地球科学进展 ›› 2019, Vol. 34 ›› Issue (7): 747 -756. doi: 10.11867/j.issn.1001-8166.2019.07.0747

研究论文 上一篇    下一篇

不同强度热带气旋对中国降水变化的影响
杨慧 1( ),任福民 1( ),杨明仁 2   
  1. 1. 中国气象科学研究院灾害天气国家重点实验室,北京 100081
    2. 台湾大学大气科学系,台湾 台北,中国
  • 收稿日期:2019-01-25 修回日期:2019-05-05 出版日期:2019-07-10
  • 通讯作者: 任福民 E-mail:1226262133@qq.com;fmren@163.com
  • 基金资助:
    国家自然科学基金项目“双台风相互作用对中国极端降水的影响”(41675042);国家重点基础研究发展计划项目“中国区域持续性强降水事件检测归因”(2018YFC1507703)

Impact of Different Intensity Tropical Cyclones on Precipitation Changes in China

Hui Yang 1( ),Fumin Ren 1( ),Ming-Jen Yang 2   

  1. 1. State Key Laboratory on Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China
    2. Department of Atmospheric Sciences, Taiwan University, Taiwan Taipei,China
  • Received:2019-01-25 Revised:2019-05-05 Online:2019-07-10 Published:2019-07-29
  • Contact: Fumin Ren E-mail:1226262133@qq.com;fmren@163.com
  • About author:Yang Hui (1990-), female, Zhangye City, Gansu Province, Master student. Research areas include tropical cyclon precipitation. E-mail: 1226262133@qq.com
  • Supported by:
    ect supported by the National Natural Science Foundation of China "Impact of binary cyclone on extreme precipitation over mainland of China"(41675042);The National Key R & D Program of China "Detection attribution of persistent heavy precipitation events in China"(2018YFC1507703)

基于1960—2017年2 000多个气象台站逐日降水数据和中国气象局热带气旋(TC)最佳路径资料集,采用客观天气图分析法(OSAT)识别得到TC降水。研究表明,中国TC降水总体呈显著下降趋势,较12年前的研究结果下降趋势变缓;TC盛期(7~9月)降水占到TC总降水的78.5%,TC盛期降水和TC非盛期降水均呈显著下降趋势。TC降水气候趋势在空间分布上以减少为主要特征,并表现出明显的地域差异,自南向北呈“减少—增多—减少”的分布型,减少趋势中心位于广东和海南。按TC影响期最大强度分级(弱TC、中等强度TC和强TC)研究不同强度TC降水的变化,结果显示,强TC降水表现出显著减少趋势,主要决定着TC总降水的影响范围和趋势等主要特征。进一步分析发现,影响TC频数在1960—2017年呈显著减少趋势,并在1995年发生突变;对1995年前后2个时期的对比研究显示,与前一时期(1960—1994年)相比,后一时期(1995—2017年)影响TC活动频次在20°N以南的海域呈现出显著的减少趋势,减少大值中心位于南海北部,而且这一特征也主要由影响TC中的强TC所决定;强TC的这一变化趋势导致了华南地区尤其是广东和海南TC降水日数的减少,进而使得TC降水减少。

Based on the daily precipitation data of more than 2 000 meteorological stations from 1960 to 2017 and the tropical cyclone (TC) best-track data of the China Meteorological Administration, the TC precipitation was identified by the Objective Synoptic Analysis Technique (OSAT). The research shows that the TC precipitation in China has a significant downward trend, which is slower than that of the research results 12 years ago. The TC precipitation in the peaking season (July to Sepember) accounted for 78.5% of the total TC precipitation. Both TC precipitation in peaking season and other months showed a significant downward trend. The TC precipitation climate trend is mainly characterized by reduction in spatial distribution, and shows obvious regional differences. From south to north, there is a distribution of “decreasing-increasing-decreasing”, and the decreasing trend centers are located in Guangdong and Hainan. According to the maximum intensity in the TC influence period, we classified TCs into three levels (weak TCs, medium intensity TCs and strong TCs) and studied the variations of TC precipitation in different intensities. The results show that the strong TC precipitation shows a significant decrease trend, which mainly determines the influence range and trend of TC total precipitation. Further analysis found that the frequency of affecting TC showed a significant reduction trend during the time period of 1960-2017 and an abrupt shift occurred in 1995. A comparative study of the two periods before and after 1995 showed that compared with the previous period (1960-1994), the frequency of TCs in the latter period (1995-2017) showed a significant decreasing trend in the south of 20°N. The maximum decreasing center was located in the northern part of the South China Sea, and this feature was mainly affected by the strong TC. It was decided that this trend of strong TC led to a decrease trend in the number of precipitation days in South China, especially in Guangdong and Hainan, which led to a decrease trend in TC precipitation.

