[1]Sobrino J A, Jiménez-Muñoz J C, Verhoef W. Canopy directional emissivity: Comparison between models[J].Remote Sensing of Environment,2005, 99: 304-314. [2]Masuda K, Takashima T, Takayama Y. Emissivity of pure sea waters for the model sea surface in the infrared window regions[J].Remote Sensing of Environment,1988, 24: 313-329. [3]Paw U, K T. Development of models for thermal infrared radiation above and within plant canopies[J].ISPRS Journal of Photogrammetry and Remote Sensing,1992, 47: 189-203. [4]Voogt J A. Assessment of an urban sensor view model for thermal anisotropy[J].Remote Sensing of Environment,2008, 112: 482-495. [5]Zhou Ji, Chen Yunhao, Li Jing, et al. Progress in thermal anisotropy of urban areas: A review[J].Advances in Earth Science,2009, 24(5): 497-505.[周纪, 陈云浩, 李京, 等. 城市区域热辐射方向性研究进展[J]. 地球科学进展, 2009, 24(5): 497-505.] [6]Lagouarde J P, Moreau P, Irvine M, et al. Airborne experimental measurements of the angular variations in surface temperature over urban areas: Case study of Marseille(France)[J].Remote Sensing of Environment,2004, 93: 443-462. [7]Caselles V, Sobrino J A, Coll C. A physical model for interpreting the land surface temperature obtained by remote sensors over incomplete canopies[J].Remote Sensing of Environment,1992, 39: 203-211. [8]Kimes D S, Kirchner J A. Directional radiometric measurements of row-crop temperatures[J].International Journal of Remote Sensing,1983, 4(2): 299-311. [9]Kimes D S, Smith J A, Link L E. Thermal IR exitance model of a plant canopy[J].Applied Optics,1981, 20(4): 623-632. [10]Sobrino J A, Caselles V. Thermal infrared model for interpreting the directional radiometric temperature of a vegetative surface[J].Remote Sensing of Environment, 1990, 33: 193-199. [11]Yu Tao, Tian Qiyan, Gu Xingfa, et al. Modelling directional brightness temperature over a simple typical structure of urban areas[J].Journal of Remote Sensing,2006, 10(5): 661-669.[余涛, 田启燕, 顾行发, 等. 城市简单目标方向亮温研究[J]. 遥感学报, 2006, 10(5): 661-669.] [12]Su H B, Zhang R H, Tang X Z, et al. An alternative method to compute the component fractions in the geometrical optical model: Visual computing method[J].IEEE Transactions on Geoscience and Remote Sensing,2003, 41(3): 719-724. [13]Soux A, Voogt J A, Oke T R. A model to calculate what a remote sensor ‘sees’ of an urban surface[J].Boundary-Layer Meteorology,2003, 111: 109-132. [14]Kimes D S. Remote sensing of temperature profiles in vegetation canopies using multiple view angles and inversion techniques[J].IEEE Transactions on Geoscience and Remote Sensing,1981, 19(2): 85-90. [15]Otterman J, Susskind J, Brakke T, et al. Inferring the thermal-infrared hemispheric emission from a sparsely-vegetation surface by directional measurement[J].Boundary Layer Meteorology,1995, 74: 163-180. [16]Otterman J, Brakke T W, Fuchs M, et al. Longwave emission from a plant/soil surface as a function of the view direction: Dependence on the canopy architecture[J].International Journal of Remote Sensing,1999, 20(11): 2 195-2 201. [17]Liu Q H, Huang H G, Qin W H, et al. An extended 3-D radiosity-graphics combined model for studying thermal-emission directionality of crop canopy[J].IEEE Transactions on Geoscience and Remote Sensing,2007, 45(9): 2 900-2 918. [18]Menenti M, Li J, Li Z L. Multi-angular thermal infrared observations of terrestrial vegetation[C]∥Liang S L, ed. Advances in Land Remote Sensing System, Modeling, Inversion and Application.Berlin: Springer, 2008:51-93. [19]Yu T, Gu X F, Tian G L, et al. Modeling directional brightness temperature over a maize canopy in row structure[J].IEEE Transactions on Geoscience and Remote Sensing,2004, 42(10): 2 290-2 304. [20]Wang W M, Li Z L. Simulation of directional emission from vegetative canopy using Monte-Carlo method[J].IGARSS'06,2006: 1 370-1 373. [21]Chen Liangfu, Liu Qinhuo. The thermal radiant directionality of continuous vegetation[J].Journal of Remote Sensing,2001, 5(6): 407-415.