地球科学进展 ›› 2013, Vol. 28 ›› Issue (4): 497 -508. doi: 10.11867/j.issn.1001-8166.2013.04.0497

研究论文 上一篇    下一篇

祁连山区黑河流域季节冻土时空变化研究
彭小清 1,张廷军 2,3*,潘小多 1,王庆峰 1,钟歆钥 1,王康 2,牟翠翠 1   
  1. 1.中国科学院寒区旱区环境与工程研究所,冻土工程国家重点实验室,甘肃兰州730000;2.兰州大学资源环境学院,甘肃兰州730000;3.美国科罗拉多大学国家冰雪数据中心,科罗拉多博尔德80309
  • 收稿日期:2012-12-18 修回日期:2013-02-28 出版日期:2013-04-10
  • 通讯作者: 张廷军(1957-),男,甘肃庆阳人,教授,主要从事冻土研究. E-mail:tjzhang@lzu.edu.cn
  • 基金资助:

    国家自然科学基金重大研究计划“黑河流域冻土特征及其对生态—水文过程的影响”(编号:Y02C671001);冻土工程国家重点实验室自主项目“中国西部山地冻土研究——以黑河地区为例”(编号:SKLFSE-ZY-06)资助.

Spatial and Temporal Variations of Seasonally Frozen Ground over the Heihe River Basin of Qilian Mountain in Western China

Peng Xiaoqing 1, Zhang Tingjun 2,3, Pan Xiaoduo 1, Wang Qingfeng 1, Zhong Xinyue 1, Wang Kang 2, Mu Cuicui 1   

  1. 1.State Key Laboratory of Frozen Soil Engineering, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou730000, China;
    2.College of Earth and Environmental Sciences, Lanzhou University, Lanzhou730000, China;
    3. National Snow and Ice Data Center, Cooperative Institute for Research in Environmental Sciences University of Colorado, Boulder,  80309, USA
  • Received:2012-12-18 Revised:2013-02-28 Online:2013-04-10 Published:2013-04-10

季节冻土的时空变化对地—气水热交换、地表能量平衡、地表水文过程、生态系统及碳循环等有着非常重要的影响。利用黑河流域11个气象站40多年的气温数据和5 cm深度处的土壤温度数据,建立了月平均气温与土壤冻结天数之间的关系。同时应用月平均气温与冻结天数的相关关系和5 km网格化月平均气温及30 m分辨率的DEM数据,编制了黑河流域逐月季节冻土分布图,并按其空间分布特征,将逐月地表冻融状态划分为:完全冻结、不完全冻结和不冻结3种。系统研究了黑河流域2000—2009年逐月季节冻土分布及冻结概率的时空变化特征。在季节分配上,黑河流域完全冻结面积最大值出现在1月;不完全冻结面积最大值在11月;而不冻结面积最大值在6月和7月。在年际变化上,完全冻结状态的离差值在冷季变化大,暖季变化小;不完全冻结状态在一年的回暖期和降温初期,年际变化较大;不冻结状态分别在4月和10月变化较大。冻结概率在1月达到最大值,6月和7月降低到最小值。在空间分布上,黑河流域季节冻土的逐月分布与变化和冻结概率主要受海拔高度控制,纬度的影响次之。

Spatial and temporal variations of seasonally frozen ground extent have important impacts on carbon exchange between the atmosphere and the land surface, surface energy balance, hydrologic cycle, and ecosystems as a whole. By using air temperature and soil temperature at 5 cm depth from 11 meteorological stations for more than 40 years, we established a relationship between mean monthly air temperature and numbers of frozen days within the month. Based on this relationship, grid air temperature data with a resolution of 5 kilometers, and 30m-DEM data, we mapped the monthly seasonally frozen ground distribution over the Heihe River Basin, and three different types of freezing/thawing status can be divided by using the spatial characteristics : complete frozen, incomplete frozen, and not frozen. The results indicate that the maximum area of three different types of soil freezethaw status occur in January, November, and June or July respectively. Over the study period from 2000 through 2009, interannual variations of the complete frozen area extent is large in cold season, vice versa in warm season; there is a huge change in the warmer and catathermal period for incomplete frozen area extent; not frozen area extent has a huge variation in April and October. The maximum of freezing probability occurs in January, while the minimum of probability occurs between June and July. To the spatial perspective, distribution and variation of monthly seasonally frozen ground and freezing probability are mainly controlled by elevation, following by latitude over the Heihe River Basin.

中图分类号: 

[1]Zhang T, Barry R G, Knowles K, et al. Statistics and characteristics of permafrost and ground ice distribution in Northern Hemisphere[J]. Polar Geography, 1999, 23(2): 132-154.

