1 |
QIU Guoqing, LIU Jingren, LIU Hongxu, et al. Permafrost dictionary[M]. Lanzhou: Gansu Science and Technology Press, 1994.
|
|
邱国庆, 刘经仁, 刘鸿绪, 等. 冻土学词典[M]. 兰州: 甘肃科学技术出版社, 1994.
|
2 |
Institute of Permafrost, Siberian Branch of the Soviet Academy of Sciences. General permafrost science [M]. Beijing: Science Press, 1988.
|
|
苏联科学院西伯利亚分院冻土研究所. 普通冻土学[M]. 北京:科学出版社, 1988.
|
3 |
ZHANG T, HEGINBOTTOM J A, BARRY R G, et al. Further statistics on the distribution of permafrost and ground ice in the Northern Hemisphere[J]. Polar Geography, 2000, 23(2):132-154.
|
4 |
ZHANG T, BARRY R G, KNOWLES K, et al. Statistics and characteristics of permafrost and ground-ice distribution in the Northern Hemisphere[J]. Polar Geography, 2008, 31(1/2):47-68.
|
5 |
ZHOU Youwu, GUO Dongxin, QIU Guoqing, et al. Permafrost in China [M]. Beijing: Science Press, 2000.
|
|
周幼吾, 郭东信, 邱国庆, 等. 中国冻土[M]. 北京: 科学出版社, 2000.
|
6 |
ZHOU Youwu, GUO Dongxin. Main characteristics of permafrost in China [J]. Journal of Glaciology and Geocryology, 1982,4(1): 1-19.
|
|
周幼吾, 郭东信. 我国多年冻土的主要特征[J]. 冰川冻土, 1982,4(1):1-19.
|
7 |
STOCKER T F. The closing door of climate targets[J]. Science,2013,339(6 117): 280-282.
|
8 |
PENG X, ZHANG T, FRAUENFELD O W, et al. Evaluation and quantification of surface air temperature over Eurasia based on CMIP5 models[J]. Climate Research, 2018, 77: 167-180.
|
9 |
GUO Donglin, LI Duo, HUA Wei. Quantifying air temperature evolution in the permafrost region from 1901 to 2014[J]. International Journal of Climatology, 2017, 38: 66-76.
|
10 |
CHENG Guodong, ZHAO Lin, LI Ren, et al. Characteristic, changes and impacts of permafrost on Qinghai-Tibet Plateau [J]. China Science Bulletin, 2019, 64: 2 783-2 795.
|
|
程国栋, 赵林, 李韧, 等. 青藏高原多年冻土特征、变化及影响[J]. 科学通报, 2019, 64: 2 783-2 795.
|
11 |
ZHAO Lin, CHENG Guodong. Permafrost and ecological effects on the Qinghai Tibet Plateau [C]//Summary of the advanced symposium on ecological protection and sustainable development on the Three-River Regions. 2005. [赵林, 程国栋. 青藏高原多年冻土及其生态效应[C]//三江源区生态保护与可持续发展高级学术研讨会论文摘要汇编. 2005.]
|
12 |
NIU Dongxing, LI Yong, HAN Longwu. Analysis of engineering effect of heat safeguard in permafrost regions along Qinghai-Tibet Railway[J]. Journal of Railway Engineering Society, 2012, 29(3): 26-29.
|
|
牛东兴, 李勇, 韩龙武. 青藏铁路多年冻土区路基热防护工程效果分析[J]. 铁道工程学报, 2012, 29(3): 26-29.
|
13 |
WU Qingbai, LIU Yongzhi, ZHANG Jianming, et al. A review of recent frozen soil engineering in permafrost regions along Qinghai-Tibet Highway, China[J]. Permafrost and Periglacial Processes, 2002, 13(3): 199-205.
|
14 |
CIRO G A, ALFARO M C. Adaptation strategies for road embankments on permafrost affected by climate warming[C]// EIC climate change technology. IEEE, 2007:1-10.
|
15 |
HONG E, PERKINS R, TRAINOR S. Thaw settlement hazard of permafrost related to climate warming in Alaska[J]. Arctic, 2014, 67(1):93.
