地球科学进展 ›› 2006, Vol. 21 ›› Issue (11): 1193 -1198. doi: 10.11867/j.issn.1001-8166.2006.11.1193

综述与评述 上一篇    下一篇

PS技术及其在地表形变监测中的应用现状与发展
傅文学 1,田庆久 1,郭小方 2,王黎明 3   
  1. 1.南京大学国际地球系统科学研究所, 江苏 南京 210039;2.中国国土资源航空物探遥感中心,北京 100083; 3.中国科学院中国遥感卫星地面站,北京 100086 
  • 收稿日期:2006-02-27 修回日期:2006-08-28 出版日期:2006-11-15
  • 通讯作者: 傅文学 E-mail:wxfu@163.com

The Permanent Scatterers Technique and Its Application to Monitoring Ground Deformation

Fu Wenxue 1,Tian Qingjiu 1,Guo Xiaofang 2,Wang Liming 3   

  1. 1.International Institute for Earth System Science, Nanjing University, Nanjing 210093, China;2. China Aero Geophysical Survey & Remote Sensing Center for Land and Resources, Beijing 100083, China;3.China Remote Sensing Satellite Ground Station, Beijing 100086, China
  • Received:2006-02-27 Revised:2006-08-28 Online:2006-11-15 Published:2006-11-15

合成孔径雷达干涉测量技术(InSAR)为地表形变监测提供了极具应用潜力的手段,具有大面积、高空间分辨率、全天候及成本低的优点。但由于大气条件变化、地表覆被等时间空间去相干的影响,其精度和普适性受到极大限制。 近几年发展的永久散射体(PS)技术在传统差分干涉测量(DInSAR)中引入时间维,分析长时间内保持稳定的像元集相位变化,获得毫米级的地表形变测量精度,同时有效地解决了时间空间去相关和大气非均质性影响的问题,目前在滑坡、地面沉降和地质灾害监测等领域得到了广泛的应用。PS技术具有高精度、高时间分辨率、能极大提高影像利用率的优点;但只适用较小区域、需要大量影像、且不适于分析快速突变的地表形变。为克服PS应用中的问题,近年来出现了三角反射体技术、多平台PS技术及相关性像元分析(CPT)技术,使PS技术应用具有更广泛的适应性。

The SAR Interferometry technique is an effective method for monitoring ground deformation and has been used widely. First of all, it has some advantages compared with the conventional approaches, such as covering large area, high spatial resolution and low cost. However, its accuracy and robust are reduced for atmosphere and land cover conditions. In recent years, the Permanent Scatterers technique has been developed, which can reduce the spatial and temporal decorrelation by using a time series of SAR images. At present, it has been used in monitoring landslide, subsidence and geological disaster widely. PS technique has more accuracy, higher temporal resolution and utilization efficiency compared with traditional DInSAR. However,with this technique some limitations should be noticed. For example, only small areas (less than 5 km×5 km large) could be processed, where there were too many images and only slow surface deformation phenomena could be detected. In recent years, some new approaches have been presented such as using corner reflectors, multi-plat PS technique and coherent pixel technique for improving PS technique. 

中图分类号: 

[1] Graham L C. Synthetic interferometer radar for topographic mapping [J]. Proceeding of IEEE, 1974, 62: 763-768.

[2] Massonnet D, Rossi M, Carmona C, et al. The displacement field of the Landers earthquake mapped by radar interferometry [J]. Nature, 1993, 364: 138-142.

[3] Zebker H A, Rosen P A, Goldstein R M, et al. On the derivation of coseismic displacement fields using differential radar interferometry: The Landers earthquake[J]. Journal of Geophysical Research, 1994, 99(19): 617-634.

[4] Strezzi T, Wegmüller U, Tosi L, et al. Land subsidence monitoring with differential SAR interferometry [J]. Photogrammetric Engineering & Remote Sensing, 2001, 67(11): 1 261-1 270.

[5] Tomás R, Márquez T, Juan M. Lopez-Sanchez, et al. Mapping ground subsidence induced by aquifer overexploitation using advanced differential SAR interferometry: Vega media of the Segura River(SE Spain) case study [J]. Remote Sensing of Environment, 2005, 98: 269-283.

[6] Raucoules D, Maisons C, Carnec C, et al. Monitoring of slow ground deformation by ERS radar interferometry on the Vauvert salt mine (France) Comparison with ground-based measurement[J]. Remote Sensing of Environment, 2003, 88: 468-478.

[7] Li T, Liu J, Liao M. Monitoring city subsidence by D-InSAR in Tianjin area [C]IGARSS'04, September, Alaska, 2004.

[8] Carnec C, Delacourt C. Three years of mining subsidence monitored by SAR interferometry, near Gardanne, France [J]. Journal of Applied Geophysics,2000,43:43-54.

[9] Webley P W, Bingley R M, Dodson A H, et al. Atmospheric water vapour correction to InSAR surface motion measurements on mountains: Results from a dense GPS network on Mount Etna[J]. Physics and Chemistry of the Earth, 2002,27:363-370.

[10] Janssen V, Ge L L, Rizos C. Tropospheric corrections to SAR interferometry from GPS observations[J]. GPS Solutions, 2004, 8: 140-151.

[11] Li Z H, Muller J P, Cross P. Tropospheric correction techniques in repeat-pass SAR interferometry [J]. FRINGE 2003 workshop, ESA ESRIN, Frascati, Italy, December: 1/5,2003.

