地球科学进展 ›› 2014, Vol. 29 ›› Issue (5): 590 -597. doi: 10.11867/j.issn.1001-8166.2014.05.0590

上一篇    下一篇

不同积云对流参数化方案对黑河流域降水模拟的影响
熊喆( )   
  1. 中国科学院大气物理研究所东亚区域气候-环境重点实验室,全球变化东亚区域研究中心,北京 100029
  • 出版日期:2014-05-23
  • 基金资助:
    国家自然科学基金项目“基于动力降尺度建立黑河流域长时间序列高时空气象数据的研究”(编号:91325108)和“旱涝急转发生机理与减灾方法研究”(编号:51339004) 资助

Impact of Different Convective Parameterization on Simulation of Precipitation for the Heihe River Basin

Zhe Xiong( )   

  1. Key Laboratory of Regional Climate-Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, START Regional Center for Temperate East Asia, Beijing 100029
  • Online:2014-05-23 Published:2014-05-10

使用NCEP-fnl再分析资料作为黑河流域高分辨率区域气候模式的初始场和边界场,利用该模式中常用的3种积云对流参数化方案:Grell,Bett-Miller(BM)和不采用积云对流参数化方案(NON)对黑河流域进行2000年1月1日至12月31日的积分试验,重点考察水平分辨率在3 km条件下不同积云对流参数化方案对黑河流域降水模拟的敏感性。结果表明:①卫星遥感反演的黑河流域的降水较观测台站降水偏少,卫星遥感反演日降水与观测台站日降水的相关系数达到0.34,相关系数通过99%置信度检验;②模式采用3种参数化方案都能够较好地模拟出年降水空间分布以及不同区域日平均降水随时间演变,与观测之间的相关系数都通过99%置信度检验;③对于黑河流域来说,在水平分辨率为3 km条件下区域气候模式采用Grell积云对流参数化方案较其他2种方案无论从空间和时间演变来说均更加接近观测。

In order to examine sensitivity of cumulus convective parameterization scheme in climate simulating over the Heihe River Basin(HRB), three cumulus parameterization schemes in Regional Integrated Environmental Model System for HRB(RIEMS-Heihe) with 3km resoultion, Grell, Bett-Miller (BM) and NON were compared and analyzed in precipitation simulation over HRB. The analysis results showed the following: ①BNU daily precipitation in the whole of the HRB was underestimated than the observed precipitation.②Either cumulus convective parameterization schemes, model could simulate the spatial distribution and temporal evolution of daily precipitation in different regions of HRB, and the correlation coefficient between the simulated and observed daily precipitation reached a significance level of 1%. ③For the HRB, RIEMS Heihewith the Grellcumulus convective parameterizationscheme than the other two schemes in term of evolution of daily precipitationis was closer to that of the observation, and the correlation coefficient between the simulated and observed daily precipitation reached a significance level of 1%.

中图分类号: 

