地球科学进展 ›› 2013, Vol. 28 ›› Issue (2): 197 -208. doi: 10.11867/j.issn.1001-8166.2013.02.0197

研究论文 上一篇    下一篇

边界层参数化影响“梅花”台风的敏感性试验
王晨稀   
  1. 中国气象局上海台风研究所/中国气象局台风预报技术重点开放实验室,上海 200030
  • 收稿日期:2012-09-10 修回日期:2012-12-13 出版日期:2013-02-10
  • 基金资助:

    家重点基础研究发展计划项目“台风登陆前后异常变化及机理研究”(编号:2009CB421506);国家自然科学基金项目“西北太平洋热带气旋活动的年循环变异机理研究”(编号:41075071)资助.

Experiments of Influence of Planetary Boundary Layer Parameterization on Muifa Typhoon Prediction

Wang Chenxi   

  1. Shanghai Typhoon Institute/Laboratory of Typhoon Forecast Technique, CMA, Shanghai 200030, China
  • Received:2012-09-10 Revised:2012-12-13 Online:2013-02-10 Published:2013-02-10

以GRAPES-TCM为试验模式,对1109台风“梅花”进行了36次72 h的预报试验,通过试验分析了2种边界层参数化方案——MRF方案与YSU方案在不同情况下对台风预报的影响。结果显示:“梅花”路径与强度对边界层方案的变化都表现出一定的敏感性,敏感性大小与对流参数化方案、台风的初始强度等因素有关,强度的敏感性比路径更明显;对弱台风的路径与强度,YSU方案的总体预报效果优于MRF方案,对于强台风,2种边界层方案中MRF方案的路径预报效果更好,哪种方案的强度预报效果更好与对流参数化方案有关;无论何种情况,YSU方案预报的“梅花”强度都明显强于MRF方案,YSU方案预报的降水及感热通量与潜热通量总体上大于MRF方案;YSU方案时更多的感热通量和潜热通量与该方案时边界层更强的湍流混合有关,更多的潜热通量导致更多的降水,从而释放更多的潜热,更多的潜热释放以及更多的感热通量导致台风强度更强。

The GRAPES-TCM is used to make prediction experiments for Typhoon Muifa (1109). Thirty six experiments are made and the integral time is 72 h. By experiments, the influence of two boundary layer parameterization schemes—MRF scheme and YSU scheme on typhoon prediction under different circumstances is analyzed.
Theexperiment results show that Muifa track and intensity are both sensitive to the boundary layer scheme’s change. The sensitivity magnitude is related to some other factors such as convection parameterization scheme and typhoon initial intensity. The intensity sensitivity is greater than the track sensitivity. For weak typhoon, the track and intensity predictions with YSU scheme are overall better than that with MRF scheme. For strong typhoon, between the two boundary layer schemes, MRF scheme’s track prediction is better. Which scheme’s intensity prediction is better is related to the choice of the convection scheme. In all cases, Muifa intensity with YSU scheme is obviously stronger than that with MRF scheme, and the precipitation and the sensible heat flux and latent heat flux with YSU scheme are all greater than that with MRF scheme. When the boundary layer scheme is YSU scheme, the turbulence mixing in the boundary layer is more powerful, which leads to more sensible heat flux and more latent heat flux. More latent heat flux leads to more precipitation which releases more latent heat. More latent heat release and more sensible heat flux lead to stronger typhoon.

中图分类号: 

[1]Chen Dehui, Xue Jishan. An overview on recent progresses of the operational numerical weather prediction models[J]. Acta Eteorologica Sinica, 2004, 62(5): 623-633.[陈德辉, 薛纪善. 数值天气预报业务模式现状与展望[J]. 气象学报, 2004, 62(5): 623-633.]

[2]Chen Lianshou, Ding Yihui. The Generality of Typhoon in the Western Pacific[M]. Beijing: Science Press, 1979.[陈联寿, 丁一汇. 西太平洋台风概论[M]. 北京: 科学出版社, 1979.]

[3]Anthes R A. Dynamics and Energetics of a Mature Hurricane[M]. Beijing: Science Press, 1980: 31-55.[Anthes R A. 成熟飓风的动力学和能量学[M]. 北京: 科学出版社, 1980: 31-55.]

[4]Koyolev V S, Pertrichenko S A, Pudov V D. Heat and moisture exchange between the ocean and atmosphere in tropical storms Tess and Skip[J]. Soviet Meteorology and Hydrology, 1990, 3(1): 92-94.

[5]Schade L R, Emanual K A. The ocean’s effect on the intensity of tropical cyclones: Results from a simple coupled atmosphere-ocean model[J]. Journal the Atmospheric Sciences, 1999, 56(4): 642-651.

[6]Charney S W, Anthes R A. The numerical response of the tropical cyclone and the ocean[J]. Journal of Physical Oceanography, 1979, 9(1): 126-135.

[7]Zhang Fuqing, Du Huawu, Jiang Quanrong. A numerical study of the boundary layer effect on mature typhoon[J]. Journal of Tropical Meteorology, 1994, 10(2): 107-114.[张福青, 杜华武, 蒋全荣. 成熟台风边界层作用的数值研究[J]. 热带气象学报, 1994, 10(2): 107-114.]