|
16 |
GE Jianjun. Influence of climate warming on subgrade in permafrost regions of Qinghai Tibet Railway [J]. Subgrade Engineering, 2008(3): 6-8.
|
|
葛建军.气候变暖对青藏铁路多年冻土区路基影响分析[J].路基工程,2008(3):6-8.
|
17 |
LI Shuangyang, LAI Yuanming, ZHANG Mingyi, et al. Study on long-term stability of Qinghai-Tibet Railway embankment[J]. Cold Regions Science and Technology, 2009, 57(2/3):139-147.
|
18 |
LIU Xiaohui. Study on reliability of permafrost roadbed in the Qinghai-Tibet Railway[D]. Lanzhou: Lanzhou Jiaotong University, 2015.
|
|
刘小慧. 青藏铁路多年冻土路基可靠度研究[D].兰州:兰州交通大学,2015.
|
19 |
LIU Hui. The rearch of the deformation rules of Qinghai-Tibet Railway frozen soil embankment[D]. Chongqing: Southwest Jiaotong University, 2011.
|
|
刘慧. 青藏铁路冻土路基变形规律研究[D].重庆:西南交通大学,2011.
|
20 |
ZHANG Zhongqiong, WU Qingbai. Predicting changes of active layer thickness on the Qinghai-Tibet Plateau as climate warming[J]. Journal of Glaciology and Geocryology, 2012, 34(3): 505-511.
|
|
张中琼, 吴青柏. 气候变化情景下青藏高原多年冻土活动层厚度变化预测[J]. 冰川冻土, 2012, 34(3):505-511.
|
21 |
LI Xiangying, QIN Dahe, XIAO Cunde, et al. Progress regarding climate change during recent years[J]. Chinese Science Bulletin, 2011,56(36): 3 029-3 040.
|
|
李向应, 秦大河, 效存德, 等. 近期气候变化研究的一些最新进展[J]. 科学通报, 2011,56(36): 3 029-3 040.
|
22 |
YAO Tandong, ZHU Liping. The response of environmental changes on Tibetan Plateau to global changes and adaptation strategy[J]. Advances in Earth Science, 2006,21(5): 459-464.
|
|
姚檀栋, 朱立平. 青藏高原环境变化对全球变化的响应及其适应对策[J]. 地球科学进展, 2006,21(5):459-464.
|
23 |
BOORMAN L. Climate change 1995—impacts, adaptations and mitigation of climate change: scientific-technical analyses: contribution of working group II to the second assessment report of the intergovernmental panel on climate change: cambridge University Press, Camb[J]. Biological Conservation, 1997,81(3):187-189.
|
24 |
WANG Shuangjie, LI Zhulong. Research on highway construction technology in the permafrost region of China[J]. Journal of Highway and Transportation Research and Development, 2008, 25(1): 1-9.
|
|
汪双杰, 李祝龙. 中国多年冻土地区公路修筑技术研究[J]. 公路交通科技, 2008, 25(1):1-9.
|
25 |
LIU Yongzhi, WU Qingbai, ZHANG Jianming, et al. Deformation of highway roadbed in permafrost regions of the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2002, 24(1): 10-15.
|
|
刘永智, 吴青柏, 张建明, 等. 青藏高原多年冻土地区公路路基变形[J]. 冰川冻土, 2002, 24(1): 10-15.
|
26 |
MA Wei, LIU Duan, WU Qingbai. Monitoring and analysis of embankment deformation in permafrost regions of Qinghai-Tibet Railway[J]. Rock and Soil Mechanics, 2008, 29(3): 571-579.
|
|
马巍, 刘端, 吴青柏. 青藏铁路冻土路基变形监测与分析[J]. 岩土力学, 2008, 29(3): 571-579.
|
27 |
MA Fuxun, XI Ruijie, XU Nan. Analysis of railway subgrade frost heave deformation based on GPS[J]. Geodesy and Geodynamics, 2016, 7(2): 143-147.