[2]Zhang T, Barry R G, Knowles K, et al. Distribution of seasonally and perennially frozen ground in the Northern Hemisphere[C]∥ Phillips M, Springman S M,  Arenson L U,eds. Proceedings of the 8th International Conference on Permafrost. Zurich: A. A. Balkema Publishers,2003.

[3]Zhou Youwu, Guo Dongxin, Qiu Guoqing, et al. Geocryology in China[M]. Beijing: Science Press, 2000:309-326.[周幼吾,郭东信,邱国庆,等.中国冻土[M]. 北京:科学出版社, 2000:309-326.]

[4]Cheng Guodong, Wang Shaoling. On the zonation of high-altitude permafrost in China[J].Journal of Glaciology and Geocryology, 1982, 4(2): 1-16.[程国栋, 王绍令. 试论中国高海拔多年冻土带的划分[J]. 冰川冻土, 1982, 4(2): 1-16.]

[5]Brown R J E. Permafrost in Canada: Its Influence on Northern Development[M]. Toronto: University of Toronto Press, 1970.

[6]Zhang Tingjun, Barry Roger G,Armstrong Richard L. Application of satellite remote sensing techniques to frozen ground studies[J]. Polar Geography, 2004, 28(3): 163-196.

[7]Zhang T, Barry R G, Knowles K, et al. Statistics and characteristics of permafrost and ground-ice distribution in the Northern Hemisphere[J]. Polar Geography, 2008, 31(1): 47-68.

[8]Cary J W, Campbell G S, Papendick R I. Is the soil frozen? An algorithm using weather record[J].Water Resources Research,1978,14(6):1 117-1 122.

[9]Frauenfeld O W, Zhang Tingjun, McCreight J L. Northern hemisphere freezing/thawing index variarions over the twentieth century[J]. International Journal of Climatology, 2007, 27: 47-63.

[10]Zhang Tingjun, Jin Rui, Gao Feng. Overview of the satellite remote sensing of frozen ground: Passive microwave sensors[J].Advances in Earth Science, 2009, 24(10): 1 073-1 083.[张廷军,晋锐, 高峰. 冻土遥感研究进展:被动微波遥感[J].地球科学进展,2009, 24(10): 1 073-1 083.]

[11]Zhang T, Armstrong R L. Soil freeze/thaw cycles over snow free land detected by passive microwave remote sensing[J]. Geophysical Research Letters, 2001, 28(5): 763-766.

[12]Christoph Oelke, Zhang Tingjun, Serreze Mark C, et al. Regional-scale modeling of soil freeze/thaw over Arctic drainage basin[J]. Journal of Geophysical Research,2003,108(D10): 4314, doi: 10.1029/2002JD002722.

[13]McGuire A D, Apps M, Chapin F S, et al. Land cover and land use change in Alaska and Canada[C]∥Land Change Science: Observing, Monitoring, and Understanding Trajectories of Change on the Earth’s Surface. Dordrecht: Kluuer Academic Publishers,2005.

[14]Jin Rui, Li Xin, Che Tao. A decision tree algorithm for surface freeze/thaw classification using SSM/I[J]. Journal of Remote Sensing, 2009, 13(1): 152-161.[晋锐, 李新,车涛. SSM/I监测地表冻融的决策树算法[J].遥感学报, 2009, 13(1): 152-161.]

[15]Youngwook Kim, Kimball J S, McDonald K C, et al. Developing a global data record of daily landscape freeze/thaw status using satellite passive microwave remote sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(3): 949-960.

[16]Zhang Tingjun, Jin Rui, Gao Feng. Overview of the satellite remote sensing of frozen ground: Visible-thermal infrared and radar sensor[J]. Advances in Earth Science, 2009, 24(9): 963-972.[张廷军,晋锐,高峰. 冻土遥感研究进展——可见光、红外及主动微波卫星遥感方法[J]. 地球科学进展,2009,24(9):963-972.]

[17]Ma Mingguo, Jiao Yuanmei, Wang Xuemei, et al. TM/ETM+ mosaic image processing and application in the Heihe River Basin [J]. Journal of Glaciology and Geocryology, 2002, 24(4): 452-456.[马明国, 角媛梅, 王雪梅,等. 黑河流域TM/ETM+影像数字镶嵌图的制作与应用研究[J]. 冰川冻土, 2002, 24(4): 452-456.]

[18]Zhao Jing. Terrestrial Water Cycle Scheme in Heihe River Basin and Its Responses to Human Activities[D].Beijing: China University of Geosciences,2010.[赵静. 黑河流域陆地水循环模式及其对人类活动的响应研究[D]. 北京:中国地质大学, 2010.]