图1 黑河流域地形高度和气象观测站点空间分布 彩色为地形高度(m),图上黑点为气象观测站
Fig. 1 Distribution of topography elevations (m) and meteorological observation stations in the HRB colors represent topography elevations and spots meteorological observation stations
表1 黑河流域不同区域观测与模拟年降水的比较
Table 1 simulated and observed annual precipitation in different subregions of the HRB
图2 黑河流域年降水(mm)空间分布 (a) BNU; (b) NON;(c);BM;(d) Grell
Fig. 2 Spatial distribution of observed and simulated annual precipitation (mm) in the HRB. (a) BNU; (b) NON;(c);BM;(d) Grell
图3 黑河流域5~9月降水(mm)空间分布 (a) BNU; (b) NON;(c); BM;(d) Grell
Fig. 3 Spatial distribution of observed and simulated precipitation (mm) in May-September in the HRB (a) BNU; (b) NON;(c); BM;(d) Grell
表2 黑河流域不同区域观测与模拟5~9月降水
Table 2 Simulated and observed precipitation in May-September in different subregions of the HRB
图4 黑河流域不同区域日平均降水(mm/d)年变化 (a)整个流域;(b)上游地区;(c)中游地区; (d)下游地区
Fig. 4 Time series of daily precipitation (mm/d) in different subregions of the HRB. (a) entire HRB;(b) upper reaches of the HRB;(c) middle reaches of the HRB; (d) lower reaches of the HRB.
[1] Cheng Guodong, Xiao Honglang,Xu Zhongmin,et al. Water issue and its countermeasure in the inland river basin of Northwest China—A case study in Heihe River Basin[J].Journal of Glaciology and Geocryology, 2006,28(3):406-413.
[程国栋,肖洪浪,徐中民,等. 中国西北内陆河水问题及其对应对策略——以黑河流域为例[J]. 冰川冻土, 2006, 28(3):406-413.]
[2] Gao Yanhong, Cheng Guodong.Several points on mass and energy interaction between land and atmosphere in the Heihe River Basin[J].Advances in Earth Science, 2008,23(7):779-784.
[高艳红,程国栋. 黑河流域陆地—大气相互作用研究的几点思考[J].地球科学进展,2008, 23(7):779-784.]
[3] He Chansheng. Watershed science and water resources management[J]. Advances in Earth Science,2012,27(7):705-711.
[贺缠生.流域科学与水资源管理[J].地球科学进展,2012,27(7):705-711.]
[4] Feng Qi, Su Yonghong, Si Jianhua, et al. Eco-hydrological transect survey of Heihe River Basin[J]. Advances in Earth Science, 2013, 28(2): 187-196.
[冯起,苏永红,司建华,等.黑河流域生态水文样带调查[J].地球科学进展,2013,28(2):187-196.]
[5] Gao Yanhong,Cheng Guodong,Cui Wenrui, et al. Coupling of enhanced land surface hydrology with atmospheric mesoscale model and its application in Heihe River Basin[J].Advances in Earth Science, 2006,21(12):1 283-1 292.
[高艳红,程国栋,崔文瑞,等.陆面水文过程与大气模式的耦合及其在黑河流域的应用[J].地球科学进展展,2006,21(12):1 283-1 292.]
[6] Gao Yanhong, Cheng Guodong,Liu Wei,et al. Modification of the soil characteristic parameters in Heihe River Basin and effects on simulated atmospheric elements[J]. Plateau Meteorology, 2007,26(5): 958-966.
[高艳红,程国栋,刘伟,等. 黑河流域土壤参数修正及其对气候要素模拟的影响[J].高原气象,2007,26(5):958-966.]
[7] Liu Wei, Gao Yanhong, Li Haiying, et al. Landuse patterns of Heihe River Basin and its impact modeling[J]. Plateau Meteorology, 2007,26(2):278-285.
[刘伟,高艳红,李海英,等. 黑河流域土地植被分类数据的建立及其影响的模拟[J].高原气象,2007,26(2):278-285.]
[8] Liu Shuhua, Jiang Haoyu, Hu Fei, et al. A study of surface energy fluxes in Heihe region simulated with a mesoscale atmospheric model[J]. Chinese Journal of Atmospheric Sciences,2008,32(6):1 392-1 400.
[刘树华,蒋浩宇,胡非,等.利用区域尺度气象模式模拟黑河地区地表能量通量的研究[J].大气科学,2008,32(6):1 392-1 400.]
[9] Pan Xiaoduo,Li Xin, Ran Youhua, et al. Impact of underlying surface information on WRF modeling in Heihe River Basin[J].Plateau Meteorlogy, 2012,31(3):657-667.
