地球科学进展 ›› 2019, Vol. 34 ›› Issue (11): 1152 -1164. doi: 10.11867/j.issn.1001-8166.2019.11.1152

研究论文 上一篇    下一篇

广西降水非均匀性多尺度特征与综合评价
谢鑫昌 1( ),杨云川 1, 2, 3( ),田忆 1,廖丽萍 1, 2, 3,韦钧培 1,周津羽 1,陈立华 1, 2, 3   
  1. 1. 广西大学土木建筑工程学院,广西 南宁 530004
    2. 广西大学工程防灾与结构安全教育部重点实验室,广西 南宁 530004
    3. 广西防灾减灾与工程安全重点实验室,广西 南宁 530004
  • 收稿日期:2019-09-05 修回日期:2019-10-25 出版日期:2019-11-10
  • 通讯作者: 杨云川 E-mail:xiexinchanggxdx@163.com;yyc_sciences@163.com
  • 基金资助:
    国家自然科学基金项目“基于AquaCrop模型的甘蔗干旱机制模拟及旱灾风险评估方法研究”(51609041);广西自然科学基金项目“广西甘蔗的骤发性干旱响应机理与三维度量及前兆信号诊断研究”(2019GXNSFAA185015)

Multi-scale Characteristics and Comprehensive Evaluation of Precipitation Heterogeneity in Guangxi

Xinchang Xie 1( ),Yunchuan Yang 1, 2, 3( ),Yi Tian 1,Liping Liao 1, 2, 3,Junpei Wei 1,Jinyu Zhou 1,Lihua Chen 1, 2, 3   

  1. 1. College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China
    2. Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi University, Nanning 530004, China
    3. Key Laboratory of Disaster Prevention and Engineering Safety, Guangxi, Nanning 530004, China
  • Received:2019-09-05 Revised:2019-10-25 Online:2019-11-10 Published:2019-12-31
  • Contact: Yunchuan Yang E-mail:xiexinchanggxdx@163.com;yyc_sciences@163.com
  • About author:Xie Xinchang (1995-), male, Lingshan County, Guangxi Province, Master student. Research areas include agricultural water resources. E-mail: xiexinchanggxdx@163.com
  • Supported by:
    the National Natural Science Foundation of China ”Study on simulation of sugarcane drought mechanism based on AquaCrop model and drought risk assessment method”(51609041);The Natural Science Foundation of Guangxi Province ”Study on response mechanism, three-dimensional measurement and precursory signal diagnosis of sugarcane in Guangxi”(2019GXNSFAA185015)

针对广西降水时空分配不均、旱涝灾害频发的现象,开展降水非均匀性多尺度特征和综合评价,可为区域应对旱涝灾害及水资源智慧管理提供科学支撑。基于1961—2017年广西87个格点的逐日降水资料,采用降水集中度(PCD)、降水集中期(PCP)指数构建日、候、旬、月、季多时间尺度的降水非均匀性等级评价体系,借助R/S分析和地理空间分析方法讨论了广西时空演变和气候分区特征。研究表明:日、候、旬尺度的PCD和PCP时空变化特征相对一致,较月、季尺度更能表达广西降水的非均匀性特征;广西降水的PCD历时变化在东北地区主要呈现递增趋势,而在西南地区主要呈递减趋势,其未来一段时期的变化趋势与历时演变相同;广西降水的PCD空间分布存在显著的空间自相关性和分层异质性,主要表现在PCD的均值、变异系数和发生频率上;广西降水的综合非均匀性总体呈现东北部地区高度分散、南部地区高度集中、西北和中部地区则为轻度集中或分散的分布格局。月以内的时间尺度是表达广西降水非均匀性的最佳尺度,若要考虑侯、旬尺度更加稳定和日尺度更加精细的优势,则采用候尺度进行逐日滑动计算分析将是最佳方式。