|
28 |
LI Shanshan. The study of using SBAS to monitor of frozen soil along Qinghai-Tibet Railway[D]. Changsha: Central South University, 2012.
|
|
李珊珊. 基于SBAS技术的青藏铁路区冻土形变监测研究[D]. 长沙:中南大学, 2012.
|
29 |
WANG Shujuan, CHEN Zhiguo, QIN Weijun, et al. Using DInSAR to monitor frost heaving and thaw settlement deformation of highway subgrade in seasonal frozen soil zone[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2018,42(1):58-62.
|
|
王书娟, 陈志国, 秦卫军, 等. 利用DInSAR技术监测季冻区公路路基冻胀融沉变形[J]. 武汉理工大学学报:交通科学与工程版, 2018,42(1):58-62.
|
30 |
ZHAO Rong, LI Zhiwei, HU Jun. InSAR monitoring and modeling of thickness change of permafrost active layer on the Qinghai Tibet Plateau[C]//Annual Meeting of Chinese Geoscience Union. Beijing, 2014. [
|
|
赵蓉, 李志伟, 胡俊. 青藏高原冻土活动层厚度变化的InSAR监测与建模[C]//2014年中国地球科学联合学术年会.北京,2014.]
|
31 |
TAN Qulin, WEI Qingchao, YANG Songlin. Discussion on monitoring the subsidence of subgrade in permafrost region with satellite D-InSAR technology[J]. Journal of Railway Engineering Society, 2010, 27(1): 4-9.
|
|
谭衢霖, 魏庆朝, 杨松林. 卫星遥测高原冻土路基沉降变形研究初探[J]. 铁道工程学报, 2010, 27(1):4-9.
|
32 |
ZEBKER H A, GOLDSTEIN R M. Topographic mapping from interferometric synthetic aperture radar observations[J]. Journal of Geophysical Research, 1986, 91(B5):4 993.
|
33 |
GABRIEL A K, GOLDSTEIN R M, ZEBKER H A. Mapping small elevation changes over large areas: differential radar interferometry[J]. Journal of Geophysical Research Atmospheres, 1989, 94(B7):9 183-9 191.
|
34 |
ZHU Jianjun, LI Zhiwei, HU Jun. Research progress and methods of InSAR for deformation monitoring[J]. Acta Geodaetica et Cartographica Sinica, 2017(10): 519-535.
|
|
朱建军, 李志伟, 胡俊. InSAR变形监测方法与研究进展[J]. 测绘学报, 2017(10):519-535.
|
35 |
Yongyao MAI. Principle and application of InSAR interferometry[J]. The Science Education Article Collects, 2007(10): 219-220.
|
|
麦永耀. 合成孔径雷达干涉测量InSAR原理及其应用[J]. 科教文汇, 2007(10):219-220.
|
36 |
LIU Guoxiang, CHEN Qiang, LUO Xiaojun, et al. Principle and application of InSAR [M]. Beijing: Science Press, 2019.
|
|
刘国祥, 陈强, 罗小军,等. InSAR原理与应用[M]. 北京:科学出版社, 2019.
|
37 |
GEISSLER K, MASCIADRI E. Meteorological parameter analysis above Dome C using data from the European Centre for medium‐range weather forecasts[J]. Publications of the Astronomical Society of the Pacific, 2006, 118(845):1 048-1 065.
|
38 |
MESINGER F, DIMEGO G, KALNAY E, et al. North American regional reanalysis[J]. Bulletin of the American Meteorological Society, 2006, 87(3):343-360.
|
39 |
AGRAM P S, JOLIVET R, RIEL B, et al. New radar interferometric time series analysis toolbox released[J]. EOS, Transactions American Geophysical Union, 2013, 94(7):69-70.
|
40 |
LIAO Mingsheng, WANG Teng. Time series InSAR technology and application [M]. Beijing: Science Press, 2014.
|
|
廖明生, 王腾. 时间序列InSAR技术与应用[M]. 北京:科学出版社, 2014.
|
41 |
ROGERS A E E. Venus: mapping the surface reflectivity by radar interferometry[J]. Science, 1969, 165(3 895):797-799.