[陈良富, 柳钦火. 连续植被的热辐射方向性[J]. 遥感学报, 2001, 5(6): 407-415.] [22]Chen Liangfu, Zhuang Jiali, Liu Qinhuo, et al. Study the thermal anisotropy of row crops[J].Science in China (Series E),2000, 30(suppl.): 77-88.[陈良富, 庄家礼, 柳钦火, 等. 行播作物热辐射方向性规律探讨[J]. 中国科学(E辑), 2000, 30(增刊): 77-88.] [23]Chen Liangfu, Zhuang Jiali, Xu Xiru, et al. Simulation and test of radiant directionality of non-isothermal discontinuous target[J].Journal of Remote Sensing,2000, 4(suppl.): 48-52.[陈良富, 庄家礼, 徐希孺, 等. 非同温离散体热辐射方向性模拟与验证[J]. 遥感学报, 2000, 4(增刊): 48-52.] [24]Su Lihong, Li Xiaowen, Wang Jindi. Simulation of thermal exitance from homogeneous canopy[J].Journal of Remote Sensing,2000, 4(suppl.): 53-58.[苏理宏, 李小文, 王锦地. 水平均匀冠层热辐射的计算机模拟和模型验证[J]. 遥感学报, 2000, 4(增刊): 53-58.] [25]Qin W H, Gerstl S A W. 3-D scene modeling of semi-desert vegetation cover and its radiation regime[J].Remote Sensing of Environment,2000, 74: 145-162. [26]Voogt J A, Krayenhoff. Modelling urban thermal anisotropy[C]∥The 5th International Symposium on Remote Sensing of Urban Areas (URS 2005). Arizona: Phoenix, 2005. [27]Tan Heping, Xia Xinlin, Liu Linhua, et al. Numerical Calculation of Thermal Radiation Properties and Transmission-computional heat Radiation Transfer[M]. Haerbin: Harbin Institute of Technology Press, 2006.[谈和平, 夏新林, 刘林华, 等. 红外辐射特性与传输的数值计算—计算热辐射学[M]. 哈尔滨: 哈尔滨工业大学出版社, 2006.] [28]Chelle M, Andrieu B. Modelling the light environment of virtual crop canopies[C]∥Vos J, ed. Functional-Structural Plant Modelling in Crop Production. Netherlands:Springer, 2007:75-89. [29]Liang S L. Quantitative Remote Sensing of Land Surfaces[M]. New Jersey: John Wiley, 2004. [30]Li Xiaowen, Wang Jindi. Vegetation Optical Remote Sensing Model and Its Structure Parameterization[M]. Beijing: Science Press, 1995.[李小文, 王锦地. 植被光学遥感模型与植被结构参数化[M]. 北京: 科学出版社, 1995.] [31]Disney M I, Lewis P, North P R J. Monte Carlo ray tracing in optical canopy reflectance modeling[J].Remote Sensing Reviews,2000,18(2): 163-196. [32]Hansen J E, Travis L D. Light scattering in planetary atmospheres[J].Space Science Reviews,1974, 16: 527-610. [33]Antyufeev V S, Marshak A L. Monte Carlo method and transport equation in plant canopies[J].Remote Sensing of Environment,1990, 31: 183-191. [34]North P R J. Three-dimensional forest light interaction model using a Monte Carlo method[J].IEEE Transactions on Geoscience and Remote Sensing,1996, 34(4): 946-956. [35]Chelle M, Saint-Jean S. Taking into account the 3D canopy structure to study the physical environment of plants: The Monte Carlo solution[C]∥Godin C, ed. 4th International Workshop on Functional-Structural Plant Models, FSPM04. France,2004: 176-180. [36]Govaerts Y M, Verstraete M M. Raytran: A Monte Carlo ray-tracing model to compute light scattering in three-dimensional heterogeneous media[J].IEEE Transactions on Geoscience and Remote Sensing,1998, 36(2): 493-505. [37]Goel N S, Thompson R L. A snapshot of canopy reflectance models and a universal model for the radiation regime[J].Remote Sensing Reviews,2000, 18: 197-225. [38]Widlowski J L, Lavergne T, Pinty B, et al. Rayspread: A virtual laboratory for rapid BRF simulations over 3-D plant canopies[C]∥Graziani F, ed. Computational Methods in Transport. Berlin:Springer, 2006:211-231. [39]Pinty B, Gobron N, Widlowski J, et al. Radiation transfer model intercomparison (RAMI) exercise[J].Journal of Geophysical Research,2001, 106(11): 11 937-11 956. [40]Pinty B, Widlowski J, Taberner M, et al. Radiation Transfer Model Intercomparison (RAMI) exercise: Results from the second phase[J].Journal of Geophysical Research,2004, 106(D06210): 1-19. [41]Widlowski J L, Taberner M, Pinty B, et al. Third