Please wait a minute...
img img
高级检索
地球科学进展  2014, Vol. 29 Issue (5): 590-597    DOI: 10.11867/j.issn.1001-8166.2014.05.0590
研究论文     
不同积云对流参数化方案对黑河流域降水模拟的影响
熊喆
中国科学院大气物理研究所东亚区域气候-环境重点实验室,全球变化东亚区域研究中心,北京 100029
Impact of Different Convective Parameterization on Simulation of Precipitation for the Heihe River Basin
Xiong Zhe
Key Laboratory of Regional Climate-Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, START Regional Center for Temperate East Asia, Beijing 100029
 全文: PDF(8595 KB)   HTML
摘要:

使用NCEP-fnl再分析资料作为黑河流域高分辨率区域气候模式的初始场和边界场,利用该模式中常用的3种积云对流参数化方案:Grell,Bett-Miller(BM)和不采用积云对流参数化方案(NON)对黑河流域进行2000年1月1日至12月31日的积分试验,重点考察水平分辨率在3 km条件下不同积云对流参数化方案对黑河流域降水模拟的敏感性。结果表明:①卫星遥感反演的黑河流域的降水较观测台站降水偏少,卫星遥感反演日降水与观测台站日降水的相关系数达到0.34,相关系数通过99%置信度检验;②模式采用3种参数化方案都能够较好地模拟出年降水空间分布以及不同区域日平均降水随时间演变,与观测之间的相关系数都通过99%置信度检验;③对于黑河流域来说,在水平分辨率为3 km条件下区域气候模式采用Grell积云对流参数化方案较其他2种方案无论从空间和时间演变来说均更加接近观测。

关键词: 黑河流域积云对流参数化高分辨率区域气候模式降水    
Abstract:

In order to examine sensitivity of cumulus convective parameterization scheme in climate simulating over the Heihe River Basin(HRB), three cumulus parameterization schemes in Regional Integrated Environmental Model System for HRB(RIEMS-Heihe) with 3km resoultion, Grell, Bett-Miller (BM) and NON were compared and analyzed in precipitation simulation over HRB. The analysis results showed the following: ①BNU daily precipitation in the whole of the HRB was underestimated than the observed precipitation.②Either cumulus convective parameterization schemes, model could simulate the spatial distribution and temporal evolution of daily precipitation in different regions of HRB, and the correlation coefficient between the simulated and observed daily precipitation reached a significance level of 1%. ③For the HRB, RIEMS Heihewith the Grellcumulus convective parameterizationscheme than the other two schemes in term of evolution of daily precipitationis was closer to that of the observation, and the correlation coefficient between the simulated and observed daily precipitation reached a significance level of 1%.

Key words: High-resolution regional climate model    Heihe River Basin    Precipitation.    Cumulus convective parameterization scheme
出版日期: 2014-05-10
:  P426.5  
基金资助:

国家自然科学基金项目“基于动力降尺度建立黑河流域长时间序列高时空气象数据的研究”(编号:91325108)和“旱涝急转发生机理与减灾方法研究”(编号:51339004) 资助

作者简介: 熊喆(1971-),男,湖北洪湖人,副研究员,主要从事区域模式发展与应用研究. E-mail:xzh@tea.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
熊喆

引用本文:

熊喆. 不同积云对流参数化方案对黑河流域降水模拟的影响[J]. 地球科学进展, 2014, 29(5): 590-597.

Xiong Zhe. Impact of Different Convective Parameterization on Simulation of Precipitation for the Heihe River Basin. Advances in Earth Science, 2014, 29(5): 590-597.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2014.05.0590        http://www.adearth.ac.cn/CN/Y2014/V29/I5/590