|
42 |
FERRETTI A, PRATI C, ROCCA F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry[J]. IEEE Transactions on Geoscience & Remote Sensing,2000, 38(5):2 202-2 212.
|
43 |
BERARDINO P, FORNARO G, LANARI R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience & Remote Sensing, 2003,40(11):2 375-2 383.
|
44 |
QUIROZ P L, DOIN M P, TUPIN F, et al. Time series analysis of Mexico City subsidence constrained by radar interferometry[J]. Journal of Applied Geophysics, 2009, 69(1):1-15.
|
45 |
FERRETTI A, FUMAGALLI A, NOVALI F, et al. A new algorithm for processing interferometric data-stacks: SqueeSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(9):3 460-3 470.
|
46 |
HOOPER A, SEGALL P, ZEBKER H. Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos[J]. Journal of Geophysical Research, 2007, 112(B7):B07407.
|
47 |
PERISSIN D, WANG T. Repeat-pass SAR interferometry with partially coherent targets[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(1):271-280.
|
48 |
GABRIEL A K, GOLDSTEINR M, ZEBKER H A. Mapping small elevation changes over large areas: differential radar interferometry[J]. Journal of Geophysical Research Solid Earth,1989,94(B7): 9 183-9 191.
|
49 |
WANG Zhijun, LI Shusun. Detection of winter frost heaving of the active layer of Arctic permafrost using SAR differential interferograms: geoscience and Remote Sensing Symposium, 1999[C]// IGARSS '99 Proceedings. IEEE 1999 International, 1999.
|
50 |
LI Zhen, LI Xinwu, LIU Yongzhi, et al. Detecting the displacement field of thaw settlement by means of SAR interferometry[J].Journal of Glaciology and Geocryology, 2004, 26 (4): 389-396.
|
|
李震, 李新武, 刘永智, 等. 差分干涉SAR冻土形变检测方法研究[J]. 冰川冻土, 2004, 26(4):389-396.
|
51 |
SINGHROY V, COUTURE R, ALASSET P J, et al. InSAR monitoring of landslides on permafrost terrain in Canada[C]// 2007 IEEE international geoscience and remote sensing symposium. IEEE, 2007.
|
52 |
WANG Ping, REN Xiaochong, YIN Hongjie, et al. The study of monitoring Qinghai-Tibet Plateau frozen ground motion from PALSAR data[J]. Geotechnical Investigation & Surveying, 2010(1): 59-66.
|
|
王平, 任小冲, 尹宏杰, 等. 基于PALSAR数据的青藏高原地区冻土形变监测[J]. 工程勘察, 2010(1):59-66.
|
53 |
XIE Chou, LI Zhen, LI Xinwu. A study of deformation in permafrost regions of Qinghai-Tibet Plateau based on ALOS/PALSAR D-InSAR interferometry[J]. Remote Sensing for Land & Resources, 2008(3): 15-19.
|
|
谢酬, 李震, 李新武. 基于PALSAR数据的青藏高原冻土形变检测方法研究[J].国土资源遥感, 2008(3):15-19.
|
54 |
HU Bo, WANG Hansheng, JIA Lulu, et al. Using DInSAR to monitor deformation of frozen ground in Tibetan Plateau[J]. Journal of Geodesy and Geodynamics, 2010(5): 57-60.
|
|
胡波, 汪汉胜, 贾路路, 等. DInSAR技术监测青藏高原冻土形变的试验研究[J]. 大地测量与地球动力学, 2010(5):57-60.
|
55 |
SHORT N, LEBLANC A M, SLADEN W, et al. RADARSAT-2 D-InSAR for ground displacement in permafrost terrain, validation from Iqaluit Airport, Baffin Island, Canada[J]. Remote Sensing of Environment, 2014, 141: 40-51.
|
56 |
WANG Chunjiao. Land surface deformation research of permafrost degradation area in Northeast China based on D-InSAR [D]. Harbin: Northeast Forestry University, 2015.
|
|
王春娇. 基于D-InSAR的东北多年冻土退化区地表形变研究[D]. 哈尔滨:东北林业大学, 2015.
