[1]IPCC. Climate Change 2007: The Physical Science Basis[M]. Cambridge, UK and New York, NY, USA: Cambridge University Press, 2007.
[2]DeConto Robert M, Galeotti Simone, Pagani Mark, et al. Past extreme warming events linked to massive carbon release from thawing permafrost[J]. Nature, 2012,484(7 392): 87-91.
[3] Grosse Guido, Romanovsky Vladimir, Jorgenson Torre, et al. Vulnerability and feedbacks of permafrost to climate change[J]. Eos, Transactions American Geophysical Union, 2011,92(9): 73-74.
[4]Koven Charles D, Ringeval Bruno, Friedlingstein Pierre, et al. Permafrost carbon-climate feedbacks accelerate global warming[J]. Proceedings of the National Academy of Sciences, 2011,108(36): 14 769-14 774.
[5]Schuur Edward A G, Vogel Jason G, Crummer Kathryn G, et al. The effect of permafrost thaw on old carbon release and net carbon exchange from tundra[J]. Nature, 2009,459(7 246): 556-559.
[6]Zhang Tingjun. Progress in global permafrost and climate change studies[J]. Quaternary Sciences, 2012,32(1): 27-38. [张廷军. 全球多年冻土与气候变化研究进展[J]. 第四纪研究, 2012,32(1): 27-38.]
[7]Waite C, Scherbatskoy T, Wang D, et al. Snow removal and ambient air temperature effects on forest soil temperatures in northern Vermont[J]. Soil Science Society of America Journal, 2003,67(4): 1 234-1 242.
[8]Shinji Matsumura, Koji Yamazaki. A longer climate memory carried by soil freeze—Thaw processes in Siberia[J]. Environmental Research Letters, 2012, 7(4): 045402, doi: 10.1088/1748-9326/7/4/045402.
[9]Schaefer Kevin, Zhang Tingjun, Tans Pieter, et al. Temperature anomaly reemergence in seasonally frozen soils[J]. Journal of Geophysical Research: Atmospheres, 2007, 112,doi: 10.1029/2007JD008630.
[10]Shinji Matsumura, Koji Yamazaki. Eurasian subarctic summer climate in response to anomalous snow cover[J]. Journal of Climate, 2012,25(4): 1 305-1 317.
[11]Kling George W, Hayhoe Katharine, Johnson Lucinda B, et al. Confronting climate change in the Great Lakes region: Impacts on our communities and ecosystems[R]∥A Report of the Union of Concerned Scientists. Cambridge, Massachusetts and the Ecological Society of America, Washington DC,2003.
[12]Henry Hugh A L. Climate change and soil freezing dynamics: Historical trends and projected changes[J]. Climatic Change, 2008,87(3/4): 421-434.
[13]Zhou Youwu, Guo Dongxin, Qiu Guoqing, et al. Geocryology in China[M]. Beijing: Science Press, 2000. [周幼吾,郭东信,邱国庆,等. 中国冻土[M]. 北京:科学出版社, 2000.]
[14]Cheng Guodong, Wu Tonghua. Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau[J]. Journal of Geophysical Research: Earth Surface, 2007, 112,doi: 10.1029/2006JF000631.
[15]Li Xin, Jin Rui, Pan Xiaoduo, et al. Changes in the near-surface soil freeze-thaw cycle on the Qinghai-Tibetan Plateau[J]. International Journal of Applied Earth Observation and Geoinformation, 2012,17: 33-42.
[16]Wu Qingbai, Zhang Tingjun. Recent permafrost warming on the Qinghai-Tibetan Plateau[J]. Journal of Geophysical Research, 2008,113,doi: 10.1029/2007JD009539.
[17]Jin Huijun, Li Shuxun, Cheng Guodong, et al. Permafrost and climatic change in China[J]. Global and Planetary Change, 2000,26(4): 387-404.
[18]Peng Xiaoqing, Zhang Tingjun, Pan Xiaoduo, et al. Spatial and temporal variations of seasonally frozen ground over the Heihe River Basin of Qilian Mountain in western China[J]. Advances in Earth Science, 2013,28(4): 497-508.[彭小清, 张廷军, 潘小多, 等. 祁连山区黑河流域季节冻土时空变化研究[J]. 地球科学进展, 2013, 28(4): 497-508.]
[19]Zhang Tingjun, Jin Rui, Gao Feng. Overview of the satellite remote sensing of frozen ground: Passive microwave sensors[J]. Advances in Earth Science, 2009, 24(9): 1 073-1 083.[张廷军, 晋锐, 高峰. 冻土遥感研究进展[J]. 地球科学进展, 2009, 24(9): 1 073-1 083.]
[20]Zhang Tingjun, Barry Roger G,Armstrong Richard L. Application of satellite remote sensing techniques to frozen ground studies[J]. Polar Geography, 2004,28(3): 163-196.
[21]Zhang Tingjun. Influence of the seasonal snow cover on the ground thermal regime: An overview[J]. Reviews of Geophysics, 2005,43,doi: 10.1029/2004RG000157.
[22]Baker Donald G, Ruschy David L. Calculated and measured air and soil freeze—Thaw frequencies[J]. Journal of Applied Meteorology, 1995,34(10): 2 197-2 205.
[23]Jin Rui, Li Xin, Che Tao. A decision tree algorithm for surface soil freeze/thaw classification over China using SSM/I brightness temperature[J]. Remote Sensing of Environment, 2009,113(12): 2 651-2 660.
[24]China Meteorological Administration. Datasets of Surface Climatical Daily Observations over China[M]. Beijing: China Meteorological Administration,2007.[中国气象局. 中国地面气候资料日值数据集[M]. 北京:中国气象局,2007.]
[25]IPCC-TGIC. General Guidelines on the Use of Scenario Data for Climate Impact and Adaptation Assessment. Version 2[R]. Intergovernmental Panel on Climate Change,2007.
[26]Center National Meteorological Information. Surface Climate Datasets of International Exchange Stations over China[M]. Beijing: China Meteorological Administration,2013.[国家气象信息中心.中国地面国际交换站气候资料年值数据集[M]. 北京:中国气象局, 2013.]
[27]Zhang Tingjun, Armstrong Richard L. Soil freeze/thaw cycles over snow-free land detected by passive microwave remote sensing[J]. Geophysical Research Letters, 2001,28(5): 763-766.
[28]Zhang Tingjun, Barry Roger G, Gilichinsky D, et al. An amplified signal of climatic change in soil temperatures during the last century at Irkutsk, Russia[J]. Climatic Change, 2001,49(1): 41-76.
[29]Ling Feng, Zhang Tingjun. A numerical model for surface energy balance and thermal regime of the active layer and permafrost containing unfrozen water[J]. Cold Regions Science and Technology, 2004,38(1): 1-15.
[30]Kokelj S V, Riseborough D, Coutts R, et al. Permafrost and terrain conditions at northern drilling-mud sumps: Impacts of vegetation and climate change and the management implications[J]. Cold Regions Science and Technology, 2010,64(1): 46-56. |