中图分类号: 

图1 本研究所选中国气象台站空间分布(新疆台站除外)
Fig.1 The geographical distribution of meteorological station stations in China selected in this research (excepted stations in Xinjiang)
图2 中国热带气旋降水气候变化
Fig.2 The change of tropical cyclone precipitation over China
图3 中国热带气旋降水季节分布及气候变化
Fig.3 Seasonal distribution and climate change of tropical cyclone precipitation over China
表1 5TC强度指数与 TC降水的相关系数
Table 1 Correlation coefficients between five TC intensity indices and tropical cyclone precipitation
表2 19602017年不同强度 TC统计量
Table 2 The statistics of different intensity TCs during the time period of 1960-2017
图4 19602017年不同强度TC降水线性趋势空间分布(单位:mm/a
Fig.4 Spatial distribution of the linear trends in precipitation of different intensity TCs during the time period of 1960-2017 (unit: mm/a)
图5 19602017年影响TC降水的2个因子线性趋势空间分布
Fig.5 Spatial distributions of the linear trends in the two factors affecting tropical cyclone precipitation
图6 19602017年影响中国TC年频数的时间序列
Fig.6 Variations in the annual frequency of TCs influencing China during the time period of 1960-2017
图7 19952017年与19601994年不同强度影响中国TC年均活动频次差异(通过95%信度水平检验)的空间分布
Fig.7 Spatial distributions of the differences (at the 95% significance level) between the annual mean frequencies of influencing China tropical cyclones during the time periods 1995-2017 and 1960-1994
1 ChengZhengquan, ChenLianshou, LiuYan, et al. The spatial and temporal characteristics of tropical cyclone induced rainfall in China during 1960-2003 [J]. Journal of Applied Meteorological Science, 2007, 18(4):427-434.
程正泉,陈联寿,刘燕,等. 1960—2003年我国热带气旋降水的时空分布特征[J]. 应用气象学报,2007,18(4):427-434.
2 WangYongmei, RenFumin, LiWeijing, et al. Climatic characteristics of typhoon precipitation over China [J]. Journal of Tropical Meteorology, 2008,24(3):233-238.
王咏梅,任福民,李维京,等. 中国台风降水的气候特征[J].热带气象学报,2008,24(3):233-238.
3 ChenLianshou, XuYinglong.Review of typhoon very heavy rainfall in China[J]. Meteorological and Environmental Sciences, 2017, 40(1): 3-10.
陈联寿,许映龙. 中国台风特大暴雨综述[J].气象与环境科学,2017,40(1): 3-10.
4 TaoShiyan. Rainstorm in China[M]. Beijing: Science Press,1980.
陶诗言. 中国之暴雨[M]. 北京: 科学出版社, 1980.
5 RodgersE B, AdlerR F, PierceH F. Contribution of tropical cyclones to the north pacific climatological rainfall as observed from satellites[J]. Journal of Applied Meteorology,2000,39: 1 658-1 678.
6 RodgersE B, AdlerR F, PierceH F. Contribution of tropical cyclones to the North Atlantic climatological rainfall as observed from satellites[J]. Journal of Applied Meteorology,2001, 40: 1 785-1 800.
7 JiangHaiyan, ZipserE J. Contribution of tropical cyclones to the global precipitation from eight seasons of TRMM data: Regional, seasonal, and interannual variations[J]. Journal of Climate, 2010,23: 1 526-1 543.
8 KubotaH, WangBin. How much do tropical cyclones affect seasonal and interannual rainfall variability over the western North Pacific?[J]. Journal of Climate, 2009,22(20): 5 495-5 510.
9 LauW K M, ZhouY P. Observed recent trends in tropical cyclone rainfall over the North Atlantic and the North Pacific[J]. Journal of Geophysical Research: Atmospheres,2012, 117:D03104. DOI:10.1029/2011JD016510.
