地球科学进展 ›› 2013, Vol. 28 ›› Issue (11): 1269 -1275.

论文 上一篇    下一篇

中国1956—2006年地表土壤冻结天数时空分布及其变化特征
王康 1, 张廷军 2, 3, *   
  1. 1.兰州大学西部环境教育部重点实验室,甘肃兰州 730000; 2.兰州大学资源环境学院,甘肃兰州 730000; 3.National Snow and Ice Data Center, Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, CO 80309, USA
  • 收稿日期:2013-06-13 出版日期:2013-11-10
  • 通讯作者: 张廷军(1957-),男,甘肃庆阳人,教授,主要从事冰冻圈科学研究. E-mail: tjzhang@lzu.edu.cn E-mail:tjzhang@lzu.edu.cn
  • 基金资助:
    国家重点基础研究发展计划项目“全球典型干旱半干旱区季节性积雪和冻土的年际变化特征”(编号:2012CB955301); 国家基础科学人才培养基金“冰川学冻土学特殊学科点”(编号:J1210003/J0109)资助.

Spatial and Temporal Distribution and Variations in the Near-surface Soil Freezing Days across China, 1956-2006

Wang Kang 1, Zhang Tingjun 1, 2, *   

  1. 1.Key Laboratory of Western China’s Environmental Systems (Ministry of Education), Lanzhou University,Lanzhou 730000, China; 2.College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China; 3.National Snow and Ice Data Center, Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, CO 80309, USA
  • Received:2013-06-13 Online:2013-11-10 Published:2013-11-10
应用中国境内845个气象台站的地表日最低温度资料,计算分析了近地表土壤冻结天数在1971—2000年的气候平均值;探讨了其空间的分布特征及其与冻土分布的关系;构建并分析了1956—2006年地表土壤冻结天数的时间序列及其与气侯变化的关系。结果表明,中国境内近地表土壤冻结天数的气候平均值随纬度增加、海拔升高而增加。青藏高原、新疆北部和东北地区北部多年平均冻结天数均超过200天。多年冻土区的边界与冻结天数(220±10)天的等值线高度吻合。按冻结天数大于15天为季节冻土区的定义,中国季节冻土的最南界约为25°N,22°N以南地区基本为非冻结区。自1956年以来,中国境内近地表土壤冻结天数呈显著的下降趋势,变化速率为-0.22d/a,但20世纪90年代以后,其减少速率可达-1.02 d/a。近地表土壤冻结天数的变化与气温变化呈负相关关系,即随气温升高近地表土壤冻结天数减少。
Using surface soil daily minimum temperature from 845 meteorological stations across China, the long-term (1971-2000) mean and spatial distribution of the near-surface soil freezing days were estimated with annual values of the number of nearsurface soil freezing days. The time series for the number of freezing days were constructed and compared with air temperatures in the same period.Resultsshowed that longterm mean value in the number of the nearsurface soil freezing days increased with the increasing latitudes and altitudes over China. Near-surface soils were frozen for more than 200 days in the QinghaiTibet Plateau, northern Xinjiang and northeast of China. The boundaries of permafrost zones coincide with the contour of (220±10) days of near-surface soil freezing. Using the mean number of 15 days of near-surface soil freezing as criterion, we found that the southern boundary of seasonally frozen ground is around the 25°N line, and the regions south of 22°N are essentially unfrozen regions. The timeseries of the number of freezing days showed a significant linear trend with change with a slope of -0.22days/year over a period from 1956 through 2006. After the 1990s, the linear slope was up to -1.02 days / year, indicating that the rate of decrease in the number of near-surface soil freezing days has accelerated. Changes in the number of nearsurface soil freezing were in a negative correlation with air temperature, i.e., the number of near-surface soil freezing days decreases with increase in air temperature.Backgroundcolor represents the contour values of the departure of near-surface soil freezing days from the 1971-2000 mean; Black dashed line is the boundary of permafrost regions, red dashed line is the boundary between frozen and unfrozen ground regions in China
[1]IPCC. Climate Change 2007: The Physical Science Basis[M]. Cambridge, UK and New York, NY, USA: Cambridge University Press, 2007.