[1]Cheng Guodong, Xiao Honglang,Xu Zhongmin,et al. Water issue and its countermeasure in the inland river basin of Northwest China—A case study in Heihe River Basin[J].Journal of Glaciology and Geocryology, 2006,28(3):406-413.[程国栋,肖洪浪,徐中民,等. 中国西北内陆河水问题及其对应对策略——以黑河流域为例[J]. 冰川冻土, 2006, 28(3):406-413.]
[2]Gao Yanhong, Cheng Guodong.Several points on mass and energy interaction between land and atmosphere in the Heihe River Basin[J].Advances in Earth Science, 2008,23(7):779-784.[高艳红,程国栋. 黑河流域陆地—大气相互作用研究的几点思考[J].地球科学进展,2008, 23(7):779-784.]
[3]He Chansheng. Watershed science and water resources management [J]. Advances in Earth Science,2012,27(7):705-711.[贺缠生.流域科学与水资源管理[J].地球科学进展,2012,27(7):705-711.]
[4]Feng Qi, Su Yonghong, Si Jianhua, et al. Eco-hydrological transect survey of Heihe River Basin[J]. Advances in Earth Science, 2013, 28 (2): 187-196.[冯起,苏永红,司建华,等.黑河流域生态水文样带调查[J].地球科学进展,2013,28(2):187-196.]
[5]Gao Yanhong,Cheng Guodong,Cui Wenrui, et al. Coupling of enhanced land surface hydrology with atmospheric mesoscale model and its application in Heihe River Basin[J].Advances in Earth Science, 2006,21(12):1 283-1 292.[高艳红,程国栋,崔文瑞,等.陆面水文过程与大气模式的耦合及其在黑河流域的应用[J].地球科学进展展,2006,21(12):1 283-1 292.]
[6]Gao Yanhong, Cheng Guodong,Liu Wei,et al. Modification of the soil characteristic parameters in Heihe River Basin and effects on simulated atmospheric elements[J]. Plateau Meteorology, 2007,26(5): 958-966.[高艳红,程国栋,刘伟,等. 黑河流域土壤参数修正及其对气候要素模拟的影响[J].高原气象,2007,26(5):958-966.]
[7]Liu Wei, Gao Yanhong, Li Haiying, et al. Landuse patterns of Heihe River Basin and its impact modeling[J]. Plateau Meteorology, 2007,26(2):278-285.[刘伟,高艳红,李海英,等. 黑河流域土地植被分类数据的建立及其影响的模拟[J].高原气象,2007,26(2):278-285.]
[8]Liu Shuhua, Jiang Haoyu, Hu Fei, et al. A study of surface energy fluxes in Heihe region simulated with a mesoscale atmospheric model[J]. Chinese Journal of Atmospheric Sciences,2008,32(6):1 392-1 400.[刘树华,蒋浩宇,胡非,等.利用区域尺度气象模式模拟黑河地区地表能量通量的研究[J].大气科学,2008,32(6):1 392-1 400.]
[9]Pan Xiaoduo,Li Xin, Ran Youhua, et al. Impact of underlying surface information on WRF modeling in Heihe River Basin[J].Plateau Meteorlogy, 2012,31(3):657-667.[潘小多,李新,冉有华,等.下垫面对WRF模式模拟黑河流域区域气候精度影响研究[J].高原气象,2012, 31(3):657-667.]
[10]Pan X D, Li X. Validation of WRF Model on simulating forcing data for Heihe River Basin[J].Sciences in Cold and Arid Regions, 2011, 3:344-357.
[11]Pan Jinsong, Zhai Guoqing, Gao Kun. Comparisons of three convective parameterization schemes in region climate simulations [J]. Chinese Journal of Atmospheric Sciences,2002,9(2):206-220.[潘劲松,翟国庆,高坤. 区域气候模式模拟中多种对流参数化方案的比较研究[J]. 大气科学,2002,26(2):206-220.]
[12]Zhu Qingliang, Jiang Hao, Wang Keli, et al. Effects of paramterization physical process of WRF Model on simulated of Precipitation in the Heihe River Basin[J].Arid Zone Research Journal of Atmospheric,2013,30(2):462-469.[朱庆亮,江灏,王可丽,等. WRF模式物理过程参数化方案对黑河流域降水模拟的影响[J]. 干旱区研究,2013,30(3):462-469.]