[8]Deng Guo, Zhou Yushu, Li Jiantong. The experiments of the boundary layer schemes on simulated typhoon Part I. The effect on the structure of typhoon[J]. Chinese Journal of Atmospheric Sciences, 2005, 29(3): 813-824.[邓国, 周玉淑, 李建通. 台风数值模拟中边界层方案的敏感性试验I.对台风结构的影响[J]. 大气科学, 2005, 29(3): 813-824.]

[9]Braun S A, Tao W K. Sensitivity of high-resolution simulations of Hurricane Bob (1991) to planetary boundary layer parameterizations[J]. Monthly Weather Review, 2000, 128(12): 3 941-3 961.

[10]Davis C A, Bosart L F. Numerical simulations of the genesis of Hurricane Diana. Part II: Sensitivity of track and intensity prediction[J]. Monthly Weather Review, 2002, 130(5): 1 100-1 124.

[11]Li X, Pu Z. Sensitivity of numerical simulation of early rapid intensification of Hurricane Emily(2005) to cloud microphysical and planetary boundary layer parameterizations[J]. Monthly Weather Review, 2008, 136(12): 4 819-4 838.

[12]Hill K A, Lackmann G M. Analysis of idealized tropical cyclone simulations using the weather research and forecasting model: Sensitivity to turbulence parameterization and grid spacing[J]. Monthly Weather Review, 2009, 137(2): 745-765.

[13]Nolan D S,  Zhang J A, Stern D P. Evaluation of planetary boundary layer parameterizations in tropical cyclones by comparison of in situ observations and high-resolution simulations of Hurricane Isabel(2003). Part I: Initialization, maximum winds, and the outer-core boundary layer[J]. Monthly Weather Review, 2009, 137(11): 3 651-3 674.

[14]Nolan D S, Stern D P, Zhang J A. Evaluation of planetary boundary layer parameterizations in tropical cyclones by comparison of in situ observations and high-resolution simulations of Hurricane Isabel(2003). Part II: Inner-core boundary layer and eyewall structure[J]. Monthly Weather Review, 2009, 137(11): 3 675-3 698.

[15]Huang Wei, Duan Yihong, Xue Jishan, et al. Operational experiments and its performance analysis of the tropical cyclone numerical model[J]. Acta Eteorologica Sinica, 2007, 65(4): 578-587.[黄伟, 端义宏, 薛纪善, 等. 热带气旋路径数值模式业务试验性能分析[J]. 气象学报, 2007, 65(4): 578-587.]

[1] 王澄海, 张晟宁, 张飞民, 李课臣, 杨凯. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[2] 王忠静,石羽佳,张腾. TRMM遥感降水低估还是高估中国大陆地区的降水?[J]. 地球科学进展, 2021, 36(6): 604-615.
[3] 王鹏,刘磊,刘西川,胡帅,赵世军,姬文明,高太长. 球载云降水粒子探测器研究现状及进展[J]. 地球科学进展, 2020, 35(7): 704-714.
[4] 张宏文,续昱,高艳红. 19822005年青藏高原降水再循环率的模拟研究[J]. 地球科学进展, 2020, 35(3): 297-307.
[5] 梅双丽,李勇,马杰. 热带季节内振荡在延伸期预报中的应用进展[J]. 地球科学进展, 2020, 35(12): 1222-1231.
[6] 高艳红,许建伟,张萌,姜凤友. 中国 400 mm等降水量变迁与干湿变化研究进展[J]. 地球科学进展, 2020, 35(11): 1101-1112.
[7] 李修仓,姜彤,吴萍. 水分再循环计算模型的研究进展及其展望[J]. 地球科学进展, 2020, 35(10): 1029-1040.
[8] 谢彦君, 任福民, 李国平, 王铭杨, 杨慧. 影响中国双台风活动气候特征研究[J]. 地球科学进展, 2020, 35(1): 101-108.
[9] 蒋诗威,周鑫. 中国东南地区中世纪暖期和小冰期夏季风降水研究进展[J]. 地球科学进展, 2019, 34(7): 697-705.
[10] 朱月佳,邢蕊,朱明佳,王东勇,邱学兴. 联合概率方法在安徽强对流潜势预报中的应用和检验[J]. 地球科学进展, 2019, 34(7): 731-746.
[11] 杨慧,任福民,杨明仁. 不同强度热带气旋对中国降水变化的影响[J]. 地球科学进展, 2019, 34(7): 747-756.
[12] 王玥,唐朝生,吕超,王鹏,荣德政,王宏胜. 干燥脱水过程中纤维加筋固化淤泥的强度特性[J]. 地球科学进展, 2019, 34(4): 433-438.
[13] 窦芳丽,陆其峰,郭杨. 全天候卫星微波观测资料变分同化研究进展[J]. 地球科学进展, 2019, 34(11): 1120-1130.
[14] 谢鑫昌,杨云川,田忆,廖丽萍,韦钧培,周津羽,陈立华. 广西降水非均匀性多尺度特征与综合评价[J]. 地球科学进展, 2019, 34(11): 1152-1164.
[15] 常海钦,付亚龙,林鑫,张苗苗,孟刚刚. 流域盆地化学风化强度空间分布及控制因素研究:以长江和珠江为例[J]. 地球科学进展, 2019, 34(1): 93-102.
阅读次数
全文


摘要