Aiming at the uneven spatial and temporal distribution of precipitation and frequent occurrence of drought and waterlogging disasters in Guangxi, the multi-scale characteristics and comprehensive evaluation of precipitation heterogeneity can provide scientific support for regional response to drought and waterlogging disasters and intelligent management of water resources. Based on the daily precipitation data of 87 grid points from 1961 to 2017 in Guangxi, the Precipitation Concentration Degree (PCD) and Precipitation Concentration Period (PCP) index were used to build day, pentad, ten days, month, season precipitation heterogeneity of multiple time scale level evaluation system. By using R/S analysis and geographical spatial analysis methods, the space-time evolution characteristics and climate division in Guangxi were discussed. The study showed that the spatial and temporal variation characteristics of PCD and PCP at the diurnal, synoptic and monthly scales were relatively consistent, and the heterogeneity of precipitation in Guangxi could be better expressed than that at the monthly and seasonal scales. The diachronic change of PCD in precipitation in Guangxi shows an increasing trend in northeast China and a decreasing trend in southwest China, and the trend of its future period is the same as the diachronic evolution. The spatial distribution of PCD in Guangxi has significant spatial autocorrelation and stratification heterogeneity, which are mainly reflected in the mean value, coefficient of variation and frequency of PCD. The comprehensive heterogeneity of precipitation in Guangxi is highly dispersed in the northeast, highly concentrated in the south, and slightly concentrated or dispersed in the northwest and central regions. The time-scale within a month is the best scale to express the non-uniformity of precipitation in Guangxi. If the advantages of more stable climatic and ten-day scales and more fine daily scales are taken into account, the use of climatic scale for daily sliding calculation and analysis will be the best way.

中图分类号: 

