Please wait a minute...
img img
高级检索
地球科学进展  2009, Vol. 24 Issue (7): 834-842    DOI: 10.11867/j.issn.1001-8166.2009.07.0834
地面观测资料分析     
大尺度辐射度模型敏感性分析及在祁连山林区的应用
张  阳,柳钦火*,黄华国,刘  强
北京师范大学/中国科学院遥感应用研究所遥感科学国家重点实验室,北京  100875
Sensitivity Analysis of Large Scale Radiosity-Graphics Model and the Application on the Forest of Qilian Mountain
Zhang Yang, Liu Qinhuo, Huang Huaguo, Liu Qiang
State Key Laboratory of Remote Sensing Science, Jointly Sponsored by Beijing Normal University and Institute of Remote Sensing Applications, Chinese Academy of Sciences, Beijing  100101, China
 全文: PDF(1708 KB)  
摘要:

辐射度模型(RGM)用于计算植被二向性反射(BRDF)。但是目前基于辐射度方法的计算机模拟模型的应用被局限在较小的、比较单一的场景范围之内。把RGM模型扩展为大场景辐射度模型(LRGM),关键在于如何把大场景分为子场景,既保证模拟精度,又可以显著缩短计算时间。通过不同地形条件下模拟结果的对比,分析讨论了子场景划分方法的敏感性,分析表明:①地形对BRDF是有影响的,主要表现在后向观测方向的增强作用和前向观测方向的减弱作用;②子场景个数对模拟结果影响不大,最大偏差不超过0.007。然后,选取黑河流域大野口山区水源涵养林带为观测试验区,利用大场景辐射度模型进行真实结构模拟,将模拟结果与ASTER数据进行对比,结果表明,二者最大绝对误差不超过0.0382,证明LRGM模型模拟遥感像元尺度的BRDF是可行的。

关键词: 大尺度辐射度模型BRDF森林场景敏感性分析    
Abstract:

Radiosity-Graphics Model(RGM)is mainly used to compute the Bi-directional reflectance distribution function (BRDF),which is suitable for small-scale scenes such as farmland, lawn or homogeneous forest. Large Scale RGM (LRGM) can be applied to simulate large-scale forest scene over complex topographic surfaces based on scene-dividing method. It can also save computing time. In this paper, sensitivity analysis of LRGM was carried out firstly, concerning different terrain conditions and different sub scene numbers. The results illustrate: ①BRDF is influenced by terrain, in back observation direction the terrain can strengthen the BRDF. In forward observation direction the terrain can weaken the BRDF; ②The sub scene number is not so sensitive to the BRDF. For example, the deviation is no more than 0.007; Secondly, Dayekou forest region in the Heihe River Basin was chosen as our study area, and the data including DEM, tree structure parameters and component spectral were used to simulate the BRDF of the scene by LRGM model. Then, the LRGM simulation result was validated with the ASTER data. The mean absolute error is no more than 0.0382. The result indicates that the LRGM can simulate the BRDF on a large scale well.

Key words: Large scale Radiosity-Graphics Model    BRDF    Forest scene    Sensitivity analysis
收稿日期: 2009-04-28 出版日期: 2009-07-10
:  TP79  
基金资助:

中国科学院西部行动计划(二期)项目“黑河流域遥感—地面观测同步试验与综合模拟平台建设”(编号:KZCX2-XB2-09);国家重点基础研究发展计划项目“陆表生态环境要素主被动遥感协同反演理论与方法”(编号:2007CB714400);国家自然科学基金重点项目“光学与微波遥感的模型协同及联合反演研究”(编号:40730525)资助.

通讯作者: 柳钦火(1968-),男,江西九江人,研究员,主要从事定量遥感模型和反演研究.     E-mail: qhliu@irsa.ac.cn
作者简介: 张阳(1983-),女,山东济宁人,硕士研究生,主要从事遥感数据的计算机仿真模拟研究. E-mail:sunwind711@yahoo.com.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张阳
柳钦火

引用本文:

张阳,柳钦火,黄华国,刘强. 大尺度辐射度模型敏感性分析及在祁连山林区的应用[J]. 地球科学进展, 2009, 24(7): 834-842.

