地球科学进展 ›› 2010, Vol. 25 ›› Issue (8): 827 -835. doi: 10.11867/j.issn.1001-8166.2010.08.0827

综述与评述 上一篇    下一篇

被动微波遥感反演地表温度研究进展
陈修治 1,2,3,陈水森 1,2*, 李丹 1,2,3, 苏泳娴 1,2,3, 钟若飞 4   
  1. 1.广州地理研究所,广东 广州 510070;   2.中国科学院广州地球化学研究所,广东 广州 510640;
    3.中国科学院研究生院,北京 100049;     4.首都师范大学,北京 100038)
  • 收稿日期:2010-04-06 修回日期:2010-05-26 出版日期:2010-08-10
  • 通讯作者: 陈水森(1965-),男,江西高安人,研究员,主要从事定量遥感与GIS应用研究. E-mail:css@gdas.ac.cn
  • 基金资助:

    广东省科技计划重点项目广东省新农村建设集成应用研究与示范子题“广东作物寒害被动微波遥感探测关键技术研究与示范”(编号:2007B020500002-7);国家自然科学青年基金项目“主被动微波数据联合反演土壤水分研究”(编号:40701127)资助.

Progress in Land Surface Temperature Retrieval from Passive Microwave Remote Sensing Data

Chen Xiuzhi 1,2,3, Chen Shuisen 1,2, Li Dan 1,2,3, Su Yongxian 1,2,3, Zhong Ruofei 4   

  1. 1.Guangzhou Institute of Geography, Guangzhou 510070, China;
    2. Guangzhou Institute of Geochemistry, CAS, Guangzhou 510640, China;
    3. Graduate University of Chinese Academy of Sciences, Beijing 100049, China;
    4. Capital Normal University, Beijing 100038, China
  • Received:2010-04-06 Revised:2010-05-26 Online:2010-08-10 Published:2010-08-10

热红外遥感技术在地表温度反演中已经获得了丰厚的果实,反演精度可达到1 K,然而,大气中云雾和尘埃对热红外遥感探测地表温度影响很大,限制了热红外遥感反演地表温度的应用。相反,被动微波遥感受大气干扰小,可穿透云层获取地表辐射信息,并具有全天候、多极化等特点,在地表温度反演中具有独特的优越性。但是微波信号也受多种因素的影响,其反演地表温度的算法目前尚不成熟,有待进一步研究。根据不同微波辐射计特征,系统讨论并评估了被动微波反演地表温度的经验模型、物理模型以及半经验模型及其发展过程,指出目前研究的难点和缺点,为今后相关研究提供参考。

Much achievements have been presented for retrieving land surface temperature (LST) from thermal infrared satellite sensor data. The accuracy of retrieval results can reach 1K. But the thermal infrared remote sensing is greatly influenced much by cloud, atmospheric water content and rainfall, which may cause many difficulties in LST retrieval studies. However, the passive microwave remote sensing can just overcome these disadvantages. Passive microwave emission can penetrate non-precipitating clouds, thereby providing a better representation of LST under nearly all sky conditions. Passive microwave remote sensing holds a unique advantage in retrieving LST. But passive microwave emission can also be influenced by certain surface factors. So more efforts are needed for the algorithms improvement of LST retrieval from passive microwave remote sensing data at  present. This paper systematically reviews the empirical LST retrieval models, physical LST retrieval models and semi-empirical LST retrieval models from passive microwave data based on different passive microwave radiometers. The weakness and difficulties for LST inversion at the present study stage are analyzed, which may be very helpful to the future researches related to the kind of microware sensors.

中图分类号: 