[2]DeConto Robert M, Galeotti Simone, Pagani Mark, et al. Past extreme warming events linked to massive carbon release from thawing permafrost[J]. Nature, 2012,484(7 392): 87-91.
[3] Grosse Guido, Romanovsky Vladimir, Jorgenson Torre, et al. Vulnerability and feedbacks of permafrost to climate change[J]. Eos, Transactions American Geophysical Union, 2011,92(9): 73-74.
[4]Koven Charles D, Ringeval Bruno, Friedlingstein Pierre, et al. Permafrost carbon-climate feedbacks accelerate global warming[J]. Proceedings of the National Academy of Sciences, 2011,108(36): 14 769-14 774.
[5]Schuur Edward A G, Vogel Jason G, Crummer Kathryn G, et al. The effect of permafrost thaw on old carbon release and net carbon exchange from tundra[J]. Nature, 2009,459(7 246): 556-559.
[6]Zhang Tingjun. Progress in global permafrost and climate change studies[J]. Quaternary Sciences, 2012,32(1): 27-38. [张廷军. 全球多年冻土与气候变化研究进展[J]. 第四纪研究, 2012,32(1): 27-38.]
[7]Waite C, Scherbatskoy T, Wang D, et al. Snow removal and ambient air temperature effects on forest soil temperatures in northern Vermont[J]. Soil Science Society of America Journal, 2003,67(4): 1 234-1 242.
[8]Shinji Matsumura, Koji Yamazaki. A longer climate memory carried by soil freeze—Thaw processes in Siberia[J]. Environmental Research Letters, 2012, 7(4): 045402, doi: 10.1088/1748-9326/7/4/045402.
[9]Schaefer Kevin, Zhang Tingjun, Tans Pieter, et al. Temperature anomaly reemergence in seasonally frozen soils[J]. Journal of Geophysical Research: Atmospheres, 2007, 112,doi: 10.1029/2007JD008630.
[10]Shinji Matsumura, Koji Yamazaki. Eurasian subarctic summer climate in response to anomalous snow cover[J]. Journal of Climate, 2012,25(4): 1 305-1 317.
[11]Kling George W, Hayhoe Katharine, Johnson Lucinda B, et al. Confronting climate change in the Great Lakes region: Impacts on our communities and ecosystems[R]∥A Report of the Union of Concerned Scientists. Cambridge, Massachusetts and the Ecological Society of America, Washington DC,2003.
[12]Henry Hugh A L. Climate change and soil freezing dynamics: Historical trends and projected changes[J]. Climatic Change, 2008,87(3/4): 421-434.
[13]Zhou Youwu, Guo Dongxin, Qiu Guoqing, et al. Geocryology in China[M]. Beijing: Science Press, 2000. [周幼吾,郭东信,邱国庆,等. 中国冻土[M]. 北京:科学出版社, 2000.]
[14]Cheng Guodong, Wu Tonghua. Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau[J]. Journal of Geophysical Research: Earth Surface, 2007, 112,doi: 10.1029/2006JF000631.
[15]Li Xin, Jin Rui, Pan Xiaoduo, et al. Changes in the near-surface soil freeze-thaw cycle on the Qinghai-Tibetan Plateau[J]. International Journal of Applied Earth Observation and Geoinformation, 2012,17: 33-42.
[16]Wu Qingbai, Zhang Tingjun. Recent permafrost warming on the Qinghai-Tibetan Plateau[J]. Journal of Geophysical Research, 2008,113,doi: 10.1029/2007JD009539.
[17]Jin Huijun, Li Shuxun, Cheng Guodong, et al. Permafrost and climatic change in China[J]. Global and Planetary Change, 2000,26(4): 387-404.
[18]Peng Xiaoqing, Zhang Tingjun, Pan Xiaoduo, et al. Spatial and temporal variations of seasonally frozen ground over the Heihe River Basin of Qilian Mountain in western China[J]. Advances in Earth Science, 2013,28(4): 497-508.[彭小清, 张廷军, 潘小多, 等. 祁连山区黑河流域季节冻土时空变化研究[J]. 地球科学进展, 2013, 28(4): 497-508.]
[19]Zhang Tingjun, Jin Rui, Gao Feng. Overview of the satellite remote sensing of frozen ground: Passive microwave sensors[J]. Advances in Earth Science, 2009, 24(9): 1 073-1 083.[张廷军, 晋锐, 高峰. 冻土遥感研究进展[J]. 地球科学进展, 2009, 24(9): 1 073-1 083.]