[12] Ferretti A, Prati C, Rocca F. Permanent scatterers in SAR interferometry [C]. IGARSS'99, 1999, 2: 1 528-1 530.

[13] Ferretti A, Prati C, Rocca F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry [J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5): 2 202-2 212.

[14] Ferretti A, Prati C, Rocca F. Permanent scatterers in SAR interferometry [J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(1): 8-20.

[15] Ferretti A, Prati C, Rocca F. Multibaseline InSAR DEM reconstruction: The wavelet approach [J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(2): 705-715.

[16] Adam N, Kampes B, Eineder M. The development of a scientific permanent scatterer system [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2003.

[17] Bürgmann R, Schmidt D, Nadeau R M, et al. Earthquake potential along the Northern Hayward fault, California [J]. Science, 2000, 289: 1 178-1 182.

[18] Colesanti C, Ferretti A, Novali F, et al. SAR monitoring of progressive and seasonal ground deformation using the permanent scatterers thechnique [J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(7): 1 685-1 701.

[19] Hilley G E, Bürgmann R, Ferretti A, et al. Dynamics of slow-moving landslides from permanent scatterer analysis [J]. Science, 2004, 304: 1 952-1 955.

[20] Ferretti A, Ferrucci F, Prati C, et al. SAR analysis of building collapse by means of the permanent scatterers technique [C]IGARSS'2000, 2000, 7:3 219-3 221.

[21] Ketelaar V B H, Hanssen R F. Separation of different deformation regimes using PS-InSAR data [C]. Proceedings of FRINGE 2003, Frascati (Italy), 2003:1-5.

[22] Hahn Chul, Jung, Kyung-Duck Min. Observing coal mining subsidence from JERS-1 permanent scatterer analysis [C]IGARSS'05, 2005, 7:4 578-4 581.

[23] Colesanti C, Mouelic S L, Bennani M, et al. Detection of mining related ground instabilities using the Permanent Scatterers technique—A case study in the east of France [J]. International Journal of Remote Sensing, 2005, 26(1): 201-207.

[24] Hanssen R F. Subsidence monitoring using contiguous and PS-InSAR: Quality assessment based on precision and reliability [C]. Proceedings, 11th FIG Symposium on Deformation Measurements, Santorini, Greece, 2003.

[25] Colesanti C, Ferretti A, Prati C, et al. Monitoring landslides and tectonic motions with the permanent scatterers technique [J]. Engineering Geology, 2003, 68: 3-14.

[26] Allievi J, Ambrosi C, Ceriani M, et al. Monitoring slow mass movements with the Permanent Scatterers technique [C]IGARSS'03, 2003, 1: 215-217.

[27] Xia Y. InSAR activities in central Asia using mobile SAR receiving station[C]IGARSS'01, 2001: 407-409.

[28] Xia Y, Kaufmann H, Guo X. Differential SAR interferometry using corner reflectors[C]IGARSS'02, 2002, 2:1 243-1 246.

[29] Robertson S D. Targets for microwave radar navigation [J]. Bell System Technical Journal, 1947, 26: 329-335.

[30] Colesanti C, Ferretti A, Locatelli R, et al. Multi-platform permanent scatterers analysis: First results [J]. 2nd GRSS/ISPRS Joint Workshop on "Data Fusion and Remote Sensing over Urban Areas", 2003: 52-56.

[31] Colesanti C, Ferretti A, Locatelli R, et al. Permanent scatterers: precision assessment and multi-platform analysis [C]IGARSS'03, 2003, 2:1 193-1 195.

[32] Colesanti C, Ferretti A, Prati C, et al. ERS-ENVISAT Permanent Scatterers Interferometry[C]IGARSS'03, 2003, 2:1 130-1 132.

[33] Perissin D, Prati C, Rocca F, et al. ERS-ENVISAT Permanent Scatterers [C]IGARSS'04, 2004, 2: 985-988.

[34] Arrigoni M, Colesanti C, Ferretti A, et al. Identification of the location phase screen of ERS-ENVISAT permanent scatterers[C]Proceedings of FRINGE 2003, Frascati (Italy), 1-5 December 2003, ESA SP-550, January 2004.

[35] Mora O, Mallorqu J J, Duro J, et al. Long-term subsidence monitoring of urban areas using differential interferometric SAR techniques[C]IGARSS'01, 2001, 3: 1 104-1 106.

[36] Berardino P, Fornaro G, Lanari R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11): 2 375-2 383.

[37] Mallorqui J J, Mora O, Blanco P, et al. Linear and non-linear long-term terrain deformation with D-InSAR (CPT: Coherent Pixels Technique)[C]Proceedings Fringe, 2003.

[38] Mora O, Mallorqui J J, Broquetas A. Linear and nonlinear terrain deformation maps from a reduced set of interferometric SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(10): 2 243-2 253.

 

[1] 贾诗超,张廷军,范成彦,刘琳,邵婉婉. InSAR技术多年冻土研究进展[J]. 地球科学进展, 2021, 36(7): 694-711.
[2] 李德仁. 对地观测与地理信息系统[J]. 地球科学进展, 2001, 16(5): 689-693.
[3] 刘国祥,丁晓利,陈永奇,李志林,郑大伟. 极具潜力的空间对地观测新技术——合成孔径雷达干涉[J]. 地球科学进展, 2000, 15(6): 734-740.
阅读次数
全文


摘要