[13]Wang Chenghai, Yu Lian. Sensitivity of regional climate model to different cumulus parameterization schemes in simulation of the Tibetan Plateau climate[J]. Chinese Journal of Atmospheric Sciences, 2011,35(6):1 132-1 144.[王澄海,余莲.区域气候模式对不同的积云参数化方案在青藏高原地区气候模拟中的敏感性研究[J].大气科学,2011,35(6):1 132-1 144.]
[14]Liu Hongbo, Wang Bin. Sensitivity of regional climate simulate of the summer 1998 extreme rainfall to convective parameterization schemes [J]. Meteorology and Atmospheric Physics, 2011,114:1-15.
[15]Gao Xuejie, Zhao Zongci, Ding Yihui, et al. Climate change due to greenhouse effects in China as simulated by a regional climate model[J]. Advances in Atmospheric Sciences,2001,18(6):1 224-1 230.
[16]Zhang Dongfeng, Ouyang Licheng, Gao Xuejie,et al. Simulation of the atmospheric circulation over East Asia and climate in China by RegCM3[J].Journal of Tropical Meteorology,2007,23(5):444-452.[张冬峰,欧阳里程,高学杰,等. RegCM3对东亚环流和中国气候模拟能力的检验[J].热带气象学报,2007,23(5): 444-452.]
[17]Yu Entao, Wang Huijun, Sun Jianqi. A quick report on a dynamical downscaling simulation over China using the nested model[J].Atmospheric and Oceanic Science Letters, 2010, 3: 325-329.
[18]Xiong Z, Fu C B, Yan X D. Regional integrated environmental model system and its simulation of East Asia summer monsoon[J]. Chinese Science Bulletin, 2009, 54: 4 253-4 261.
[19]Zhao D M, Fu C B, Yan X D. Testing the ability of RIEMS 2.0 to simulate multi-year precipitation and air temperature in China[J]. Chinese Science Bulletin, 2009, 54:3 101-3 111.
[20]Grell A G, Dudhia H, Sranfler D S. A Description of the Fifth-generation Penn State-NCAR Meso-scale Model(MM5)[R]. NCAR Technical Note NCAR/TN-398+STR, 1994:122, doi:10.5065/D60Z71613.
[21]Dickinson R E, Henderson Sellers. A Biosphere-Atmosphere Transfer Scheme (BATS) Version as Coupled to the NCAR Community Climate Model[R]. NCAR Technical Note, NCAR/TN-387+STR,1993:72,doi:10.5065/D67W6959.
[22]Kiehl J T, Hack J J, Bonan G B, et al. Description of the NCAR Community Climate Model (CCM3)[R]. NCAR/TN-420+STR, National Center for Atmospheric Research,1996,doi:10.5065/D6FF3W99.
[23]Xiong Z, Yan X D. Building a high-resolution regional climate model for the Heihe River Basin and simulating precipitation over this region[J].Chinese Science Bulletin, 2013,58(36):4 670-4 678.
[24]New M, Hulme M, Jones P. Representing twentieth-century space-time climate variability. Part II: Development of 1901-96 monthly grids of terrestrial surface climate[J]. Journal of Climate,2000,13:2 217-2 238.
[25]Xu Ying,Gao Xuejie, Shen Yan,et al. A daily temperature dataset over China and its application in validating a RCM simulation[J]. Advances in Atmospheric Sciences, 2009,26(4):763-772.