[1] Zhu Huaisong, Liu Xiaomeng, Pei Huan, et al. Summary on retrieval of land surface temperature using thermal infrared remote sensing[J]. Arid Meteorology,2007, 20(2):17-21.[朱怀松,刘晓锰,裴欢,等. 热红外遥感反演地表温度研究现状[J]. 干旱气象,2007, 20(2):17-21.]
[2] Xu Xiru, Liu Qinhuo, Chen Jiayi. Remote sensing of land surface temperature[J].Acta Scientiarum Naturalium Universitatis Pekinensis,1998, 34(2): 248-253.[徐希孺,柳钦火,陈家宜. 遥感陆面温度[J]. 北京大学学报:自然科学版,1998, 34(2): 248-253.]
[3] Kahle A, Madura D, Soha J. Middle infrared multispectral aircraft axanner data: Analysis for geological applications[J]. Applied Optics,1980,19(14): 2 279-2 290.
[4] Gillespie A Matsunaga T, Rokugawa S, Hook S. Temperature and emissivity separation from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images[J].IEEE Transactions on Geoscience and Remote Sensing,1998, 36(4):1113-1 126.
[5] Price J.Land surface temperature measurements form the split windows channel of NOAA 7 advanced very high resolutionradiometer[J]. Journal of Geophysical Research,1984, 89(D5):7 231-7 237.
[6] Chen Liangfu,Xu Xiru, Zhang Renhua. The current stage and development trend of land surface temperature remote sensing[J]. Progress in Geography,1998, 17(suppl.): 208-215.[陈良富, 徐希孺, 张仁华. 地表温度遥感反演的现状与发展趋势[J]. 地理科学进展, 1998, 17(增刊): 208-215.]
[7] Liu Zhiwu, Dang Anrong, Lei Zhidong, et al. A retrieval model of land surface temperature with ASTER data and its application study[J]. Progress in Geography, 2003, 22(5): 507-514.[刘志武, 党安荣, 雷志栋,等. 利用ASTER 遥感数据反演陆面温度的算法及应用研究[J]. 地理科学进展, 2003, 22(5): 507-514.]
[8] Jia Yuanyuan, Li Zhaoliang. Progress in land surface temperature retrieval from passive microwave remotely sensed data[J]. Progress in Geography, 2006, 21(5): 420-425.[贾媛媛,李召良. 被动微波遥感数据反演地表温度研究进展[J]. 地理科学进展, 2006, 21(5): 420-425.]
[9] Qin Z, Karnieli A. Progress in the remote sensing of land surface temperature and ground emissivity using NOAA-AVHRR data[J]. International Journal of Remote Sensing,1999, 20 (12): 2 367-2 393.
[10] Zhao Yingshi. The Principle and Method of Analysis of Remote Sensing Application[M]. Beijing: Science Press,2003.[赵英时. 遥感应用分析原理与方法[M]. 北京: 科学出版社,2003.]
[11] Zhang Tingjun, Jin Rui, Gao Feng. Overview of the satellite remote sensing of frozen ground: Passive microwave sensors[J]. Advances in Earth Science,2009, 24(10): 1 073-1 083.[张廷军,晋锐,高峰. 冻土遥感研究进展:被动微波遥感[J]. 地球科学进展, 2009, 24(10): 1 073-1 083.]
[12] Mao Kebiao, Shi Jiancheng, Li Zhaoliang, et al. A physics-based statistical algorithm for retrieving land surface temperature from AMSR-E passive microwave data[J]. Science in China (Series D),2006, 36 (12): 1 170-1 176.[毛克彪,施建成,李召良,等. 一个针对被动微波AMSR-E数据反演地表温度的物理统计算法[J].中国科学:D辑,2006, 36 (12): 1 170-1 176.]
[13] Mao K, Shi J, Li Z. A physics-based statistical algorithm for retrieving land surface temperature from AMSR-E passive microwave data[J]. Science in China (Series D),2007, 50(7):1 115-1 120.
[14] McFarland M, Miller R, Neale C. Land surface temperature derived from the SSM/I passive microwave brightness temperatures[J].IEEE Transactions on Geoscience and Remote Sensing, 1990,28(5):839-845.
[15] Holliger J. DMSP Special Sensor Microwave/ Image Calibration/ Validation[R]. Washington  DC:Space Sensing Branch , Naval Research Laboratory , 20375-5000 , Final Report , 1989.
[16] Bellerby T, Taberner M, Wilmshurst A, et al. Retrieval of land and sea brightness temperatures from mixed coastal pixels in passive microwave data[J]. IEEE Transactions on Geoscience and Remote Sensing,1998, 36: 1 844-1 851.
[17] Chang P, Li L. Ocean surface wind speed and direction retrievals from the SSM/I[J].IEEE Transactions on Geoscience and Remote Sensing,1998,36: 1 866-1 871.
[18] Alishouse J, Snyder S, Vongsathorn J, et al. Determination of oceanic total precipitable water from the SSM/I[J]. IEEE Transactions on Geoscience and Remote Sensing,1990, 28 : 811-822.
[19] Holinger J. DMSP Special Sensor Microwave/Imager Calibration/Validation[R]. Final Report, Vol. II. Washington DC: Naval Research Laboratory, 1991.
[20] Li Wanbiao, Zhu Yuanjing, Hong Gang, et al. Remote sensing of surface temperature from SSM/I in eastern China[J]. Progress in Natural Science,1998, 8(3): 305-313.[ 李万彪, 朱元竞, 洪刚, 等. SSM/I遥感中国东部地面温度[J]. 自然科学进展, 1998, 8(3): 305-313.]
[21] Pan Guangdong, Wang Chao, Tian Guoliang. Land surface temperature retrieval with SSM/I data[J].Journal of Remote Sensing,2001, 5(4): 254-258.[潘广东, 王超, 田国良. SSM/I 微波辐射计数据陆面温度反演[J]. 遥感学报, 2001, 5(4): 254-258.]
[22] Gao F, Wang J, Ma Y. Retrieval of land surface temperatures on the Tibetan Plateau using passive microwave data[J]. Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), 2003, 5: 3 145-3 147.
[23] Njoku E. Surface Temperature estimation over land using satellite microwave radiometry[M]//Pampaloni P,Choudhury B T,Kerr Y H, et al, eds. Passive Microwave Remote Sensing of Land Atmosphere Interactions. Utrecht: VSP, 1995: 509-530.
[24] Njoku E, Li L. Retrieval of land surface parameters using passive microwave measurements at 6 to 18 GHz[J]. IEEE TGARS,1999,37(1):79-93.
[25] Basist A, Grody N, Peterson T, et al. Using the special sensor microwave/imager to monitor land surface temperature, wetness, and snow cover[J]. Journal of Applied Meteorology,1998, 37: 888-911.
[26] Fily M, Royer A, Goita K, et al. A simple retrieval method for land surface temperature and fraction of water surface determination from satellite microwave brightness temperatures in sub-arctic areas[J]. Remote Sensing of Environment, 2003,85: 328-338.
[27] Zurk L, Davis D, Njoku E, et al. Inversion of parameters for semiarid regions by a neural network[J].Proceedings of the International Geoscience and Remote Sensing Symposium(IGARSS),1992, 2: 1 075-1 077.
[28] Aires F, Prigent C, Rossow W, et al. A new neural network approach including first-guess for retrieval of atmospheric water vapor, cloud liquid water path, surface temperature and emissivities over land from satellite microwave observations[J]. Journal of Geophysical Research, 2001, 106(D14): 14 887-14 907.
[29] Pulliainen J, Grandell J, Hallikainen M. Retrieval of surface temperature in boreal forest zone from SSM/Idata[J]. IEEE Transactions on Geoscience and Remote Sensing,1997, 35(5): 1 188-1 200.
[30] Xiang X, Smith E. Feasibility of simultaneous surface temperature-emissivity retrieval using SSM/I measurements from HAPEX-Sahel[J]. Journal of Hydrology, 1997,(188/189): 330-360.
[31] Weng F, Grody N. Physical retrieval of land surface temperature using the special sensor microwave imager[J]. Journal of Geophysical Research,1998, 103(D8): 8 839-8 848.
[32] Wu Shengli, Yang Hu. Global land surface temperature retrieval with AMSR-E brightness temperature and MODIS land cover type products[J].Remote Sensing Technology and Application,2007, 22(2):234-237.[武胜利, 杨虎. AMSR-E亮温数据与MODIS地表分类产品结合反演全球地表温度[J]. 遥感技术与应用,2007,22(2):234-237.]