图1 广西降雨格点空间分布示意图
Fig. 1 Spatial distribution of rainfall grid points in Guangxi
表1 各时间尺度非均匀性评价等级表
Table 1 Precipitation heterogeneity evaluation grades of each time scale
表2 各时间尺度 PCD均值、 STDCV统计表
Table 2 statistical tables of PCD mean value, STD and CV of each time scale
图2 不同PCP时间尺度效应变化图
Fig.2 Time scale effect changes of different PCP
图3 日、月、候尺度PCD时间趋势空间分布图
Fig. 3 Temporal and spatial distribution of daily, monthly and pentad scale PCD
图4 日、候、月尺度PCD平均等级空间分异图
(a)日尺度PCD平均等级空间分异图;(b)候尺度PCD平均等级空间分异图;(c)月尺度PCD平均等级空间分异图
Fig. 4 Spatial differentiation of average grades of daily, pentad and monthly PCD
(a) Spatial differentiation map of average grade of daily scale PCD;(b) Spatial differentiation map of average grade of pentad scale PCD;(c) Spatial differentiation map of average grade of monthly scale PCD
表3 日、候、月尺度 q统计量数值表
Table 3 q statistical values of daily, pentad and monthly scales
表4 日、候、月尺度 Moran’s I数值表
Table 4 Moran's I values of daily, pentad and monthly scales
图5 日、候、月尺度PCD局部Lisa聚类图
(a)日尺度;(b)候尺度;(c)月尺度
Fig.5 Partial Lisa clustering diagram of daily, pentad and monthly PCD scales
(a) Daily scale;(b) Pentad scale;(c) Monthly scale
图6 PCD空间非均匀性变化(日尺度)
Fig.6 Spatial heterogeneity variation of PCD (daily scale)
图7 19612017年广西区域综合评价图
(a)日尺度;(b)候尺度;(c)月尺度
Fig 7 Guangxi regional comprehensive evaluation map 1961-2017
(a) Daily scale;(b) Pentad scale;(c) Monthly scale
图8 19612017年不同时间尺度区域等级变化图
(a)日尺度;(b)候尺度;(c)月尺度
Fig. 8 Grading changes of different time scales from 1961 to 2017
(a) Daily scale;(b) Pentad scale;(c) Monthly scale
1 Gao Tao, Xie Li’an. Study on progress of the trends and physical causes of extreme precipitation in China during the last 50 years [J]. Advances in Earth Science, 2014, 29(5): 577-589.
高涛, 谢立安. 近50年来中国极端降水趋势与物理成因研究综述 [J]. 地球科学进展, 2014, 29(5): 577-589.
2 Gao Li, Chen Jing, Zheng Jiawen, et al. Progress in researches on ensemble forecasting of extreme weather based on numerical models[J]. Advances in Earth Science, 2019, 34(7): 706-716.
高丽, 陈静, 郑嘉雯, 等. 极端天气的数值模式集合预报研究进展 [J]. 地球科学进展, 2019, 34(7): 706-716.
3 Qian W, Lin X. Regional trends in recent precipitation indices in China [J]. Meteorology and Atmospheric Physics, 2005, 90(3/4): 193-207.
4 Yang T, Shao Q, Hao Z C, et al. Regional frequency analysis and spatio-temporal pattern characterization of rainfall extremes in the Pearl River Basin, China[J]. Journal of Hydrology, 2010, 380(3/4): 386-405.
5 Huang Ping, Zhou Shijie. Advances and challenges in the study on the tropical rainfall changes under global warming [J]. Advances in Earth Science, 2018, 33(11): 1 181-1 192.
黄平, 周士杰. 全球变暖下热带降水变化研究回顾与挑战 [J]. 地球科学进展, 2018, 33(11): 1 181-1 192.
6 Silva B K N, Lucio P S. Characterization of risk/exposure to climate extremes for the Brazilian Northeast-case study: Rio Grande do Norte[J]. Theoretical and Applied Climatology, 2015, 122(1/2): 59-67.
7 Zhang Bo, Gu Xiaoping, Gu Shuhong. Spatial and temporal variation characteristics of precipitation concentration degree and precipitation concentration period in Guizhou Mountain area [J]. Journal of China Hydrology, 2017, 37(6): 63-67.
张波, 谷晓平, 古书鸿. 贵州山区降水集中度和降水集中期的时空变化特征 [J]. 水文, 2017, 37(6): 63-67.
8 Abolverdi J, Ferdosifar G, Khalili D, et al. Spatial and temporal changes of precipitation concentration in Fars Province, southwestern Iran [J]. Meteorology and Atmospheric Physics, 2015, 128(2): 181-196.
9 Wang H J, Sun J Q, Chen H P, et al. Extreme climate in China:Facts,simulation and projection[J].Meteorologische Zeitschrift, 2012, 21(3): 279-304.
10 Tian Y, Peters-lidard C D, Choudhury B J, et al. Multitemporal analysis of TRMM-Based satellite precipitation products for land data assimilation applications [J]. Journal of Hydrometeorology, 2007, 8(6): 1 165-1 183.
11 Yesilirmak E, Atatanir L. Spatiotemporal variability of precipitation concentration in western Turkey[J]. Natural Hazards, 2016, 81(1): 687-704.