|
57 |
WANG Chao, ZHANG Hong, TANG Yixian, et al. Fine permafrost deformation features observed using TerraSAR-X ST mode InSAR in Beiluhe of the Qinghai-Tibet Plateau, West China[C]// 2015 IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR). IEEE, 2015.
|
58 |
SHORT N, BRISCO B, COUTURE N, et al. A comparison of TerraSAR-X, RADARSAT-2 and ALOS-PALSAR interferometry for monitoring permafrost environments, case study from Herschel Island, Canada[J]. Remote Sensing of Environment, 2011, 115(12):3 491-3 506.
|
59 |
ZHOU Huayun. Monitoring and analysis of ground deformation in permafrost region of Wudaoliang based on SBAS-InSAR technology [D]. Lanzhou: Lanzhou Jiaotong University, 2018.
|
|
周华云. 基于SBAS-InSAR技术对五道梁多年冻土区地面形变监测与分析[D]. 兰州:兰州交通大学, 2018.
|
60 |
XIE Chou, LI Zhen, XU Ji, et al. Analysis of deformation over permafrost regions of Qinghai-Tibet Plateau based on permanent scatterers[J]. International Journal of Remote Sensing, 2010, 31(7/8):1 995-2 008.
|
61 |
CHEN Jie, LIU Lin, ZHANG Tingjun, et al. Using persistent scatterer interferometry to map and quantify permafrost thaw subsidence: a case study of eboling mountain on the Qinghai-Tibet Plateau[J]. Journal of Geophysical Research: Earth Surface, 2018, 123(10):2 663-2 676.
|
62 |
WANG Zhanwei. Research on landslide identification method of datong county in qinghai based on SBAS-InSAR technology[D]. Chengdu: ChengduUniversity of Technology, 2019.
|
|
王战卫. 基于SBAS-InSAR技术的青海大通县滑坡识别方法研究[D]. 成都:成都理工大学, 2019.
|
63 |
WANG Sai, XU Bing, SHAN Wei, et al. Monitoring the degradation of island permafrost using time-series InSAR technique: a case study of Heihe, China[J]. Sensors, 2019, 19(6): 1 364.
|
64 |
ZENG Xujing. Monitoring island permafrost deformation over Bei'an-Heihe expressway based on Sentinel-1A data[D]. Harbin: Northeast Forestry University, 2017.
|
|
曾旭婧. 基于Sentinel-1A 的北黑高速路段多年岛状冻土形变研究[D]. 哈尔滨:东北林业大学, 2017.
|
65 |
QU T, XU Q, SHAN W, et al. Deformation monitoring of high-latitude permafrost region of northeastern China with time series insar technique[C]// The international archives of the photogrammetry, remote sensing and spatial information sciences, Volume XLII-2/W13. Enschede, The Netherlands, 2019.
|
66 |
XIE Chou, LI Zhen, LI Xinwu. A improved permanent scatterers method for analysis of deformation over permafrost regions of the Qinghai-Tibetan Plateau[J]. Geomatics and Information Science of Wuhan University, 2009(10): 69-73.
|
|
谢酬, 李震, 李新武. 青藏高原冻土形变监测的永久散射体方法研究[J]. 武汉大学学报:信息科学版, 2009(10):69-73.
|
67 |
LI Zhen, TANG Panpan, ZHOU Jianmin, et al. Permafrost environment monitoring on the Qinghai-Tibet Plateau using time series ASAR images[J]. International Journal of Digital Earth, 2015, 8(10):840-860.
|
68 |
CHEN Fulong, LIN Hui, LI Zhen, et al. Interaction between permafrost and infrastructure along the Qinghai-Tibet Railway detected via jointly analysis of C- and L-band small baseline SAR interferometry[J]. Remote Sensing of Environment, 2012, 123:532-540.
|
69 |
CHEN Fulong, LIN Hui, ZHOU Wei, et al. Surface deformation detected by ALOS PALSAR small baseline SAR interferometry over permafrost environment of Beiluhe section, Tibet Plateau, China[J]. Remote Sensing of Environment, 2013, 138:10-18.