[26]Wu Jia, Gao Xuejie. A gridded daily observation dataset over China region and comparison with the other datasets[J]. Chinese Journal Geophysics,2013,56(4):1 102-1 111.[吴佳,高学杰. 一套格点化的中国区域逐日观测资料及与其他资料的对比[J].地球物理学报,2013,56(4): 1 102-1 111.]
[27]Bett A K. A new convective adjustment scheme. Part I: Observational and theoretical basis[J]. Quarterly Journal of the Royal Meteorological Society, 1986,112: 677-691.
[28]Bett A K. A new convective adjustment scheme. Part II: Single column tests using GATE wave. BOMEXATEX and arctic air-mass dataset[J].Quarterly Journal of the Royal Meteorological Society,1986,112: 693-709.
[29]Ding Yongjian, Ye Baisheng, Zhou Wenjuan. Temporal and spatial precipitation distribution in the Heihe catchment Northwest China during the past 40a [J]. Journal of Glaciology and Geocryology, 1999, 21(1):42-48.[丁永建,叶柏生,周文娟. 黑河流域过去40a来降水时空分布特征[J].冰川冻土,1999,21(1):42-48.]
[30]Ding Rong, Wang Fucun, Wang Jing, et al. Analysis on spatial-temporal characteristics of precipitation in Heihe River Basin and forecast evaluation in recent 47 years[J]. Journal of Desert Research, 2009, 29:335-341.[丁荣,王伏村,王静,等. 近47a来黑河流域降水时空特征分析及预报评估[J].中国沙漠,2009, 29:335-341.]
[31]Zhang Jie, Li Dongliang. Analysis on distribution character of rainfall over Qilian Mountain and Heihe valley[J]. Plateau Meteorology, 2004, 23:81-88.[张杰,李栋梁. 祁连山及黑河流域降雨量的分布特征分析[J]. 高原气象,2004, 23:81-88.]
[32]Liu Yong, Zou Songbing. A study on the distributing climatic models in arid mountainous area-distributing temperature and precipitation models in high spatial resolution in Qilian Mountains[J]. Journal of Lanzhou Univeristy(Natural Sciences), 2006,42(1):7-12.[刘勇,邹松兵. 祁连山地区高分辨率气温降水量分布模型[J]. 兰州大学学报:自然科学版,2006, 42(1):7-12.]
[1] 王学界, 章新平, 张婉君, 张新主, 罗紫东. 全球降水中氢氧稳定同位素GCM模拟空间分布的比较[J]. 地球科学进展, 2017, 32(9): 983-995.
[2] 张乐乐, 高黎明, 赵林, 乔永平, 史健宗. 降水观测误差修正研究进展[J]. 地球科学进展, 2017, 32(7): 723-730.
[3] 李东欢, 邹立维, 周天军. 全球1.5 ℃温升背景下中国极端事件变化的区域模式预估[J]. 地球科学进展, 2017, 32(4): 446-457.
[4] 王根, 盛绍学, 黄勇, 吴蓉, 刘惠兰. 基于不适定反问题求解的降水图像降尺度研究[J]. 地球科学进展, 2017, 32(10): 1102-1111.
[5] 叶晓燕, 陈崇成, 罗明. 东亚夏季降水与全球海温异常的年代际变化关系[J]. 地球科学进展, 2016, 31(9): 984-994.
[6] 王磊, 陈仁升, 宋耀选. 基于Γ函数的祁连山葫芦沟流域湿季小时降水统计特征[J]. 地球科学进展, 2016, 31(8): 840-848.
[7] 郭瑞芳, 刘元波. 多传感器联合反演高分辨率降水方法综述[J]. 地球科学进展, 2015, 30(8): 891-903.
[8] 吴胜标, 闻建光, 刘强, 窦宝成, 游冬琴. 黑河流域地表反照率估算及其时空特征分析[J]. 地球科学进展, 2015, 30(6): 680-690.
[9] 尹金方, 王东海, 许焕斌, 翟国庆, 姜晓玲. 冰核对云物理属性和降水影响的研究[J]. 地球科学进展, 2015, 30(3): 323-333.
[10] 曹斌, 张廷军, 彭小清, 郑雷, 牟翠翠, 王庆峰. 黑河流域年冻融指数及其时空变化特征分析[J]. 地球科学进展, 2015, 30(3): 357-366.
[11] 胡凯, 方小敏, 赵志军. 宇宙成因核素10Be揭示的北祁连山侵蚀速率特征[J]. 地球科学进展, 2015, 30(2): 268-275.
[12] 方建, 杜鹃, 徐伟, 史培军, 孔锋. 气候变化对洪水灾害影响研究进展[J]. 地球科学进展, 2014, 29(9): 1085-1093.
[13] 黄强, 陈子燊. 全球变暖背景下珠江流域极端气温与降水事件时空变化的区域研究[J]. 地球科学进展, 2014, 29(8): 956-967.
[14] 张红梅, 吴炳方, 闫娜娜. 饱和水汽压差的卫星遥感研究综述[J]. 地球科学进展, 2014, 29(5): 559-568.
[15] 高涛, 谢立安. 近50年来中国极端降水趋势与物理成因研究综述[J]. 地球科学进展, 2014, 29(5): 577-589.