12 Pang Xinxin. Inter-annual variations of precipitation concentration degree and concentration index in Huaihe River Basin [J]. Journal of Yangtze River Scientific Research Institute, 2018, 35(9): 43-47.
庞欣欣. 淮河流域降水集中度和集中指数年际变化分析 [J]. 长江科学院院报, 2018, 35(9): 43-47.
13 Zhai P M, Zhang X B, Wan H, et al. Trends in total precipitation and frequency of daily precipitation extremes over China [J]. Journal of Climate, 2005, 18(7): 1 096-1 108.
14 Liu Yonglin, Yan Junping, Cen Minyi. Comprehensive evaluation of precipitation heterogeneity in China [J]. Acta Geographica Sinica, 2015, 70(3): 392-406.
刘永林, 延军平, 岑敏仪. 中国降水非均匀性综合评价 [J]. 地理学报, 2015, 70(3): 392-406.
15 Zhang L, Qian Y. Annual distribution features of precipitation in China and their interannual variations[J]. Acta Meteorologica Sinica, 2003, 17(2): 146-163.
16 Cao Yongqiang, Li Xiaorui. Temporal and spatial characteristics of precipitation concentration degree and concentration period in flood season in Hebei Province[J]. Hydro-Science and Engineering, 2018,(4): 96-105.
曹永强, 李晓瑞. 河北省汛期降水集中度和集中期时空特征分析[J]. 水利水运工程学报, 2018,(4): 96-105.
17 Liu Zhanming, Wei Xinghu, Chen Zishen, et al. Spatio-temporal change characteristics of PCD and PCP in Guangdong Beijiang River Basin[J]. South-to-North Water Transfers and Water Science & Technology, 2017, 15(4): 19-25.
刘占明, 魏兴琥, 陈子燊, 等. 广东北江流域降水集中度和集中期的时空变化特征[J]. 南水北调与水利科技, 2017, 15(4): 19-25.
18 Chatterjee S, Khan A, Akbari H, et al. Monotonic trends in spatio-temporal distribution and concentration of monsoon precipitation (1901-2002), West Bengal, India [J]. Atmospheric Research, 2016, 182:54-75.
19 Sim?es Y, Cohim E, De Araujo H. Rainfall zoning of Bahia State, Brazil: An update proposal[J]. Ambiente & água-An Interdisciplinary Journal of Applied Science, 2018, 13(1): 1-18.
20 Liu Yonglin, Yan Junping, Cen Minyi. Response relation between precipitation heterogeneity and climate change in Guangdong [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni(Natural Science Edition), 2015, 54(5): 138-146.
刘永林, 延军平, 岑敏仪. 广东省降水非均匀性与气候变化的响应关系 [J]. 中山大学学报:自然科学版, 2015, 54(5): 138-146.
21 Sun Guikai, Gao Mo, Huang Ya, et al. Spatial-temporal variations of precipitation characteristics in Guangxi over the last 50 years [J]. Water Resources and Power, 2016, 34(9): 1-4.
孙桂凯, 高沫, 黄亚, 等. 广西近50年降水结构时空变化特征分析 [J]. 水电能源科学, 2016, 34(9): 1-4.
22 Qin Weijian, Li Dongliang. A study on the climate change characteristics of all kinds of precipitation events in recent 50 year of Guangxi [J]. Journal of Natural Resources, 2014, 29(4): 666-676.
覃卫坚, 李栋梁. 近50a来广西各级降水气候变化特征分析 [J]. 自然资源学报, 2014, 29(4): 666-676.
23 Zhao Yufei, Zhu Jiang, Xu Yan. Establishment and assessment of the grid precipitation datasets in China for recent 50 years [J]. Journal of the Meteorological Sciences, 2014, 34(4): 414-420.
赵煜飞, 朱江, 许艳. 近50a中国降水格点数据集的建立及质量评估 [J]. 气象科学, 2014, 34(4): 414-420.
24 Zhang Lujun, Qian Yongfu. A study on the feature of precipitation concentration and its relation to flood-producing in the Yangtze River valley of China [J]. Chinese Journal of Geophysics, 2004,47(4): 622-630.
张录军, 钱永甫. 长江流域汛期降水集中程度和洪涝关系研究 [J]. 地球物理学报, 2004,47(4): 622-630.
25 Wei Guanju. Calculation method of precipitation concentration degree and precipitation concentration period based on excel [J]. Yellow River, 2017, 39(4): 58-61.
魏鹳举. 降水集中度与集中期的Excel计算方法研究 [J]. 人民黄河, 2017, 39(4): 58-61.
26 Cao Yongqiang, Lu Lu, Zhang Tingting, et al. Spatio-temporal variation in precipitation in Zhejiang Province based on PCD and PCP [J]. Resources Science, 2013, 35(5): 1 001-1 016.
曹永强, 路璐, 张亭亭, 等. 基于降水集中度和集中期的浙江省降水时空变化特征分析 [J]. 资源科学, 2013, 35(5): 1 001-1 006.
27 Miao Yunling, Zhang Yunhui, Zhuo Shixin, et al. Spatial and temporal variation characteristics of PCD and PCP in Eastern Xinjiang in flood season [J]. Journal of Arid Meteorology, 2017, 35(6): 949-956.