|
70 |
JIA Yuanyuan, KIM J W, SHUM C K, et al. Characterization of active layer thickening rate over the northern Qinghai-Tibetan Plateau permafrost region using ALOS interferometric synthetic aperture radar data, 2007-2009[J]. Remote Sensing, 2017, 9(1): 84.
|
71 |
DAOUT S, DOIN M P, PELTZER G, et al. Large-scale InSAR monitoring of permafrost freeze-thaw cycles on the Tibetan Plateau[J]. Geophysical Research Letters, 2017, 44(2):901-909.
|
72 |
WANG Chao, ZHANG Zhengjia, ZHANG Hong, et al. Active layer thickness retrieval of Qinghai-Tibet permafrost using the TerraSAR-X InSAR technique[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(11): 4 403-4 413.
|
73 |
ZHANG Zhengjia. Research on Qinghai-Tibet permafrost environment and engineering using high resolution SAR image[D]. Beijing: University of Chinese Academy of Sciences, 2017.
|
|
张正加. 高分辨率SAR数据青藏高原冻土环境与工程应用研究[D]. 北京:中国科学院大学, 2017.
|
74 |
ZHANG Zhengjia, WANG Chao, ZHANG Hong, et al. Analysis of permafrost region coherence variation in the Qinghai-Tibet Plateau with a high-resolution TerraSAR-X image[J]. Remote Sensing, 2018, 10(2):298.
|
75 |
ZHOU Huayun, ZHAO Lin, TIAN Liming, et al. Monitoring and analysis of surface deformation in the permafrost area of Wudaoliang on the Tibetan Plateau based on Sentinel-1 data[J]. Journal of Glaciology and Geocryology, 2019(3):525-536.
|
|
周华云, 赵林, 田黎明, 等. 基于Sentinel-1数据对青藏高原五道梁多年冻土区地面形变的监测与分析[J]. 冰川冻土, 2019(3):525-536.
|
76 |
LI Shanshan, LI Zhiwei, HU Jun, et al. Investigation of the seasonal oscillation of the permafrost over Qinghai-Tibet Plateau with SBAS-InSAR algorithm[J]. Chinese Journal of Geophysics, 2013(5): 58-68.
|
|
李珊珊, 李志伟, 胡俊, 等. SBAS-InSAR技术监测青藏高原季节性冻土形变[J]. 地球物理学报, 2013(5):58-68.
|
77 |
KU Ou. Monitoring seasonal permafrost deformation based on SBAS InSAR [J]. Mine Surveying, 2014(3): 90-95.
|
|
库欧. 基于SBAS-InSAR的冻土季节性形变监测[J]. 矿山测量, 2014(3):90-95.
|
78 |
LI Yongsheng, ZHANG Jingfa, LI Zhenhong, et al. Measurement of subsidence in the Yangbajing geothermal fields, Tibet, from TerraSAR-X InSAR time series analysis[J]. International Journal of Digital Earth, 2015,9(7):697-709.
|
79 |
CHANG L, HANSSEN R F. Detection of permafrost sensitivity of the Qinghai-Tibet railway using satellite radar interferometry[J]. International Journal of Remote Sensing, 2015,36(3): 691-700.
|
80 |
ZHAO Rong, LI Zhiwei, FENG Guangcai, et al. Monitoring surface deformation over permafrost with an improved SBAS-InSAR algorithm: with emphasis on climatic factors modeling[J]. Remote Sensing of Environment, 2016, 184:276-287.
|
81 |
CHEN Yuxing, JIANG Liming, LIANG Linlin, et al. Monitoring permafrost deformation in the upstream Heihe River, Qilian Mountain by using multi-temporal Sentinel-1 InSAR dataset[J]. Chinese Journal of Geophysics, 2019, 62(7): 2 441-2 454.
|
|
陈玉兴, 江利明, 梁林林, 等. 基于Sentinel-1 SAR数据的黑河上游冻土形变时序InSAR监测[J]. 地球物理学报, 2019, 62(7): 2 441-2 454.