Radiation Transfer Model Intercomparison (RAMI) exercise: Documenting progress in canopy reflectance models[J].Journal of Geophysical Research,2007, 112(D09111): 1-28. [42]Howell J R, M P. Monte Carlo solution of thermal transfer though radiant media between gray walls[J].Journal of Heat Transfer-Transactions of ASME,1964, 86(1): 116-122. [43]Sapritsky V I, Prokhorov A V. Spectral effective emissivities of nonisothermal cavities calculated by the Monte Carlo method[J].Applied Optics,1995, 35(25): 5645-5652. [44]Su H B, Zhang R H, Tang X Z, et al. Determination of the effective emissivity for the regular and irregular cavities using Monte-carlo method[J].International Journal of Remote Sensing,2000, 21(11): 2 313-2 319. [45]Su L H, Li X W, Liang S H, et al. Simulation of scaling effects of thermal emission from non-isothermal pixels with the typical three dimension structure[J].International Journal of Remote Sensing,2003, 24(19): 3 743-3 753. [46]Wang Jiangen, Yu Tao, Li Hu, et al. Simulating row crop directional brightness temperature based on POV-ray[J].Journal of Computer Applications,2009, 29(4): 1 003-1 007.[王剑庚, 余涛, 李虎,等.基于Pov-Ray的行播作物方向亮温仿真研究[J]. 计算机应用, 2009, 29(4): 1 003-1 007.] [47]Espaa M L, Baret F, Aries F, et al. Modeling maize canopy 3D architecture application to relectance simulation[J].Ecological Modelling,1999, 122: 25-43. [48]Lewis P. Three-dimensional plant modelling for remote sensing simulation studies using the botanical plant modelling system[J].Agronomie,1999, 19: 185-210. [49]Guillevic P, Gastellu-Etchegorry J P, Demarty J, et al. Thermal infrared radiative transfer within three-dimensional vegetation covers[J].Journal of Geophysical Research,2003, 108: 4 248-4 261. [50]Peng Qunsheng, Bao Hujun, Jin Xiaogang. Principles of Realistic Computer Graphics[M]. Beijng: Science Press, 1999.[彭群生, 鲍虎军, 金小刚. 计算机真实感图形的算法基础[M]. 北京: 科学出版社,1999.] [51]Goral C M, Torrance K E, Greenberg D P, et al. Modeling the interaction of light between diffuse surfaces[J].ACM SIGGRAPH Computer Graphics,1984, 18(3): 213-222. [52]Nishita T, Nakamae E. Continuous tone representation of three-dimensional objects taking account of shadows and interreflection[J].ACM SIGGRAPH Computer Graphics,1985, 19(3): 23-30. [53]Goel N S, Rozehnal I, Thompson R I. A computer graphics based model for scattering from objects of arbitrary shapes in the optical region[J].Remote Sensing of Environment,1991, 36: 73-104. [54]Borel C C, Gerstl S A, Powers B J. The radiosity method in optical remote sensing of structured 3-D surfaces[J].Remote Sensing of Environment,1991, 36: 13-44. [55]Gerstl S A, Borel C C. Principles of the radiosity method versus radiative transfer for canopy reflectance modeling[J].IEEE Transactions on Geoscience and Remote Sensing,1992, 30(2): 271-275. [56]Chelle M, Andrieu B. The nested radiosity model for the distribution of light within plant canopies[J].Ecological Modelling,1998, 111: 75-91. [57]Xie Donghui. Study on Computer Simulation Model and Its Applications[D]. Beijing: Beijing Normal University, 2005.[谢东辉. 计算机模拟模型的研究与应用[D]. 北京: 北京师范大学, 2005.] [58]Song Jinling. Computer Simulation of Vegetation Canopy at Multi-scale and Sensitivity Analysis of Parameters[D]. Beijng: Beijing Normal University, 2006.[宋金玲. 植被冠层的多尺度计算机模拟及参数敏感性分析[D]. 北京: 北京师范大学, 2006.] [59]Huang Huaguo, Liu Qinhuo, Liu Qiang, et al. Simulation of time effect on thermal emission directionality measurement[J].Journal of System Simulation,2007, 19(15): 3 586-3 590.[黄华国, 柳钦火, 刘强, 等. 热辐射方向性测量中的时间效应模拟[J]. 系统仿真学报, 2007, 19(15): 3 586-3 590.] [60]Zhang R H, Li Z L, Sun X M, et al. On the applicability of Kirchoff's law and the principle of heat balance in thermal infrared remote sensing: A non-isothermal system[J].Science in China (Series D),2005, 48(1): 53-64. |