[20]Zhang Tingjun, Barry Roger G,Armstrong Richard L. Application of satellite remote sensing techniques to frozen ground studies[J]. Polar Geography, 2004,28(3): 163-196.
[21]Zhang Tingjun. Influence of the seasonal snow cover on the ground thermal regime: An overview[J]. Reviews of Geophysics, 2005,43,doi: 10.1029/2004RG000157.
[22]Baker Donald G, Ruschy David L. Calculated and measured air and soil freeze—Thaw frequencies[J]. Journal of Applied Meteorology, 1995,34(10): 2 197-2 205.
[23]Jin Rui, Li Xin, Che Tao. A decision tree algorithm for surface soil freeze/thaw classification over China using SSM/I brightness temperature[J]. Remote Sensing of Environment, 2009,113(12): 2 651-2 660.
[24]China Meteorological Administration. Datasets of Surface Climatical Daily Observations over China[M]. Beijing: China Meteorological Administration,2007.[中国气象局. 中国地面气候资料日值数据集[M]. 北京:中国气象局,2007.]
[25]IPCC-TGIC. General Guidelines on the Use of Scenario Data for Climate Impact and Adaptation Assessment. Version 2[R]. Intergovernmental Panel on Climate Change,2007.
[26]Center National Meteorological Information. Surface Climate Datasets of International Exchange Stations over China[M]. Beijing: China Meteorological Administration,2013.[国家气象信息中心.中国地面国际交换站气候资料年值数据集[M]. 北京:中国气象局, 2013.]
[27]Zhang Tingjun, Armstrong Richard L. Soil freeze/thaw cycles over snow-free land detected by passive microwave remote sensing[J]. Geophysical Research Letters, 2001,28(5): 763-766.
[28]Zhang Tingjun, Barry Roger G, Gilichinsky D, et al. An amplified signal of climatic change in soil temperatures during the last century at Irkutsk, Russia[J]. Climatic Change, 2001,49(1): 41-76.
[29]Ling Feng, Zhang Tingjun. A numerical model for surface energy balance and thermal regime of the active layer and permafrost containing unfrozen water[J]. Cold Regions Science and Technology, 2004,38(1): 1-15.
[30]Kokelj S V, Riseborough D, Coutts R, et al. Permafrost and terrain conditions at northern drilling-mud sumps: Impacts of vegetation and climate change and the management implications[J]. Cold Regions Science and Technology, 2010,64(1): 46-56.
[1] 单薪蒙, 温家洪, 王军, 胡恒智. 深度不确定性下的灾害风险稳健决策方法评述[J]. 地球科学进展, 2021, 36(9): 911-921.
[2] 段伟利, 邹珊, 陈亚宁, 李稚, 方功焕. 18792015年巴尔喀什湖水位变化及其主要影响因素分析[J]. 地球科学进展, 2021, 36(9): 950-961.
[3] 兰爱玉, 林战举, 范星文, 姚苗苗. 青藏高原北麓河多年冻土区阴阳坡地表能量和浅层土壤温湿度差异研究[J]. 地球科学进展, 2021, 36(9): 962-979.
[4] 王澄海, 张晟宁, 张飞民, 李课臣, 杨凯. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[5] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[6] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[7] 贾诗超,张廷军,范成彦,刘琳,邵婉婉. InSAR技术多年冻土研究进展[J]. 地球科学进展, 2021, 36(7): 694-711.
[8] 张富贵, 周亚龙, 孙忠军, 方慧, 杨志斌, 祝有海. 中国多年冻土区天然气水合物地球化学勘探技术研究进展[J]. 地球科学进展, 2021, 36(3): 276-287.
[9] 张子洋, 闫明, MULVANEY Robert, 季峻峰, 效存德, 刘雷保, 安春雷. 东南极 LGB69冰芯 17122001年气温变化记录的初步研究[J]. 地球科学进展, 2021, 36(2): 172-184.
[10] 李欣泽, 金会军, 吴青柏, 魏彦京, 温智. 北极多年冻土区埋地输气管道周边温度场数值分析[J]. 地球科学进展, 2021, 36(1): 69-82.
[11] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[12] 龙上敏,刘秦玉,郑小童,程旭华,白学志,高臻. 南大洋海温长期变化研究进展[J]. 地球科学进展, 2020, 35(9): 962-977.
[13] 蔡运龙. 生态问题的社会经济检视[J]. 地球科学进展, 2020, 35(7): 742-749.
[14] 萧凌波. 17361911年华北饥荒的时空分布及其与气候、灾害、收成的关系[J]. 地球科学进展, 2020, 35(5): 478-487.
[15] 熊建国, 李有利, 张培震. 夷平面研究新进展[J]. 地球科学进展, 2020, 35(4): 378-388.
阅读次数
全文


摘要