地球科学进展 ›› 2009, Vol. 24 ›› Issue (9): 963 -972. doi: 10.11867/j.issn.1001-8166.2009.09.0963

综述与评述 上一篇    下一篇

冻土遥感研究进展——可见光、红外及主动微波卫星遥感方法
 张廷军 1,2,晋  锐 3,高 峰 4   
  1. 1.中国科学院寒区旱区环境与工程研究所国家重点实验室,甘肃  兰州  730000;
    2. 美国雪冰数据中心,科罗拉多大学环境科学合作研究所,科罗拉多州  博尔德市  80309-0449;
    3. 中国科学院寒区旱区环境与工程研究所,甘肃  兰州  730000;4. 中国科学院国家科学图书馆兰州分馆,甘肃  兰州  730000
  • 收稿日期:2009-05-27 修回日期:2009-08-10 出版日期:2009-09-10
  • 通讯作者: 张廷军 E-mail:tzhang@nsidc.org
  • 基金资助:

    公益性行业(气象)科研专项经费项目“中国冰冻圈卫星监测关键技术研究及系统开发”(编号:GYHY(QX)2007-6-18);美国航空航天局(U.S. NASA项目NAG5-13721及NNXØ6AE65G);美国阿拉斯加大学极地研究中心(U.S. NSF项目OPP-0328664)联合资助.

Overview of the Satellite Remote Sensing of Frozen Ground: Visible-thermal Infrared and Radar Sensor

Zhang Tingjun 1,2, Jin Rui 3, Gao Feng 4   

  1. 1.State key Laboratory of Frozen Soil Engineering, Cold and Arid Regions Enviromental and Engineering Research Institute, CAS,Lanzhou  730000,China;
    2.National Snow and Ice Data Center, Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder  80303-0449, USA;
    3.Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou  730000, China; 4.Lanzhou Branch of the National Science Library, Chinese Academy of Sciences, Lanzhou  730000, China
  • Received:2009-05-27 Revised:2009-08-10 Online:2009-09-10 Published:2009-09-10

多年冻土和季节冻土分别占北半球裸露地表的24% 和55%。近地表土壤冻融的范围、冻结起始日期、持续时间及冻融深度对寒季/寒区的植被生长、大气与土壤间能量、水分及温室气体交换都具有极其重要的影响。卫星遥感结合地面观测资料研究局地到区域尺度的季节冻土和多年冻土已取得诸多成果。综述了近几十年来卫星遥感技术在冻土研究中的应用。监测多年冻土和地表冻融循环通常需要综合利用可见光、红外、被动微波及主动微波(包括合成孔径雷达SAR和散射计)遥感数据,任何单一波段的传感器都无法满足研究需求。SAR图像能提供空间分辨率较高的寒季/寒区近地表土壤冻融状态的起始日期、持续时间和区域演变等信息,但目前在轨SAR的重访周期相对于春秋季的土壤冻融循环变化过长;星载被动微波传感器具有多通道观测且重访周期较高,但空间分辨率很低的特点;光学和热红外传感器的时空分辨率介于SAR和被动微波遥感之间,但应用于冻土研究时需要具备多年冻土分布和冻融深度与环境因子相关关系的先验信息。总体而言,微波遥感是探测无雪覆盖近地表土壤冻融循环的有效技术手段,而利用热红外传感器反演的地表温度研究土壤冻融过程具有极大潜力。应用卫星遥感反演的积雪范围、雪深、融雪、地表类型、归一化差值植被指数、地表反照率和土壤水分等参数对研究局地、区域乃至全球尺度的冻土都大有裨益。

Permafrost and seasonally frozen ground regions occupy approximately 24% and 55%, respectively, of the exposed land surface in the Northern Hemisphere. The areal extent, timing, duration, and depth of the near-surface freeze/thaw soil have a significant impact on the plant growth, energy, water and trace gas exchanges between the atmosphere and the soils in cold seasons and cold regions. Satellite remote sensing combined with ground “truth” measurements have been used to investigate seasonally frozen ground and permafrost at local to regional scales with some successes. The objective of this paper is to provide an overview of satellite remote sensing techniques applied to study seasonally frozen ground and permafrost over the last few decades. Remote sensing of permafrost terrain and surface freeze/thaw cycles typically uses a combination of data in optical-thermal wave-lengths, passive microwave sensing, and active microwave remote sensing (including the scatterometer and Synthetic Aperture Radar). Any single sensor is not capable of providing the range of observations needed. SAR imaging provides information on the timing, duration, and regional progression of the near-surface soil freeze/thaw status in cold seasons/regions with a relatively high spatial resolution, but the revisiting period of existing satellites are relatively longer compared to the soil freeze/thaw cycle in fall and spring. Spaceborne passive microwave sensors offer more frequent coverage at several wavelengths, but with substantially lower spatial resolution. The optical-thermal sensors provide a compromise in spatial resolution and temporal sampling between SAR and passive microwave satellites, but a prior relationship between permafrost (and freeze/thaw depth) and corresponding environmental factors needs to be provided. Overall, microwave remote sensing is a promising technique to detect the near-surface soil freeze/thaw cycles over snow-free land. The potential of using land surface temperature derived from the thermal-infrared sensors to study soil freezing and thawing processes is marked. Satellite remote sensing data products, such as snow cover extent, snow depth, snowmelt, land surface type, Normalized Difference Vegetation Index (NDVI), surface albedo and soil moisture, can be very helpful for the frozen ground researches at local, regional, and global scales.