doi: 10.1029/2011JD016510    
10 GleasonB E, EasterlingD R, RenFumin. Trends in tropical cyclone precipitation over the eastern United States[C]//12th Conference on Applied Climatology Asheville,America Meteorological Society,2000.
11 ShumanM P, KoermerJ P, ReynoldsS D. Heavy precipitation events from tropical cyclone remnants in the eastern United States[C]//81st Annual Meeting. Albuquerque: America Meteorological Society,2001.
12 KnightD B, DavisR E. Climatology of tropical cyclone rainfall in the southeastern United States [J]. Physical Geography,2007, 28(2): 126-147.
13 KnightD B, DavisR E. Contribution of tropical cyclones to extreme rainfall events in the southeastern United States[J]. Journal of Geophysical Research,2009, 114(D23). DOI:10.1029/2009JD012511.
doi: 10.1029/2009JD012511    
14 NogueiraR C, KeimB D, BrownD P, et al. Variability of rainfall from tropical cyclones in the eastern USA and its association to the AMO and ENSO[J]. Theoretical and Applied Climatology,2012, 112(1/2): 273-283.
15 TrepanierJ, TuckerC. Event-based climatology of tropical cyclone rainfall in Houston, Texas and Miami, Florida [J]. Atmosphere,2018, 9(5): 170.
16 EnglehartP J, DouglasA V. The role of eastern North Pacific tropical storms in the rainfall climatology of western Mexico[J]. International Journal of Climatology,2001, 21(11): 1 357-1 370.
17 CavazosT, TurrentC, LettenmaierD P. Extreme precipitation trends associated with tropical cyclones in the core of the North American monsoon[J]. Geophysical Research Letters,2008, 35(21): L21703. DOI:10.1029/2008GL035832.
doi: 10.1029/2008GL035832    
18 KimJ H, HoC H, LeeM H,et al. Large increase in heavy rainfall associated with tropical cyclone landfalls in Korea after the late 1970s[J]. Geophysical Research Letters, 2006,33(18): L18706. DOI:10.1029/2006GL027430.
doi: 10.1029/2006GL027430    
19 RenFumin, ByronG, DavidE. A numerical technique for partitioning cyclone tropical precipitation[J]. Journal of Tropical Meteorology,2001, 17(3): 308-313.
任福民, ByronG, DavidE. 一种识别热带气旋降水的数值方法[J]. 热带气象学报,2001, 17(3): 308-313.
20 RenFumin, WangYongmei, WangXiaoling, et al. Estimating tropical cyclone precipitation from station observations[J]. Advances in Atmospheric Sciences,2007, 24(4): 700-711.
21 RenFumin, GleasonB, EasterlingD. Typhoon impacts on China’s precipitation during 1957-1996[J]. Advances in Atmospheric Sciences,2002, 19(5): 943-952.
22 RenFumin, WuGuoxiong, DongWenjie, et al. Changes in tropical cyclone precipitation over China[J]. Geophysical Research Letters,2006, 33(20): L20702. DOI:10.1029/2006 GL027951.
doi: 10.1029/2006 GL027951    
23 YingMing, ChenBaode, WuGuoxiong. Climate trends in tropical cyclone-induced wind and precipitation over mainland China[J]. Geophysical Research Letters,2011, 38: L01702. DOI:10.1029/2010GL045729.
doi: 10.1029/2010GL045729    