Zhang Yang, Liu Qinhuo, Huang Huaguo, Liu Qiang. Sensitivity Analysis of Large Scale Radiosity-Graphics Model and the Application on the Forest of Qilian Mountain. Advances in Earth Science, 2009, 24(7): 834-842.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2009.07.0834        http://www.adearth.ac.cn/CN/Y2009/V24/I7/834

[1] Peter R J. North, Three-dimensional forest light interaction model using a Monte Carlo method[J].IEEE Transactions on Geoscience and Remote Sensing,1996,34(4):946-956.
[2] Govaerts Yves M, Verstraete Michel M. Raytran: A Monte Carlo Ray-Tracing model to compute light scattering in three-dimensional heterogeneous media[J].IEEE Transaction on Geoscience and Remote Sensing,1998, 36(2): 493-505.
[3] Goel Narendra S, Ivan Rozehnal, Richard L. Thompson, A computer graphics based model for scattering from objects of arbitrary shapes in the optical region[J].Remote Sensing of Environment,1991, 36:73-104.
[4] Goel Narendra S, Qin Wenhan. Influences of canopy architecture on relationships between various vegetation indices and LAI and FPAR: A computer simulation[J].Remote Sensing Reviews,1994, 10: 309-347.
[5] Qin Wenhan, Gerstl Si A W. 3-D scene modeling of semidesert vegetation cover and its radiation regime[J]. Remote Sensing of Environment,2000, 74: 145-162.
[6] Chen Min.Large Scale Computer Simulation of Forest Scene in Complex Terrain[D]. Beijing: Beijing Normal University, 2007.[陈敏.复杂地形条件下大尺度森林场景的计算机模拟[D].北京:北京师范大学,2007.]
[7] Huang Huaguo,Chen Min, Zhang Yang, et al. A realistic structure model for large scale forest radiosity simulation (TRES-SIP-2008-0048) [J].International Journal of Remote Sensing,2009(in press.)
[8] Xie Donghui. Study on Computer Simulation Model and its Applications[D]. Beijing: Beijing Normal University, 2005.[谢东辉.计算机模拟模型的研究与应用[J].北京:北京师范大学,2005.]
[9] Dozier J,Frew J. Rapid calculation of terrain parameters for radiation modeling from digital elevation data[J].IEEE Transaction on Geoscience and Remote Sensing,1990, 28(5) :963-969.
[10] Duan Sibo,Yan Guangjian, Mu Xihan,et al.DEM based remotely sensed imagery topographic correction method in mountainous areas[J].Geography and Geo-information Science,2007,23(6):18-22.[段四波,阎广建,穆西晗,等.基于DEM的山区遥感影像地形校正方法[J].地理与地理信息科学,2007,23(6):18-22.]
[11] Li Xin, Ma Mingguo, Wang Jian,et al. Simultaneous remote sensing and groundbased experiment in the Heihe basin: Scientific objectives and experiment design[J].Advances in Earth Science,2008,23(9):897-914.[李新,马明国,王建,等.黑河流域遥感—地面观测同步试验:科学目标与试验方案[J].地球科学进展,2008,23(9):897-914.]
[12] Xu Xiru. Remote Sensing Physics\[M\]. Beijing: Peking University Press,2003:28-29.[徐希孺.遥感物理[M].北京:北京大学出版社,2003:28-29.]

[1] 张添,黄春林,沈焕锋. 土壤水分对土壤参数的敏感性及其参数优化方法研究[J]. 地球科学进展, 2012, 27(6): 678-685.
[2] 崔胜辉,李方一,黄 静,于裕贤. 全球变化背景下的敏感性研究综述[J]. 地球科学进展, 2009, 24(9): 1033-1041.