中图分类号: 

[1] Zhang T, Barry R G, Knowles K, et al. Statistics and characteristics of permafrost and ground ice distribution in the Northern Hemisphere[J].Polar Geography,1999, 23(2):132-154.
[2] Zhang T, Heginbottom J A, Barry R G, et al. Further statistics on the distribution of permafrost and ground ice in the Northern Hemisphere[J].Polar Geography, 2000, 24(2):126-131.
[3] Zhang T, Barry R G, Knowles K, et al. Distribution of seasonally and perennially frozen ground in the Northern Hemisphere[C]//Proceedings of the 8th International Conference on Permafrost.2003,2:1 289-1 294.
[4] Viterbo P, Beljaars A, Mahfouf J F, et al. The representation of soil moisture freezing and its impacts on the stable boundary layer[J].Quarterly Journal of the Royal Meteorological Society,1999, 125: 2 401-2 426.
[5] Williams P J, Smith M W. The Frozen Earth, Fundamentals of Geocryology[M].Cambridge: Cambridge University Press, 1989.
[6] Oechel W C, Hastings S J, Vourlitis G, et al. Recent change of Arctic tundra ecosystems from a net carbon dioxide sink to a source[J].Nature,1993, 361: 520-523.
[7] Oechel W C, Vourlitis G L, Hastings S J, et al. Acclimation of ecosystem CO2 exchange in the Alaskan Arctic in response to decadal climate warming[J].Nature,2000, 406: 978-981.
[8] Skogland T, Lomeland S, Goksoyr J. Respiratory burst after freezing and thawing of soil: Experiments with soil bacteria[J].Soil Biology and Biochemistry,1988, 20: 851-856.
[9] Sommerfeld R A, Moisier A R, Musselman R C. CO2, CH4, N2O flux through a Wyoming snowpack and implication for global budgets[J].Nature,1993, 361: 140-142.
[10] Frolking S, Goulden M L, Wofsy S C, et al. Modeling temporal variability in the carbon balance of a spruce/moss boreal forest[J].Global Change Biology,1996, 2(4): 343-366.
[11] Sharratt B S, Radke J K, Hinzman L D, et al. Physics, chemistry, and ecology of frozen soils in managed ecosystems: An introduction[C]//Proceedings of International Symposium on Physics, Chemistry, and Ecology of Seasonally Frozen Soils. CRREL Special Report, 1997.
[12] Maxwell B. Arctic climate: Potential for change under global warming[C]//Arctic Ecosystems in a Changing Climate.New York: Academic Press,1992.
[13] Anisimov O A, Nelson F E. Permafrost distribution in the Northern Hemisphere under scenarios of climatic change[J].Global and Planetary Change,1996, 14: 59-72.
[14] Lachenbruch A H, Marshall B V. Changing climate: Geothermal evidence from permafrost in the Alaskan Arctic[J].Science, 1986, 234: 689-696.
[15] Lachenbruch A H, Cladouhos T T, Saltus R W. Permafrost temperature and the changing climate[C]//Proceedings of the 5th International Conference on Permafrost.1988.
[16] Osterkamp T E. Evidence for warming and thawing of discontinuous permafrost in Alaska[J].EOS Transactions, American Geophysical Union,1994, 75(44): 85.
[17] Nelson F E, Lachenbruch A H, Wo M K, et al. Permafrost and climate change[C]//Proceedings of the 6th International Conference on Permafrost.1993, 2: 987-1 005.
[18] Ferrians O J, Hobson G D. Mapping and predicting permafrost in North America: A review,1963-1973[C]//Proceedings of the 2nd International Conference on Permafrost.1973:479-498.
[19] Brown R J E, Pewe T L. Distribution of permafrost in North America and its relationship to the environment: A review, 1963-1973[C]//Proceedings of the Second International Conference on Permafrost.1973: 71-100.
[20] Yershov E D. General Geocryology[M].Cambridge: Cambridge University Press, 1998.
[21] Zhou Youwu, Guo Dongxin, Qiu Guoqing, et al. Geocryology in China[M]. Beijing: Science Press,2000.[周幼吾, 郭东信, 邱国庆,等.中国冻土[M]. 北京: 科学出版社, 2000.]
[22] Lindsay J D, Odynsky W. Permafrost in organic soils of northern Alberta[J].Canadian Journal of Soil Science,1965, 45: 265-269.
[23] Brown J, Johnson P L. Pedoecological Investigations, Barrow, Alaska[R].CRREL Technical Report No.159,1965:32.
[24] McMichael C E, Hope A S, Stow D A, et al. The relation between active layer depth and a special vegetation index in arctic tundra landscapes of the North Slope of Alaska[J].International Journal of Remote Sensing,1997, 18(11): 2 371-2 382.