24 ChangC P, LeiYonghui, SuiC H, et al. Tropical cyclone and extreme rainfall trends in East Asian summer monsoon since mid-20th century[J]. Geophysical Research Letters,2012, 39(18): L18702. DOI:10.1029/2012GL052945.
doi: 10.1029/2012GL052945    
25 ZhangJiaoyan, WuLiguang, RenFumin, et al. Changes in tropical cyclone rainfall in China[J]. Journal of the Meteorological Society of Japan,2013,91(5): 585-595.
26 LiuTongyi, WuLiguang, ZhangJiaoyan,et al.Analysis of tropical cyclone precipitation changes in China in July-Seotember during 1965-2010[J]. Acta Meteorological Sinica, 2013, 71(1):63-75.
刘通易,吴立 广,张娇艳,等. 1965—2010年7-9月影响中国的热带气旋降水变化趋势分析[J]. 气象学报,2013,71(1):63-75.
27 LiR C Y, ZhouWen. Interdecadal changes in summertime tropical cyclone precipitation over southeast china during 1960-2009 [J]. Journal of Climate,2015, 28(4): 1 494-1 509.
28 WuShengan, GuoDongyan, YangJinhu. Hainan tropic cyclone rainfall's climate characters [J]. Scientia Meterologica Sinica, 2007,27(3): 307-311.
吴胜安,郭冬艳,杨金虎. 海南热带气旋降水的气候特征[J].气象科学,2007,27(3):307-311.
29 JiangXianling, RenFumin, LiYunjie. Characteristics and preliminary causes of tropical cyclone extreme rainfall events over hainan island [J]. Advances in Atmospheric Sciences,2018, 35(5): 580-591.
30 SuZhizhong, RenFumin. Changes in monsoon and tropical cyclone extreme precipitation in southeast China from 1960 to 2012[J]. Tropical Cyclone Research and Review,2015, 4(1): 12-17.
31 QiuWenyu, RenFumin, WuLiguang. Characteristics of tropical cyclone extreme precipitation and its preliminary causes in Southeast China[J]. Meteorology and Atmospheric Physics,2018. DOI:10.1007/s00703-018-0594-5.
doi: 10.1007/s00703-018-0594-5    
32 LiR C Y, ZhouWen, LeeT C. Climatological characteristics and observed trends of tropical cyclone-induced rainfall and their influences on long-term rainfall variations in Hong Kong[J]. Monthly Weather Review,2015, 143: 2 192-2 206.
33 RenFumin, LiangJin, WuGuoxiong, et al. Reliability analysis of climate change of tropical cyclone activity over the western north Pacific [J]. Journal of Climate,2011, 24(22): 5 887-5 898.
34 YeXiaoyan, ChenChongcheng, LuoMing. Interdecadal relationship between the East Asian summer precipitation and global sea surface temperature anomalies[J]. Advances in Earth Science, 2016, 31(9): 984-994.
叶晓燕,陈崇成,罗明.东亚夏季降水与全球海温异常的年代际变化关系[J].地球科学进展,2016,31(9):984-994.
[1] 谢彦君, 任福民, 李国平, 王铭杨, 杨慧. 影响中国双台风活动气候特征研究[J]. 地球科学进展, 2020, 35(1): 101-108.
[2] 雷小途,张雪芬,段晚锁,李泓,高志球,钱传海,赵兵科,汤杰. 近海台风立体协同观测科学试验[J]. 地球科学进展, 2019, 34(7): 671-678.
[3] 陈华, 霍也. 台风变性过程中下游环流发展的个例对比研究[J]. 地球科学进展, 2016, 31(4): 409-421.
[4] 端义宏. 登陆台风精细结构的观测、预报与影响评估[J]. 地球科学进展, 2015, 30(8): 847-854.
[5] 雷小途. 无人飞机在台风探测中的应用进展[J]. 地球科学进展, 2015, 30(2): 276-283.
[6] 陈大可,雷小途,王伟,王桂华,韩桂军,周磊. 上层海洋对台风的响应和调制机理[J]. 地球科学进展, 2013, 28(10): 1077-1086.
[7] 张朝林,宋长青. “复杂构型涡旋移动动力学的研究”研究成果介绍[J]. 地球科学进展, 2013, 28(9): 1062-1063.
[8] 王晨稀. 边界层参数化影响“梅花”台风的敏感性试验[J]. 地球科学进展, 2013, 28(2): 197-208.
[9] 赵兵科,鲁小琴,万日金,张维. 0608号超强台风“桑美”强度变化位涡诊断分析[J]. 地球科学进展, 2011, 26(5): 528-537.
[10] 詹奕哲,王振会,官莉, 张蕾. 卫星导风在台风路径预报中的应用进展[J]. 地球科学进展, 2011, 26(4): 386-393.
阅读次数
全文


摘要