Please wait a minute...
img img
高级检索
地球科学进展  2006, Vol. 21 Issue (12): 1363-1369    DOI: 10.11867/j.issn.1001-8166.2006.12.1363
研究论文     
被动微波遥感反演中国西部地区雪深、雪水当量算法初步研究
孙之文1,施建成1,2,蒋玲梅1,杨虎3,张立新1
1.北京师范大学遥感科学国家重点实验室,北京 100875; 2.中国科学院遥感应用研究所遥感科学国家重点实验室,北京  100101; 3.中国气象局中国遥感卫星辐射测量和定标重点开放实验室国家卫星气象中心,北京 100081 
Development of Snow Depth and Snow Water Equivalent Algorithm in Western China Using Passive Microwave Remote Sensing Data
Sun Zhiwen1,Shi Jiancheng1,2,Jiang lingmei1,Yang Hu3,Zhang Lixin1
1.State Key Laboratory of Remote Sensing Science, Beijing Normal University, Beijing 100875,China;2. Institute of Remote Sensing Application, Chinese Academy of Sciences, Beijing 100101,China;3. National Satellite Meteorological Center, Beijing 100101, China
 全文: PDF(158 KB)  
摘要:

    雪深、雪水当量是积雪研究中重要参数,其在流域水量平衡和融雪径流预报以及雪灾监测与评价中起着重要作用。Chang等(1987)以辐射传输理论和米氏散射为理论基础,假定积雪密度和颗粒大小为常数,利用实测雪深数据和SMMR的亮温数据,通过统计回归方法,建立了雪深与18 GHz和37 GHz水平极化的亮温梯度之间的关系,发展了SMMR半经验的反演雪深的算法。后在此基础上又发展了针对SSM/I的半经验反演雪深算法。2002年发射的装载于Aqua卫星上的AMSR-E是新一代的被动微波辐射计,性能较以往星载被动微波辐射计有较大提高,采用了改进后的SSM/I的半经验算法作为其估算全球雪水当量的反演算法。
    将AMSR-E的雪水当量产品与气象台站观测的雪水当量进行比较,发现在新疆地区和青藏高原地区雪水当量的RMSE分别达到31.8 mm和21 mm。本研究旨在建立基于AMSR-E亮温数据,适用于中国西部地区的雪深和雪水当量反演算法。首先收集整理了2003年新疆地区的雪深、雪水当量数据和AMSR-E亮温数据,去除错误样本,利用统计回归的方法,建立了新疆的反演雪深、雪水当量的半经验算法,算法中加入积雪覆盖度参数,较以往的算法有所改进,与气象台站观测数据比较,结果也表明新疆地区建立的经验算法较AMSR-E的雪水当量算法有较大改进,RMSE为15.7 mm。但青藏高原地区因海拔高,地形复杂,大部分地区积雪较浅,空间分布不均和冻土存在等诸多因素运用同样的方法建立反演算法,结果不甚理想,以后的研究将重点消除这些干扰因素。

 

关键词: 被动微波遥感青藏高原地区AMSR-E新疆雪水当量雪深    
Abstract:

    In order to evaluate the accuracy of snow water equivalent (SWE) inversion algorithm for passive microwave sensor Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) in Western china, we compared SWE obtained from AMSR-E daily SWE product with the ground measurements from 15 meteorological stations in Tibetan plateau in 2003 and 35 meteorological stations in Xinjiang in January 2004. The results show AMSR-E overestimate SWE both in  these two regions, and RMSE is 21mm and 31.8 mm in Tibetan plateau and Xinjiang, respectively.
    Through incorporating snow fraction factor, a new empirical algorithm estimate snow depth and SWE have been developed in Xinjiang. This new algorithm appeared higher accuracy than AMSR-E does in Xinjiang. Due to complex topography, shallow patchy snow and frozen grounds covered at the Tibetan Plateau, this technique didn't show good results. In future we will focus on how to evaluate and eliminate the effects of these factors quantitatively on SWE retrieval.

Key words: Snow Water Equivalent (SWE)    Snow depth    Passive microwave remote sensing    AMSR-E    Tibetan Plateau    Xinjiang.
收稿日期: 2006-10-11 出版日期: 2006-12-15
:  P426.635  
基金资助:

National Natural Science Foundation of China(90302008); Program for Changjiang Scholars and Innovative Research Team in University(PCSLRT).

通讯作者: 孙之文     E-mail: sun1983@gmail.com
作者简介: Sun Zhiwen.E-mail:sun1983@gmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
孙之文
蒋玲梅
张立新
杨虎
施建成

引用本文:

孙之文,施建成,蒋玲梅,杨虎,张立新. 被动微波遥感反演中国西部地区雪深、雪水当量算法初步研究[J]. 地球科学进展, 2006, 21(12): 1363-1369.

Sun Zhiwen,Shi Jiancheng,Jiang lingmei,Yang Hu,Zhang Lixin. Development of Snow Depth and Snow Water Equivalent Algorithm in Western China Using Passive Microwave Remote Sensing Data. Advances in Earth Science, 2006, 21(12): 1363-1369.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2006.12.1363        http://www.adearth.ac.cn/CN/Y2006/V21/I12/1363

[1] Cohen J, Entekhabi D. Eurasian snow cover variability and Northern Hemisphere climate predictability [J]. Geophysical Research Letters,1999, 26:345-348.

[2] Goodison B E, Walker A E. Use of snow cover derived from satellite passive microwave data as an indicator of climate change[J]. Annals of Glaciology,1993,17: 137-142.