[25] Zhang T, Osterkamp T E, Stamnes K. Effects of climate on the active layer and permafrost on the North Slope of Alaska, USA[J].Permafrost and Periglacial Processes,1997, 8: 45-67.
[26] Zhang T. Influence of the seasonal snow cover on the ground thermal regime: An overview[J].Reviews of Geophysics,2005, 43, RG4002, doi:10.1029/2004RG000157.
[27] Haeberli W. Die Basis-Temperatur der winterlichen Schneedecke als moglicher Indikator fur die Verbreitung von Permafrost in den Alpen[J].Zeitshrift fur Gletscherkunde und Glazialgeologie,1973, 9: 221-227.
[28] Smith M W. Microclimate influences on ground temperature and permafrost distribution, Machenzie Delta, Northwest Territories[J].Canadian Journal of Earth Sciences,1975,12: 1 421-1 438.
[29] Zhang Tingjun, Tong Boliang, Li Shude. Influence of snow cover on the lower limit of permafrost in Altai Mountains[J].Journal of Glaciology and Geocryology,1985, 7(1): 57-63.[张廷军, 童伯良, 李树德.我国阿尔泰山地区雪盖对多年冻土下界的影响[J]. 冰川冻土, 1985, 7(1): 57-63.]
[30] Morrissey L A, Strong L L. Mapping permafrost in the boreal forest with thematic mapper satellite data[J].Photogrammetric Engineering and Remote Sensing,1986, 52(9): 1 513-1 520.
[31] Peddle D R, Franklin S E. Classification of permafrost active layer depth from remotely sensed and topographic evidence[J]. Remote Sensing of Environments,1993, 44: 67-80.
[32] Henderson J D. Permafrost mapping along transportation Corridors[C]//Proceedings of a Symposium on permafrost, Geophysics (No. 5), Technical Memorandum No. 128, 1978.
[33] Gaydos L, Witmer R E. Mapping of arctic land cover utilizing LANDSAT digital data[C]//Proceedings of the 4th International Conference on Permafrost.1983,1: 343-346.
[34] Morrissey L A. Predicting the occurrence of permafrost in the Alaskan discontinuous zone with satellite data[C]//Proceedings of the 5th International Conference on Permafrost.Trondheim:Tapir Publishers, Norway,1988,1: 213-217.
[35] Peddle D R, Franklin S E. Multisource evidential classification of surface cover and frozen ground[J].International Journal of Remote Sensing,1992,13(17): 3 375-3 380.
[36] Leverington D W, Duguay C R. Evaluation of three supervised classifiers in mapping “depth to late-summer frozen ground” Central Yukon Territory[J].Canadian Journal of Remote Sensing,1996, 22(2): 163-174.
[37] Haugen R K, McKim H L, Gatto L W, et al. Cold regions environmental analysis based on ERTS-1 imagery[C]//Proceedings of the Eighth International Symposium on Remote Sensing of Environment. 1972.
[38] Anderson D M, Crowder W K, Gatto L W, et al. ERTS View of Alaska, a Regional Analysis of Earth and Water Resources Based on Satellite Imagery[R].US Army Cold Regions Research and Engineering Laboratory, CRREL Technical Report, 1973, TR 241:101.
[39] Anderson D M, McKim H L, Crowder W K, et al.Applications of ERTS-1 imagery to terrestrial and marine environmental analyses in Alaska[C]//Proceedings of the 3rd Earth Resources Technology Satellite-1 Symposium.1994, 1(B): 1 575-1 606.
[40] Duguay C R, Peddle D R. Comparison of evidential reasoning and neural network approaches in a multi-source classification of alpine tundra vegetation[J].Canadian Journal of Remote Sensing,1996, 22(4): 433-440.
[41] Peddle D R. An empirical comparison of evidential reasoning, linear discriminant analysis, and maximum likelihood algorithms for alpine land cover classification[J].Canadian Journal of Remote Sensing,1993, 19(1): 31-44.
[42] Peddle D R, Foody G M, Zhang Airong, et al. Multi-source image classification II: An empirical comparison of evidential reasoning and neural network approaches[J].Canadian Journal of Remote Sensing,1994, 20(4): 396-407.
[43] Beaubian J. Landsat TM satellite images of forests: From enhancement to classification[J].Canadian Journal of Remote Sensing,1994, 20(1):17-26.
[44] Wan Z, Zhang Y, Zhang Q, et al. Validation of the land-surface temperature products retrieved from Terra Moderate Resolution Imaging Spectroradiometer data[J].Remote Sensing of Environment,2002, 83: 163-180.
[45] Duguay C R, Romanovsky V, Fikuda M,et al. The potential of NOAA AVHRR brightness temperature time series for permafrost monitoring on the North Slope of Alaska, USA[C]//Proceedings of the 30th International Symposium on Remote Sensing of Environment. 2003.