|
82 |
LIU Lin, ZHANG Tingjun, WAHR J. InSAR measurements of surface deformation over permafrost on the North Slope of Alaska[J]. Journal of Geophysical Research, 2010, 115(F3):F03023.
|
83 |
EPPLER J, KUBANSKI M, SHARMA J, et al. High temporal resolution permafrost monitoring using a multiple stack InSAR technique[J]. International Archives of the Photogrammetrys Remote Sensing and Spatial Information Sciences, 2015,XL-7/W3: 1 171-1 176.
|
84 |
RUDY A C A, LAMOUREUX S F, TREITZ P, et al. Seasonal and multi-year surface displacements measured by DInSAR in a High Arctic permafrost environment[J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 64: 51-61.
|
85 |
EPPLER J, KUBANSKI M, SHARMA J, et al. High temporal resolution permafrost monitoring using a multiple stack InSAR technique[C]//The international archives of the photogrammetry, remote sensing and spatial information sciences, volume XL-7/W3, 2015 36th International Symposium on Remote Sensing of Environment. Berlin, Germany, 2015.
|
86 |
LIU Lin, JAFAROV E E, SCHAEFER K M, et al. InSAR detects increase in surface subsidence caused by an Arctic tundra fire[J]. Geophysical Research Letters, 2014, 41(11):3 906-3 913.
|
87 |
MOLAN Y E, KIM J W, LU Z, et al. Modeling wildfire-induced permafrost deformation in an Alaskan Boreal Forest using InSAR observations[J]. Remote Sens-Basel, 2018, 10(3): 405.
|
88 |
MICHAELIDES R J, SCHAEFER K, ZEBKER H A, et al. Inference of the impact of wildfire on permafrost and active layer thickness in a discontinuous permafrost region using the Remotely Sensed Active Layer Thickness (ReSALT) algorithm[J]. Environmental Research Letters, 2018, 14(3): 035007.
|
89 |
LIU Lin, SCHAEFER K, GUSMEROLI A, et al. Seasonal thaw settlement at drained thermokarst lake basins, Arctic Alaska[J]. The Cryosphere, 2014, 8(3):815-826.
|
90 |
LIU Lin, SCHAEFER K, CHEN A, et al. Remote sensing measurements of thermokarst subsidence using InSAR[J]. Journal of Geophysical Research Earth Surface, 2015, 120(9):1 935-1 948.
|
91 |
HU Yufeng, LIU Lin, LARSON K M, et al. GPS Interferometric reflectometry reveals cyclic elevation changes in thaw and freezing seasons in a permafrost area (Barrow, Alaska)[J]. Geophysical Research Letters, 2018, 45(11): 5 581-5 589.
|
92 |
PANG Qiangqiang, LI Shuxun, WU Tonghua, et al. Simulated distribution of active layer depths in the frozen ground regions of Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2006,28(3): 390-395.
|
|
庞强强, 李述训, 吴通华, 等. 青藏高原冻土区活动层厚度分布模拟[J]. 冰川冻土, 2006,28(3):390-395.
|
93 |
ZHANG Tingjun, ARMSTRONG R L. Soil freeze/thaw cycles over snow-free land detected by passive microwave remote sensing[J]. Geophysical Research Letters, 2001,28(5):763-766.
|
94 |
ZHAO Lin. freeze thaw process of permafrost active layer and seasonal change of permafrost in Qinghai Tibet Plateau [D]. Beijing: Chinese Academy of Sciences, 2004.
|
|
赵林.青藏高原多年冻土活动层的冻融过程以及季节冻土的变化[D].北京:中国科学院,2004.
|
95 |
CAO Bin, GRUBER S, ZHANG Tingjun, et al. Spatial variability of active layer thickness detected by ground-penetrating radar in the Qilian Mountains, Western China[J]. Journal of Geophysical Research: Earth Surface,2017, 122(3): 574-591.
|
96 |
JAFAROV E, PARSEKIAN A D, SCHAEFER K, et al. Estimating active layer thickness and volumetric water content from ground penetrating radar measurements in Barrow[J]. Alaska, Geoscience Data Journal, 2018, 4: 72-79.