[3] Chang A T C, Foster J L, Hall D K. NIMBUS-7 SMMR derived snow cover parameters [J]. Annals of Glaciology,1987(a),9: 39- 44.

[4] Cao Meisheng, Li Peiji. Microwave remote sensing monitoring of snow in West China[J]. Journal of Mountain Research, 1994, 12(4): 231-233.

[5] James A C, Foster L, Hall D K. Comparison of snow mass estimates from a prototype passive microwave snow algorithm, a revised algorithm and snow depth climatology[J]. Remote Sensing of Environment,1997,62:132-142.

[6] Amstrong R L, Brodzik M J. Recent Northern Hemisphere snow extent: A comparison of data derived from visible and microwave satellite sensors[J]. Geophysical Research Letters, 2001, 28(19):3 673-3 676.

[7] Ashcroft P, Wentz F. AMSR-E/Aqua L2A Global Swath Spatially-Resampled Brightness Temperatures (Tb) V001, September to October 2003[M]. Boulder, CO, USA: National Snow and Ice Data Center. Digital media,2003.

[8] Hall D K, Riggs G A, Salomonson V V. MODIS/Aqua Snow Cover 8-Day L3 Global 0.05Deg CMG V004, January to March 2003[M]. Boulder, CO, USA: National Snow and Ice Data Center. Digital media,2003.

[9] Ulaby F T, Moore R K, Fung A K. Microwave Remote Sensing(I): Microwave Remote Sensing Fundamentals and Radiometry[M].Beijing: Science Press,1988:206-213.

[10] Pulliainen J, Hallikainen M. Retrieval of regional snow equivalent from space-borne passive microwave observation[J]. Remote Sensing of Environment,2001,75:76-85.

[11] Lora S Koenig, Richard R Forster. Evaluation of passive microwave snow water equivalent algorithms in the depth hoar-dominated snowpack of the Kuparuk River Watershed, Alaska, USA[J]. Remote sensing of Environment, 2004, 93:511-527.

[12] Che Tao, Li Xin, Gao Feng. Estimation of snow water equivalent in the Tibetan plateau using passive microwave remote sensing data (SSM/I)[J]. Journal of Glaciology and Geocryology,2004,26(3):261-266.

[13] Tait A B. Estimation of snow water equivalent using passive microwave radiation data[J]. Remote sensing of Environment,1998,64:286-291.

[14] Kelly R J, Chang A T, Tsang L, et al. A prototype AMSR-E global snow area and snow depth algorithm[J]. IEEE Transaction on Geoscience and Remote Sensing, 2003, 41(2):1-13.

[15] Hall D K, Riggs G A, Salomonson V V. MODIS/Aqua Snow Cover Daily L3 Global 0.05Deg CMG V004, January to March 2003[M]. Boulder, CO, USA: National Snow and Ice Data Center, Digital media,2003.

[16] Alfred T C, Chang, Albert Rango. Algorithm Theoretical Basis Document(ATBD) for the AMSR-E Snow Water Equivalent Algorithm[R].Version 3.1,2000:10-30.

[17] Bernier P Y. Microwave remote sensing of snowpack properties: Potential and limitations[J]. Nordic Hydrology, 1987,18:1-20.

[18] Zhang T, Armstrong R L. Soil freeze/thaw cycles over snow-free land detected by passive microwave remote sensing[J]. Geophysical Research Letters,2001,28(5):763-766.

[1] 陈万峰, 郭 刚, 苗秀全, 王金荣, 胡万龙, 赵斌斌, 樊立飞. 新疆卡拉麦里地区早石炭世火山岩地球化学特征及构造意义[J]. 地球科学进展, 2016, 31(2): 180-191.
[2] 王玉往,王京彬,唐萍芝,赵路通,石 煜,陈言飞. 新疆科克森套蛇绿岩套玄武岩的地质地球化学[J]. 地球科学进展, 2012, 27(10): 1100-1107.
[3] 窦燕,陈曦. 基于站点的中国天山山区积雪要素变化研究[J]. 地球科学进展, 2011, 26(4): 441-448.
[4] 刘元波,傅巧妮,宋平,赵晓松,豆翠翠. 卫星遥感反演降水研究综述[J]. 地球科学进展, 2011, 26(11): 1162-1172.
[5] 陈修治,陈水森, 李丹, 苏泳娴, 钟若飞. 被动微波遥感反演地表温度研究进展[J]. 地球科学进展, 2010, 25(8): 827-835.
[6] 张廷军,晋 锐,高 峰. 冻土遥感研究进展:被动微波遥感[J]. 地球科学进展, 2009, 24(10): 1073-1083.
[7] 苏中波,张廷,马耀明,贾立,文军. 青藏高原地区能量水分循环:地表能量平衡和湍流热通量[J]. 地球科学进展, 2006, 21(12): 1224-1236.
[8] 车涛;李新. 被动微波遥感估算雪水当量研究进展与展望[J]. 地球科学进展, 2004, 19(2): 204-210.
[9] 中国科学院学部西北干旱区生态环境建设与可持续发展咨询考察组. 新楼兰工程——塔里木河下游及罗布泊地区生态重建与跨越式发展设想[J]. 地球科学进展, 2003, 18(6): 819-830.
[10] 中国科学院学部"西部生态环境建设与可持续发展"西北干旱区咨询组. 绿桥系统——天山北坡与准噶尔荒漠新产业带建设和生态保育[J]. 地球科学进展, 2003, 18(6): 831-836.
[11] 王让会,游先祥. 西部干旱区内陆河流域脆弱生态环境研究进展——以新疆塔里木河流域为例[J]. 地球科学进展, 2001, 16(1): 39-44.