[46] Hachem S, Duguay C R, Romanovsky V, et al. Evaluation of the MODIS Land Surface Temperature Daily Global 1-km Product in Permafrost Areas of Northern Canada and Alaska[R].Permafrost Modeling Workshop, 2004.
[47] Elachi C. Introduction to the Physics and Techniques of Remote Sensing[M]. New York:John Wiley & Sons,1987:413.
[48] Kraszewski A, ed. Electromagnetic Wave Interaction with Water-Containing Materials\[M\].Piscataway N J: IEEE Press, 1996:484.
[49] Running S W, Way J B, McDonald K C, et al. Radar remote sensing proposed for monitoring freeze-thaw transitions in Boreal Regions[J].EOS Transactions, American Geophysical Union,1999,80(19): 213-221.
[50] Way J B, Rignot E, Oren R, et al. Evaluating the type and state of Alaska taiga forests with imaging radar to use in ecosystem flux models[J].IEEE Transaction on Geoscience and Remote Sensing,1994, 32: 353-370.
[51] Way J B, Zimmermann R, Rignot E, et al. Winter and spring thaw as observed with imaging radar at BOREAS[J].Journal of Geophysical Research,1997, 102: 29 673-29 684.
[52] Frolking S, McDonald K C, Kimball J S, et al. Using the space-borne NASA scatterometer (NSCAT) to determine the frozen and thawed seasons of a boreal landscape[J].Journal of Geophysical Research,1999, 104(D22):27 895-27 908.
[53] Ulaby F T, Moore R K, Fung A K.Microwave Remote Sensing: Active and Passive[M]. Addison-Wesley,1981:186-255.
[54] Wegmuller U. The effect of freezing and thawing on the microwave signatures of bare soil[J].Remote Sensing of Environments, 1990, 33:123-135.
[55] Wegmuller U, Matzler C, Schanda E. Microwave signatures of bare soil[J].Advance in Space Research,1989, 9(1): 307-316.[56] Way J B, Paris J, Kasischke E, et al. The effect of changing environmental conditions on microwave signatures of forest ecosystems: Preliminary results of the March 1988 Alaskan aircraft SAR experiment[J].International Journal of Remote Sensing, 1990, 11(7): 1 119-1 144
[57] Rignot E, Way J B, McDonald K, et al. Monitoring of environmental conditions in Taiga Forests using ERS-1 SAR[J].Remote Sensing of Environments,1994, 49: 145-154.
[58] Boehnke K, Wisemann V R. ERS scatterometer land application: detecting the thawing of soils in Siberia[J].Earth Observation Quarterly, ESA Publication Division,1996,52: 4-7.
[59] Boehnke K, Wisemann V R. Thawing of soils in Siberia observed by the ERS-1 scatterometer between 1992 and 1995[C]//Proceeding of International Geoscience and Remote Sensing Symposium.1996: 2 264-2 266.
[60] Boehnke K. Detecting soil thawing in Siberia with ERS scatterometer and SAR[C]//Proceeding of 3rd ERS Symposium. vol. I, ESA SP-414, 1997: 35-40.
[61] Boehnke K.Thawing processes during Siberian spring observed by ERS scatterometer and SAR[C]//Proceeding of International Geoscience and Remote Sensing Symposium.1997:1 826-1 828.
[62] Wisemann V. Monitoring of seasonal thawing in Siberia with ERS scatterometer data[J].IEEE Transactions on Geoscience and remote Sensing,2000, 38(4): 1 804-1 809.
[63] Kimball J S, McDonald K C, Keyser A R, et al. Application of the NASA scatterometer (NSCAT) for determining the daily frozen and nonfrozen landscape of Alaska[J].Remote Sensing of Environment,2001, 75(1): 113-126.
[64] McDonald K C, Kimball J, Zimmermann R, et al. Application of spaceborne scatterometery to monitoring seasonal dynamics in boreal ecosystems at regional scales[C]//EOS Transactions, American Geophysical Union. The 2000 Fall Meeting, San Francisco,December 13~19,2000.
[65] Kimball J S, McDonald K C, Running S W, et al. Satellite radar remote sensing of seasonal growing seasons for boreal and subalpine evergreen forests[J].Remote Sensing of Environment,2004, 90: 243-258.
[66] Wang Z J, Li S S. Thaw Deformation of Permafrost Active Layer Near Toolik Lake, Alaska, Imaged by DINSAR Technique During Summer Time[R].AGU Fall Meeting, 1999.
[67] Cline D, Davis R E, Edelstein W, et al. Cold land Processes Mission (EX-7) Science and Technology Implementation Plan[R]. Report on the NASA Post-2002 Land Surface Hydrology Planning Workshop, Irvine, CA, April 12~14, 1999:29.