|
97 |
GUSMEROLI A, LIU L, ZHANG T, et al. Active layer stratigraphy and organic layer thickness at a thermokarst site in Arctic Alaska identified using ground penetrating radar[J]. Arctic Antarctic and Alpine Research, 2015,47(2): 195-202.
|
98 |
CHEN A, PARSEKIAN A, SCHAEFER K, et al. Ground-penetrating radar-derived measurements of active-layer thickness on the landscape scale with sparse calibration at Toolik and Happy Valley, Alaska[J]. Geophysics, 2016,81(2): H1-H11.
|
99 |
KONG Ying. The change and carbon emission of permafrost over the Northern Hemisphere under 1.5 ℃ and2.0 ℃ warming[D]. Lanzhou: Lanzhou University, 2018.
|
|
孔莹. 1.5℃和2.0 ℃温升条件下北半球多年冻土的变化及其碳释放[D]. 兰州:兰州大学, 2018.
|
100 |
LIU Lin, SCHAEFER K, ZHANG Tingjun, et al. Estimating 1992-2000 average active layer thickness on the Alaskan North Slope from remotely sensed surface subsidence[J]. Journal of Geophysical Research: Earth Surface, 2012, 117(F1). DOI: 10.1029/2011JF002041.
doi: 10.1029/2011JF002041
|
101 |
ZHAO Rong. Permafrost deformation model establishment and active layer thickness inversion based on SBAS-InSAR [D]. Changsha: Central South University, 2014.
|
|
赵蓉. 基于SBAS-InSAR的冻土形变建模及活动层厚度反演研究[D]. 长沙:中南大学, 2014.
|
102 |
LI Zhiwei, ZHAO Rong, HU Jun, et al. InSAR analysis of surface deformation over permafrost to estimate active layer thickness based on one-dimensional heat transfer model of soils[J]. Scientific Reports, 2015, 5:15542.
|
103 |
ZHANG Xuefei, ZHANG Hong, WANG Chao, et al. Time-series InSAR monitoring of permafrost freeze-thaw seasonal displacement over Qinghai-Tibetan Plateau using Sentinel-1 data[J]. Remote Sensing, 2019, 11: 1000.
|
104 |
ZHAO Tao, ZHANG Mingyi, LU Jianguo, et al. Correlation between the ground surface deformation and influential factors in permafrost regions[J/OL]. Journal of Harbin Institute of Technology,2020. [2021-06-22]..
URL
|
|
赵韬,张明义,路建国,等. 多年冻土区地表变形与影响因素相关性分析[J/OL]. 哈尔滨工业大学学报,2020. [2021-06-22]. .
URL
|
105 |
PULLMAN E R, SHUR J Y. Thaw settlement in soils of the Arctic Coastal Plain, Alaska[J]. Arctic, Antarctic, and Alpine Research, 2007, 39(3):468-476.
|
106 |
ZHANG Zhengjia, WANG Mengmeng, WU Zhijie, et al. Permafrost deformation monitoring along the Qinghai-Tibet Plateau engineering corridor using InSAR observations with Multi-Sensor SAR datasets from 1997-2018[J]. Sensors, 2019, 19: 5306.
|
107 |
O'NEILL H B, SMITH S L, DUCHESNE C. Long-term permafrost degradation and thermokarst subsidence in the Mackenzie Delta Area indicated by thaw tube measurements[C]// International conference on cold regions engineering,Canadian permafrost conference, 2019.
|
108 |
STRELETSKIY D A, SHIKLOMANOV N I, LITTLE J D, et al. Thaw subsidence in undisturbed tundra landscapes, Barrow, Alaska, 1962-2015[J]. Permafrost & Periglacial Processes, 2017, 28(3):566-572.
|
109 |
GRUBER S. Ground subsidence and heave over permafrost: hourly time series reveal inter-annual, seasonal and shorter-term movement caused by freezing, thawing and water movement[Z]. 2019. DOI:10.5194/tc-2019-227.
doi: 10.5194/tc-2019-227
|