[潘小多,李新,冉有华,等.下垫面对WRF模式模拟黑河流域区域气候精度影响研究[J].高原气象,2012, 31(3):657-667.]
[10] Pan X D, Li X. Validation of WRF Model on simulating forcing data for Heihe River Basin[J].Sciences in Cold and Arid Regions, 2011, 3:344-357.
[11] Pan Jinsong, Zhai Guoqing, Gao Kun. Comparisons of three convective parameterization schemes in region climate simulations[J]. Chinese Journal of Atmospheric Sciences,2002,9(2):206-220.
[潘劲松,翟国庆,高坤. 区域气候模式模拟中多种对流参数化方案的比较研究[J]. 大气科学,2002,26(2):206-220.]
[12] Zhu Qingliang, Jiang Hao, Wang Keli, et al. Effects of paramterization physical process of WRF Model on simulated of Precipitation in the Heihe River Basin[J].Arid Zone Research Journal of Atmospheric,2013,30(2):462-469.
[朱庆亮,江灏,王可丽,等. WRF模式物理过程参数化方案对黑河流域降水模拟的影响[J]. 干旱区研究,2013,30(3):462-469.]
[13] Wang Chenghai, Yu Lian. Sensitivity of regional climate model to different cumulus parameterization schemes in simulation of the Tibetan Plateau climate[J]. Chinese Journal of Atmospheric Sciences, 2011,35(6):1 132-1 144.
[王澄海,余莲.区域气候模式对不同的积云参数化方案在青藏高原地区气候模拟中的敏感性研究[J].大气科学,2011,35(6):1 132-1 144.]
[14] Liu Hongbo, Wang Bin. Sensitivity of regional climate simulate of the summer 1998 extreme rainfall to convective parameterization schemes[J]. Meteorology and Atmospheric Physics, 2011,114:1-15.
[15] Gao Xuejie, Zhao Zongci, Ding Yihui, et al. Climate change due to greenhouse effects in China as simulated by a regional climate model[J]. Advances in Atmospheric Sciences,2001,18(6):1 224-1 230.
[16] Zhang Dongfeng, Ouyang Licheng, Gao Xuejie,et al. Simulation of the atmospheric circulation over East Asia and climate in China by RegCM3[J].Journal of Tropical Meteorology,2007,23(5):444-452.
[张冬峰,欧阳里程,高学杰,等. RegCM3对东亚环流和中国气候模拟能力的检验[J].热带气象学报,2007,23(5): 444-452.]
[17] Yu Entao, Wang Huijun, Sun Jianqi. A quick report on a dynamical downscaling simulation over China using the nested model[J].Atmospheric and Oceanic Science Letters, 2010, 3: 325-329.
[18] Xiong Z, Fu C B, Yan X D. Regional integrated environmental model system and its simulation of East Asia summer monsoon[J]. Chinese Science Bulletin, 2009, 54: 4 253-4 261.
[19] Zhao D M, Fu C B, Yan X D. Testing the ability of RIEMS 2.0 to simulate multi-year precipitation and air temperature in China[J]. Chinese Science Bulletin, 2009, 54:3 101-3 111.
[20] Grell A G, Dudhia H, Sranfler D S. A Description of the Fifth-generation Penn State-NCAR Meso-scale Model(MM5)[R]. NCAR Technical Note NCAR/TN-398+STR, 1994:122, doi:10.5065/D60Z71613.
[21] Dickinson R E, Henderson Sellers. A Biosphere-Atmosphere Transfer Scheme (BATS) Version as Coupled to the NCAR Community Climate Model[R]. NCAR Technical Note, NCAR/TN-387+STR,1993:72,doi:10.5065/D67W6959.
[22] Kiehl J T, Hack J J, Bonan G B, et al. Description of the NCAR Community Climate Model (CCM3)[R]. NCAR/TN-420+STR, National Center for Atmospheric Research,1996,doi:10.5065/D6FF3W99.
[23] Xiong Z, Yan X D. Building a high-resolution regional climate model for the Heihe River Basin and simulating precipitation over this region[J].Chinese Science Bulletin, 2013,58(36):4 670-4 678.
