Please wait a minute...
img img
高级检索
地球科学进展  2005, Vol. 20 Issue (10): 1075-1082    DOI: 10.11867/j.issn.1001-8166.2005.10.1075
学术论文     
地表温度和地表辐射温度差值分析
黄妙芬1,2,刘绍民2,刘素红2,朱启疆2
1.大连水产学院海洋工程学院,辽宁 大连 116023;
2 北京师范大学地理学与遥感科学学院遥感与地理信息系统研究中心,遥感科学国家重点实验室,环境遥感与数字城市北京市重点实验室,北京 100875
A STUDY OF THE DIFFERENCE BETWEEN TRUE SURFACE TEMPERATURE AND RADIOMETRIC SURFACE TEMPERATURE
HUANG Miaofen1,2;LIU Shaomin2;LIU Suhong2;ZHU Qijiang2
1.School of Marine Engineering,Dalian Fisheries University,Dalian 116023,China;
2.Research Center for Remote  Sensing and GIS,School of Geography, Beijing Normal University;State Key Laboratory of Remote Sensing Science;Beijing Key Laboratory for Remote Sensing of Environment and Digital Cities, Beijing 100875, China
 全文: PDF(167 KB)  
摘要:

依据实验数据,研究利用标准黑体源对红外辐射计测定值进行标定的方法;分析天空比辐射率的变化特性;计算天空环境辐射,与长波辐射计测定值进行比较;推算考虑天空环境辐射和地表比辐射率后的地表温度,研究地表温度与地表辐射温度的差值。结果表明:①地表辐射温度未经标准黑体源标定与标定后的差值绝对值在0.1~1℃之间;②天空比辐射率的变化范围为0.75~0.85,不同下垫面天空比辐射率日变化趋势非常一致;③用空气温湿度计算的天空环境辐射与长波辐射计测定值的差值较小,相对误差平均为3.1%,但是天空37°热红外辐射计观测值与长波辐射计测定值差值较大,相对误差平均值达到38.1%;④地表温度高于地表辐射温度,差值在0.2~1.5℃之间。

关键词: 天空比辐射率天空环境辐射地表温度地表辐射温度红外辐射计    
Abstract:

The measurements of air temperature and air humidity were utilized to analyze the diurnal variation of atmospheric emissivity over heterogeneous surfaces and to calculate downward atmospheric longwave irradiance, from June 5th to July 6th, 2004, in Xiaotangshan area, Beijing. Moreover, sky radiometric temperature at 37 and land surface radiometric temperature with thermal infrared thermometers were employed to study the differences between surface radiometric temperature over heterogeneous surfaces without being calibrated and calibrated with standard blackbody source and the differences between surface “true” temperature, which were calculated with the downward longwave irradiance and surface emissivity, and surface radiometric temperature, which were calibrated by standard blackbody source. The results may be served as scientific reference to invert land surface temperature with remote sensing and to study land surface energy balance. The results indicated: (1) the differences of surface radiometric temperature between without being calibrated and being calibrated by standard blackbody sources ranged from 0.1 to 1℃;(2)the diurnal variation range of atmospheric emissivity ranged from 0.75 to 0.85; (3) the differences of downward atmospheric longwave irradiance between being calculated by air temperature and air humidity and being measured by pyranometer were small with the average mean error being 3.1%, while those of downward atmospheric longwave irradiance between being calculated by sky radiometric temperature at 37° with thermal infrared thermometer and being measured by pyranometer were larger, with the average mean error being 38.1%; (4) the differences between surface true temperature and surface radiometric temperature calibrated with standard blackbody ranged from 0.2℃ to 1.5℃ over various surfaces under variable sky conditions, and the higher surface radiometric temperature was, the larger the differences were. Therefore, the differences had the diurnal variation rule.

Key words: Thermal infrared thermometers    Atmospheric emissivity    Downward atmosphere longwave irradiance    Surface radiometric temperature    Surface true temperature.
收稿日期: 2004-12-27 出版日期: 2005-10-25
:  TP79  
基金资助:

国家重点基础研究发展规划项目“地球表面时空多变要素的定量遥感理论与应用”(编号:G2000077900);国家自然科学基金项目“北京城市绿地生态效益的遥感定量研究”(编号: 40271081);中国地质调查项目“城市环境地球化学调查方法技术及污染影响机理研究”(编号:20032013004)资助.

通讯作者: 刘素红(1967-),女,副教授,主要从事遥感图像信息提取和识别方法研究.      E-mail: liush@bnu.edu.cn
作者简介: 黄妙芬(1963-),女,广东汕头人,副研究员,博士,主要从事城市生态环境、RS与GIS研究. E-mail:hmf808@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘素红
黄妙芬
朱启疆
刘绍民

引用本文:

黄妙芬;刘绍民;刘素红;朱启疆. 地表温度和地表辐射温度差值分析[J]. 地球科学进展, 2005, 20(10): 1075-1082.