[1] 陈云浩, 吴佳桐, 王丹丹. 广义地表热辐射方向性计算机模拟研究进展[J]. 地球科学进展, 2018, 33(6): 555-567.
[2] 肖雄新, 张廷军. 基于被动微波遥感的积雪深度和雪水当量反演研究进展[J]. 地球科学进展, 2018, 33(6): 590-605.
[3] 马晋, 周纪, 刘绍民, 王钰佳. 卫星遥感地表温度的真实性检验研究进展[J]. 地球科学进展, 2017, 32(6): 615-629.
[4] 彭志兴, 周纪, 李明松. 基于地面观测的异质性下垫面像元尺度地表温度模拟研究进展[J]. 地球科学进展, 2016, 31(5): 471-480.
[5] 权凌, 周纪, 李明松, 代冯楠, 李国全. 基于时间序列建模的城市热岛时间尺度成分分离方法与应用[J]. 地球科学进展, 2014, 29(6): 723-733.
[6] 王康, 张廷军. 中国1956—2006年地表土壤冻结天数时空分布及其变化特征[J]. 地球科学进展, 2013, 28(11): 1269-1275.
[7] 祝善友,张桂欣. 近地表气温遥感反演研究进展[J]. 地球科学进展, 2011, 26(7): 724-730.
[8] 刘元波,傅巧妮,宋平,赵晓松,豆翠翠. 卫星遥感反演降水研究综述[J]. 地球科学进展, 2011, 26(11): 1162-1172.
[9] 田苗,王鹏新,孙威. 基于地表温度与植被指数特征空间反演地表参数的研究进展[J]. 地球科学进展, 2010, 25(7): 698-705.
[10] 周纪,陈云浩,李京,马伟,占文凤. 城市区域热辐射方向性研究进展[J]. 地球科学进展, 2009, 24(5): 497-505.
[11] 占文凤,周纪,马伟. 基于真实结构的地表热辐射方向性计算机模拟研究进展[J]. 地球科学进展, 2009, 24(12): 1309-1317.
[12] 张廷军,晋 锐,高 峰. 冻土遥感研究进展:被动微波遥感[J]. 地球科学进展, 2009, 24(10): 1073-1083.
[13] 胡泽勇,程国栋,谷良雷,李茂善,马耀明. 青藏铁路路基表面太阳总辐射和温度反演方法[J]. 地球科学进展, 2006, 21(12): 1304-1313.
[14] 孙之文,施建成,蒋玲梅,杨虎,张立新. 被动微波遥感反演中国西部地区雪深、雪水当量算法初步研究[J]. 地球科学进展, 2006, 21(12): 1363-1369.
[15] 黄妙芬;刘绍民;刘素红;朱启疆. 地表温度和地表辐射温度差值分析[J]. 地球科学进展, 2005, 20(10): 1075-1082.
阅读次数
全文


摘要