[19]Lu Ling, Li Xin, Cheng Guodong. Analysis on the seasonal phenological characteristics of the Heihe River Basin with AVHRR NDVI data set[J]. Journal of Desert Research, 2002, 22(2): 187-191.[卢玲, 李新, 程国栋. 利用NOAA AVHRR植被指数数据分析黑河流域季候特征[J].中国沙漠, 2002, 22(2): 187-191.]

[20]Cao Ling, Dou Yongxiang, Zhang Deyu. Effect of climate change on ecological environment of Heihe field[J]. Arid Meteorology, 2003, 21(4): 45-49.[曹玲, 窦永祥, 张德玉. 气候变化对黑河流域生态环境的影响[J]. 干旱气象, 2003, 21(4): 45- 49.]

[21]Pan Xiaoduo, Li Xin. Validation of WRF model on simulating forcing data for Heihe River Basin [J]. Sciences in Cold and Arid Regions, 2011, 3(4): 344-357.

[22]Li X, Nan Z T, Cheng G D, et al. Toward an improved data stewardship and service for environmental and ecological science data in west China[J]. International Journal of Digital Earth, 2011, 4(4): 347-359.

[23]Chen Donghua, Zou Chen, Wang Suying, et al. Study on spatial interpolation of the average temperature in the Yili River valley based on DEM[J]. Spectroscopy and Spectral Analysis, 2011, 31(7): 1 925-1 929.[陈冬花,邹陈,王苏颖,等.基于DEM的伊犁河谷气温空间插值研究[J].光谱学与光谱分析,2011, 31(7): 1 925-1 929.]

[1] 吴胜标, 闻建光, 刘强, 窦宝成, 游冬琴. 黑河流域地表反照率估算及其时空特征分析[J]. 地球科学进展, 2015, 30(6): 680-690.
[2] 曹斌, 张廷军, 彭小清, 郑雷, 牟翠翠, 王庆峰. 黑河流域年冻融指数及其时空变化特征分析[J]. 地球科学进展, 2015, 30(3): 357-366.
[3] 熊喆. 不同积云对流参数化方案对黑河流域降水模拟的影响[J]. 地球科学进展, 2014, 29(5): 590-597.
[4] 盖迎春, 李新, 田伟, 张艳林, 王维真, 胡晓利. 黑河流域中游人工水循环系统在分水前后的变化[J]. 地球科学进展, 2014, 29(2): 285-294.
[5] 冯起,苏永红,司建华,常宗强,席海洋,郭瑞,陈丽娟,霍红,秦燕燕. 黑河流域生态水文样带调查[J]. 地球科学进展, 2013, 28(2): 187-196.
[6] 焦其顺,朱忠礼,刘绍民,晋锐,杜帆. 宇宙射线快中子法在农田土壤水分测量中的研究与应用[J]. 地球科学进展, 2013, 28(10): 1136-1143.
[7] 颉耀文,王学强,汪桂生,余林. 基于网格化模型的黑河流域中游历史时期耕地分布模拟[J]. 地球科学进展, 2013, 28(1): 71-78.
[8] 晋 锐,李 新,阎保平,罗万明,李秀红,郭建文,马明国,亢 健,张艳林. 黑河流域生态水文传感器网络设计[J]. 地球科学进展, 2012, 27(9): 993-1005.
[9] 李新,刘绍民,马明国,肖青,柳钦火,晋锐,车涛,王维真,祁元,李弘毅,朱高峰,郭建文,冉有华. 黑河流域生态—水文过程综合遥感观测联合试验总体设计[J]. 地球科学进展, 2012, 27(5): 481-498.
[10] 李新, 程国栋, 康尔泗, 徐中民, 南卓铜, 周剑, 韩旭军, 王书功. 数字黑河的思考与实践3:模型集成[J]. 地球科学进展, 2010, 25(8): 851-865.
[11] 李新, 程国栋, 马明国, 肖青, 晋锐, 冉有华, 赵文智, 冯起, 陈仁升, 胡泽勇, 盖迎春. 数字黑河的思考与实践4:流域观测系统[J]. 地球科学进展, 2010, 25(8): 866-876.
[12] 李新,程国栋,吴立宗. 数字黑河的思考与实践1:为流域科学服务的数字流域[J]. 地球科学进展, 2010, 25(3): 297-305.
[13] 李新,吴立宗,马明国,盖迎春,冉有华,王亮绪,南卓铜. 数字黑河的思考与实践2:数据集成[J]. 地球科学进展, 2010, 25(3): 306-316.
[14] 顾娟,李新,黄春林. 基于时序MODIS NDVI的黑河流域土地覆盖分类研究[J]. 地球科学进展, 2010, 25(3): 317-326.
[15] 王维真,徐自为,李新,王介民,张智慧. 大孔径闪烁仪在黑河流域的应用分析研究[J]. 地球科学进展, 2010, 25(11): 1208-1216.
阅读次数
全文


摘要