HUANG Miaofen;LIU Shaomin;LIU Suhong;ZHU Qijiang. A STUDY OF THE DIFFERENCE BETWEEN TRUE SURFACE TEMPERATURE AND RADIOMETRIC SURFACE TEMPERATURE. Advances in Earth Science, 2005, 20(10): 1075-1082.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2005.10.1075        http://www.adearth.ac.cn/CN/Y2005/V20/I10/1075

[1] Zhang R H, Li Z L, Tang X Z, et al. Study of emissity scaling and relativity of homogeneity of surface temperature[J]. International Journal of Remote Sensing,2004, 25(1): 245-259.
[2] Lagouarde J P,Kerr Y H , Brunet Y.An experimental study of angular effects on surface temperature for various plant canopies and bare[J]. Agriculture and Forest Meteorology,1995, 77:167-190.
[3] Voogt J A , Oke T R. Radiometric temperature of urban Canyon Walls obtained from vehicle traverses[J]. Theoretical and Applied Climatology,1998, 60:199-217.
[4] Chehbouni A, Nouvellon Y, Kerr Y H, et al. Directional effect on radiative surface temperature measurements over a semiarid grassland site[J].Remote Sensing of Environment,2001, 76:360-372.
[5] Li Z L, Zhang R, Sun X, et al. Experimental system for the study of the directional thermal emission of natural surface[J].International Journal of Remote Sensing,2004, 25(1): 195-204. 
[6] Zhang Yiping, Li Yourong. A study on the characteristic of temperatures on the different surface of building in the urban area[J].Urban Environment Urban Ecology,1997, 10(1):39-42.[张一平, 李佑荣.城市区域内建筑物表面温度特征[J].城市环境与城市生态, 1997, 10(1):39-42.]
[7] Voogt J A, Oke T R. Complete urban surface temperature [J].Journal of Applied Meteorology,1997, 36:1 117-1 132.
[8] William P Kustas, John M Norman. Evaluation of soil amd vegetation heat flux predictions using a simple two-source model with radiometric temperatures for partial canopy cover[J]. Agriculture and Forest Meteorology,1999, 94:13-29.
[9] Chehbouni A, Nouvellon Y, Lhomme J  P, et al. Estimation of surface sensible heat flux dual angle observations of radiative surface temperature[J]. Agriculture and Forest Meteorology,2001, 108:55-65.
[10] Zhan W P kustas, Humes K S. An intercomparison study on models of sensible heat llux over partial canopy surfaces with remotely sensed surface temperature[J]. Remote Sense Environment,1996,58:242-256.
[11] Wang Pengxin, Wan Zhengming, Gong Jianya, et al. Advanced in drought monitoring by using remotely sensed normalized difference vegetation index and land surfce temperature products[J]. Advances in Earth Science,2003, 18(4):527-533. [王鹏新, Wan Zhengming,龚健雅,等.基于植被指数和土地表面温度的干旱监测模型[J].地球科学进展, 2003, 18(4):527-533.]
[12] Norman J M, Kustas W P, Humes K S.Source approach for estimating soil and vegetation energy fluxes in observation of directional radiometric surface temperature[J].Agriculture and Forest Meteorology,1995,77:263-293.
[13] Chehbouni A, Seen D Lo, Njoku E G, et al. Estimation of sensible heat flux over sparsely vegetated surface[J].Journal of Hydrology,1997,(188~189):855-868.
[14] Zhang Renhua.Remotely Sensing Model Based on Experiment and the Basis of Land Surface[M]. Beijing: Science Press, 1996. [张仁华. 实验遥感模型及地面基础[M]. 北京:科学出版社, 1996.]
[15] Brutsaert W H. On a derivable formula for long-wave radiation from clear skies[J].Water Resource Research,1975,11:742-744.
[16] Isdo S B. A set of equation for full spectrum, 8~14 μm and 10.5~12.5 μm  thermal radiation from cloudless skies[J].Water Resource Research,1981,17:295-304.
[17] Guo Xiaoyin,Cheng Guodong. Advances in the application of remote sensing to evapotranspiration research[J].Advances in Earth Science,2004, 19(1):107-114.[郭晓寅,程国栋.遥感技术应用于地表面蒸散发的研究进展[J]. 地球科学进展, 2004,19(1):107-114.]

[1] 马晋, 周纪, 刘绍民, 王钰佳. 卫星遥感地表温度的真实性检验研究进展[J]. 地球科学进展, 2017, 32(6): 615-629.
[2] 彭志兴, 周纪, 李明松. 基于地面观测的异质性下垫面像元尺度地表温度模拟研究进展[J]. 地球科学进展, 2016, 31(5): 471-480.
[3] 权凌, 周纪, 李明松, 代冯楠, 李国全. 基于时间序列建模的城市热岛时间尺度成分分离方法与应用[J]. 地球科学进展, 2014, 29(6): 723-733.
[4] 王康, 张廷军. 中国1956—2006年地表土壤冻结天数时空分布及其变化特征[J]. 地球科学进展, 2013, 28(11): 1269-1275.
[5] 祝善友,张桂欣. 近地表气温遥感反演研究进展[J]. 地球科学进展, 2011, 26(7): 724-730.
[6] 陈修治,陈水森, 李丹, 苏泳娴, 钟若飞. 被动微波遥感反演地表温度研究进展[J]. 地球科学进展, 2010, 25(8): 827-835.
[7] 田苗,王鹏新,孙威. 基于地表温度与植被指数特征空间反演地表参数的研究进展[J]. 地球科学进展, 2010, 25(7): 698-705.
[8] 周纪,陈云浩,李京,马伟,占文凤. 城市区域热辐射方向性研究进展[J]. 地球科学进展, 2009, 24(5): 497-505.
[9] 占文凤,周纪,马伟. 基于真实结构的地表热辐射方向性计算机模拟研究进展[J]. 地球科学进展, 2009, 24(12): 1309-1317.
[10] 胡泽勇,程国栋,谷良雷,李茂善,马耀明. 青藏铁路路基表面太阳总辐射和温度反演方法[J]. 地球科学进展, 2006, 21(12): 1304-1313.