[1] 兰爱玉, 林战举, 范星文, 姚苗苗. 青藏高原北麓河多年冻土区阴阳坡地表能量和浅层土壤温湿度差异研究[J]. 地球科学进展, 2021, 36(9): 962-979.
[2] 贾诗超,张廷军,范成彦,刘琳,邵婉婉. InSAR技术多年冻土研究进展[J]. 地球科学进展, 2021, 36(7): 694-711.
[3] 李欣泽, 金会军, 吴青柏, 魏彦京, 温智. 北极多年冻土区埋地输气管道周边温度场数值分析[J]. 地球科学进展, 2021, 36(1): 69-82.
[4] 李欣泽,金会军,吴青柏. 多年冻土区天然气管道压气站失效情境下应对方案研究[J]. 地球科学进展, 2020, 35(11): 1127-1136.
[5] 李欣泽,金会军. 多年冻土区天然气管道工程:技术挑战和应对方案[J]. 地球科学进展, 2019, 34(11): 1131-1140.
[6] 冉有华,李新. 中国多年冻土制图:进展、挑战与机遇[J]. 地球科学进展, 2019, 34(10): 1015-1027.
[7] 孙志忠, 马巍, 穆彦虎, 刘永智, 张淑娟, 王宏磊. 青藏铁路沿线天然场地多年冻土变化[J]. 地球科学进展, 2018, 33(3): 248-256.
[8] 令锋, 张廷军. 热卡斯特湖对多年冻土热状况长期作用的数值模拟研究进展[J]. 地球科学进展, 2018, 33(2): 115-130.
[9] 彭小清,张廷军,潘小多,王庆峰,钟歆钥,王康,牟翠翠. 祁连山区黑河流域季节冻土时空变化研究[J]. 地球科学进展, 2013, 28(4): 497-508.
[10] 宋平, 刘元波, 刘燕春. 陆地水体参数的卫星遥感反演研究进展[J]. 地球科学进展, 2011, 26(7): 731-740.
[11] 文军,蓝永超,苏中波,田辉,史小康,张宇,王欣,刘蓉,张堂堂,康悦,吕少宁,张静辉. 黄河源区陆面过程观测和模拟研究进展[J]. 地球科学进展, 2011, 26(6): 575-586.
[12] 丛丕福,曲丽梅,韩庚辰,杨新梅,王臣立. 辽东湾海水透明度的遥感估算模型[J]. 地球科学进展, 2011, 26(3): 295-299.
[13] 卢善龙,吴炳方,闫娜娜,李发鹏,文美平,王京. 河川径流遥感监测研究进展[J]. 地球科学进展, 2010, 25(8): 820-826.
[14] 徐春亮,陈彦,贾明权,刘增灿,卢海平,童玲. 典型地物后向散射特性的测量与分析[J]. 地球科学进展, 2009, 24(7): 810-816.
[15] 冉有华,李新,王维真,晋 锐. 黑河流域临泽盐碱化草地网格尺度多层土壤水分时空稳定性分析[J]. 地球科学进展, 2009, 24(7): 817-824.
阅读次数
全文


摘要