[24] New M, Hulme M, Jones P. Representing twentieth-century space-time climate variability. Part II: Development of 1901-96 monthly grids of terrestrial surface climate[J]. Journal of Climate,2000,13:2 217-2 238.
[25] Xu Ying,Gao Xuejie, Shen Yan,et al. A daily temperature dataset over China and its application in validating a RCM simulation[J]. Advances in Atmospheric Sciences, 2009,26(4):763-772.
[26] Wu Jia, Gao Xuejie. A gridded daily observation dataset over China region and comparison with the other datasets[J]. Chinese Journal Geophysics,2013,56(4):1 102-1 111.
[吴佳,高学杰. 一套格点化的中国区域逐日观测资料及与其他资料的对比[J].地球物理学报,2013,56(4): 1 102-1 111.]
[27] Bett A K. A new convective adjustment scheme. Part I: Observational and theoretical basis[J]. Quarterly Journal of the Royal Meteorological Society, 1986,112: 677-691.
[28] Bett A K. A new convective adjustment scheme. Part II: Single column tests using GATE wave. BOMEXATEX and arctic air-mass dataset[J].Quarterly Journal of the Royal Meteorological Society,1986,112: 693-709.
[29] Ding Yongjian, Ye Baisheng, Zhou Wenjuan. Temporal and spatial precipitation distribution in the Heihe catchment Northwest China during the past 40a[J]. Journal of Glaciology and Geocryology, 1999, 21(1):42-48.
[丁永建,叶柏生,周文娟. 黑河流域过去40a来降水时空分布特征[J].冰川冻土,1999,21(1):42-48.]
[30] Ding Rong, Wang Fucun, Wang Jing, et al. Analysis on spatial-temporal characteristics of precipitation in Heihe River Basin and forecast evaluation in recent 47 years[J]. Journal of Desert Research, 2009, 29:335-341.
[丁荣,王伏村,王静,等. 近47a来黑河流域降水时空特征分析及预报评估[J].中国沙漠,2009, 29:335-341.]
[31] Zhang Jie, Li Dongliang. Analysis on distribution character of rainfall over Qilian Mountain and Heihe valley[J]. Plateau Meteorology, 2004, 23:81-88.
[张杰,李栋梁. 祁连山及黑河流域降雨量的分布特征分析[J]. 高原气象,2004, 23:81-88.]
[32] Liu Yong, Zou Songbing. A study on the distributing climatic models in arid mountainous area-distributing temperature and precipitation models in high spatial resolution in Qilian Mountains[J]. Journal of Lanzhou Univeristy(Natural Sciences), 2006,42(1):7-12.
[刘勇,邹松兵. 祁连山地区高分辨率气温降水量分布模型[J]. 兰州大学学报:自然科学版,2006, 42(1):7-12.]
[1] 王澄海, 张晟宁, 张飞民, 李课臣, 杨凯. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[2] 王忠静,石羽佳,张腾. TRMM遥感降水低估还是高估中国大陆地区的降水?[J]. 地球科学进展, 2021, 36(6): 604-615.
[3] 王鹏,刘磊,刘西川,胡帅,赵世军,姬文明,高太长. 球载云降水粒子探测器研究现状及进展[J]. 地球科学进展, 2020, 35(7): 704-714.
[4] 张宏文,续昱,高艳红. 19822005年青藏高原降水再循环率的模拟研究[J]. 地球科学进展, 2020, 35(3): 297-307.
[5] 梅双丽,李勇,马杰. 热带季节内振荡在延伸期预报中的应用进展[J]. 地球科学进展, 2020, 35(12): 1222-1231.
[6] 高艳红,许建伟,张萌,姜凤友. 中国 400 mm等降水量变迁与干湿变化研究进展[J]. 地球科学进展, 2020, 35(11): 1101-1112.
[7] 李修仓,姜彤,吴萍. 水分再循环计算模型的研究进展及其展望[J]. 地球科学进展, 2020, 35(10): 1029-1040.
[8] 谢彦君, 任福民, 李国平, 王铭杨, 杨慧. 影响中国双台风活动气候特征研究[J]. 地球科学进展, 2020, 35(1): 101-108.
[9] 蒋诗威,周鑫. 中国东南地区中世纪暖期和小冰期夏季风降水研究进展[J]. 地球科学进展, 2019, 34(7): 697-705.
[10] 朱月佳,邢蕊,朱明佳,王东勇,邱学兴. 联合概率方法在安徽强对流潜势预报中的应用和检验[J]. 地球科学进展, 2019, 34(7): 731-746.
[11] 杨慧,任福民,杨明仁. 不同强度热带气旋对中国降水变化的影响[J]. 地球科学进展, 2019, 34(7): 747-756.
[12] 窦芳丽,陆其峰,郭杨. 全天候卫星微波观测资料变分同化研究进展[J]. 地球科学进展, 2019, 34(11): 1120-1130.
[13] 谢鑫昌,杨云川,田忆,廖丽萍,韦钧培,周津羽,陈立华. 广西降水非均匀性多尺度特征与综合评价[J]. 地球科学进展, 2019, 34(11): 1152-1164.
[14] 陈亮, 段建平, 马柱国. 大气环流形势客观分型及其与中国降水的联系[J]. 地球科学进展, 2018, 33(4): 396-403.
[15] 黄平, 周士杰. 全球变暖下热带降水变化研究回顾与挑战 *[J]. 地球科学进展, 2018, 33(11): 1181-1192.
阅读次数
全文


摘要