporal distribution of precipitation in Poyang Lake Basin based on TRMM Data and precision evaluation[J].Pogress in Geography, 2012,31(9): 1 164-1 170.[李相虎, 张奇, 邵敏. 基于TRMM数据的鄱阳湖流域降雨时空分布特征及其精度评价[J]. 地理科学进展, 2012, 31(9): 1 164-1 170. ]
[98] Ji Tao, Yang Hua, Liu Rui, et al. Applicability analysis of the TRMM precipitation data in the Sichuan-Chongqing region[J]. Progress in Geography, 2014, 33(10): 1 375-1 386.[嵇涛, 杨华, 刘睿, 等. TRMM 卫星降水数据在川渝地区的适用性分析[J]. 地理科学进展, 2014, 33(10): 1 375-1 386.]
[99] Tian Y, Peters-Lidard C D, Choudhury B J, et al. Multitemporal analysis of TRMM-based satellite precipitation products for land data assimilation applications[J]. Journal of Hydrometeorology, 2007, 8(6): 1 165-1 183.
[100] Dinku T, Ruiz F, Connor S J, et al. Validation and intercomparison of satellite rainfall estimates over Colombia[J]. Journal of Applied Meteorology and Climatology, 2010, 49(5): 1 004-1 014.
[101] Prakash S, Sathiyamoorthy V, Mahesh C, et al. An evaluation of high-resolution multisatellite rainfall products over the Indian monsoon region[J]. International Journal of Remote Sensing, 2014, 35(9): 3 018-3 035.
[102] Sapiano M R P, Arkin P A. An intercomparison and validation of high-resolution satellite precipitation estimates with 3-hourly gauge data[J]. Journal of Hydrometeorology,2009, 10(1): 149-166.
[103] Li Z, Yang D, Hong Y. Multi-scale evaluation of high-resolution multi-sensor blended global precipitation products over the Yangtze River[J]. Journal of Hydrology,2013, 500: 157-169.
[104] Gao Y C, Liu M F. Evaluation of high-resolution satellite precipitation products using rain gauge observations over the Tibetan Plateau[J]. Hydrology and Earth System Sciences,2013, 17: 837-849.
[105] Romilly T G, Gebremichael M. Evaluation of satellite rainfall estimates over Ethiopian River basins[J]. Hydrology and Earth System Sciences,2011, 15(5): 1 505-1 514.
[106] Bitew M M, Gebremichael M. Evaluation through independent measurements: Complex terrain and humid tropical region in Ethiopia[M]∥Satellite Rainfall Applications for Surface Hydrology. Netherlands:Springer Netherlands, 2010: 205-214.
[107] Thiemig V, Rojas R, Zambrano-Bigiarini M, et al. Validation of satellite-based precipitation products over sparsely gauged African River basins[J]. Journal of Hydrometeorology,2012, 13(6): 1 760-1 783.
[108] Kniveton D R, Motta B C, Goodman H M, et al. The first wetnet precipitation intercomparison project: Generation of results[J]. Remote Sensing Reviews,1994, 11(1/4): 243-301.
[109] Adler R F, Kidd C, Petty G, et al. Intercomparison of global precipitation products: The third Precipitation Intercomparison Project (PIP-3)[J].American Meteorologic Society,2000, 82(7): 1 377-1 396.
[110] Smith E A, Lamm J E, Adler R, et al. Results of WetNet PIP-2 project[J]. Journal of the Atmospheric Sciences,1998, 55(9): 1 483-1 536.
[111] Kidd C, Ferraro B, Levizzani V. The fourth international precipitation working group workshop[J]. Bulletin of the American Meteorological Society,2010, 91: 1 095-1 099.
[112] Huffman G J, Klepp C. Meeting summary: Fifth workshop of the international precipitation working group bull[J]. American Meteorological Society,2011, 91: ES54-ES574.

[1] 肖雄新, 张廷军. 基于被动微波遥感的积雪深度和雪水当量反演研究进展[J]. 地球科学进展, 2018, 33(6): 590-605.
[2] 刘元波,傅巧妮,宋平,赵晓松,豆翠翠. 卫星遥感反演降水研究综述[J]. 地球科学进展, 2011, 26(11): 1162-1172.
[3] 陈修治,陈水森, 李丹, 苏泳娴, 钟若飞. 被动微波遥感反演地表温度研究进展[J]. 地球科学进展, 2010, 25(8): 827-835.
[4] 张廷军,晋 锐,高 峰. 冻土遥感研究进展:被动微波遥感[J]. 地球科学进展, 2009, 24(10): 1073-1083.
[5] 孙之文,施建成,蒋玲梅,杨虎,张立新. 被动微波遥感反演中国西部地区雪深、雪水当量算法初步研究[J]. 地球科学进展, 2006, 21(12): 1363-1369.
[6] 黄毅;毛节泰;王美华. 用GMS-5对东亚地区对流层高层水汽的研究[J]. 地球科学进展, 2004, 19(5): 754-760.
[7] 车涛;李新. 被动微波遥感估算雪水当量研究进展与展望[J]. 地球科学进展, 2004, 19(2): 204-210.
阅读次数
全文


摘要