苗运玲, 张云惠, 卓世新, 等. 东疆地区汛期降水集中度和集中期的时空变化特征 [J]. 干旱气象, 2017, 35(6): 949-956.
28 Ye Zhengwei, Yin Peng. Changes of precipitation concentration degree and precipitation concentration period in flood season in the Huaihe River Basin [J]. Research of Soil and Water Conservation, 2018, 25(5): 295-299.
叶正伟, 殷鹏. 淮河流域汛期候尺度降水集中度与集中期的时序变化特征[J]. 水土保持研究, 2018, 25(5): 295-299.
29 Zhu Yanxin, Sang Yanfang. Spatial variability in the seasonal distribution of precipitation on the Tibetan Plateau [J]. Progress in Geography, 2018, 37(11): 1 533-1 544.
朱艳欣, 桑燕芳. 青藏高原降水季节分配的空间变化特征 [J]. 地理科学进展, 2018, 37(11): 1 533-1 544.
30 Huang Y, Wang H, Xiao W, et al. Spatial and temporal variability in the precipitation concentration in the Upper Reaches of the Hongshui River Basin, Southwestern China [J]. Advances in Meteorology, 2018,2018: 1-19.
31 Yin Y, Xu C Y, Chen H, et al. Trend and concentration characteristics of precipitation and related climatic teleconnections from 1982 to 2010 in the Beas River basin, India [J]. Global and Planetary Change, 2016, 145:116-29.
32 Qin Weijian, Wang Yongqing, Qin Zhinian. Study on the variation characteristics of precipitation concentration degree in Guangxi under the background of global climate becoming warm[J]. Journal of Anhui Agricultural Sciences, 2010, 38(21): 11 224-11 227.
覃卫坚, 王咏青, 覃志年. 全球气候变暖背景下广西降水集中程度的变化特征研究[J]. 安徽农业科学, 2010, 38(21): 11 224-11 227.
33 Wang Chengbo, Li Shuangshuang, Yan Junping, et al. Spatiotemporal variation of extreme precipitation regimes in the Hanjiang River Basin during 1970-2015 [J]. Journal of Natural Resources, 2019, 34(6): 1 209-1 222.
汪成博, 李双双, 延军平, 等. 1970—2015年汉江流域多尺度极端降水时空变化特征 [J]. 自然资源学报, 2019, 34(6): 1 209-1 222.
34 Tan Fangying, Wang Jianlin, Song Yingbo, et al. Analysis of changing characteristics of agricultural climate resources over last 45 years in North China Plain [J]. Chinese Journal of Agrometeorology, 2009, 30(1): 19-24.
谭方颖, 王建林, 宋迎波, 等. 华北平原近45年农业气候资源变化特征分析 [J]. 中国农业气象, 2009, 30(1): 19-24.
35 Hurst H E. Long-term storage capacity of reservoirs [J]. Transactions of American Society of Civil Engineers, 1951, 116(1):770-799.
36 Liu Zhanming, Hu Baoqing, Yan Yan, et al. Intra-annual inhomogeneity characteristics of precipitation in Guangxi Beibu Gulf economic zone [J]. Water Power, 2017, 43(6): 23-27.
刘占明, 胡宝清, 闫妍, 等. 北部湾经济区降水年内非均匀性特征分析 [J]. 水力发电, 2017, 43(6): 23-27.
37 Wang Jinfeng, Xu Chengdong. Geodetector: Principle and prospective [J]. Acta Geographica Sinica, 2017, 72(1): 116-134.
王劲峰, 徐成东. 地理探测器:原理与展望 [J]. 地理学报, 2017, 72(1): 116-134.
38 Moran P A P. Notes on Continuous stochastic phenomena [J]. Biometrika, 1950, 37(1/2): 17-23.
39 Song Wen, Chen Ying. Selection of observed variables and measuring indicators for the land use spatial autocorrelation analysis [J]. Journal of Arid Land Resources and Environment, 2015, 29(10): 37-42.
宋文, 陈英. 土地利用空间自相关分析中观测变量和衡量指标的选择研究 [J]. 干旱区资源与环境, 2015, 29(10): 37-42.
40 Zhang Songlin, Zhang Kun. Contrast study on Moran and Getis-ord indexes of local spatial autocorrelation indices [J]. Journal of Geodesy and Geodynamics, 2007,27(3): 31-34.
张松林, 张昆. 空间自相关局部指标Moran指数和G系数研究 [J]. 大地测量与地球动力学, 2007,27(3): 31-34.
41 Huang Jiahong, Li Jiangnan, Li Zi 'an, et al. Climatic characteristics of precipitation and temperature in the past 45 years in Guangxi [J]. Tropical Geography, 2006,26(1): 23-28.
黄嘉宏, 李江南, 李自安, 等. 近45a广西降水和气温的气候特征[J]. 热带地理, 2006,26(1): 23-28.
42 Li Jiaxu, Zhao Yinjun. Spatial statistical analysis of the distribution of minorities in Guangxi based on GIS [J]. Journal of Nanning Teachers Education University(Natural Science Edition), 2019, 36(1): 114-120.
李家旭, 赵银军. 基于GIS的广西少数民族人口分布的空间统计分析 [J]. 广西师范学院学报:自然科学版, 2019, 36(1): 114-120.
[1] 王澄海, 张晟宁, 张飞民, 李课臣, 杨凯. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[2] 王忠静,石羽佳,张腾. TRMM遥感降水低估还是高估中国大陆地区的降水?[J]. 地球科学进展, 2021, 36(6): 604-615.
[3] 李耀辉, 孟宪红, 张宏升, 李忆平, 王闪闪, 沙莎, 莫绍青. 青藏高原—沙漠的陆—气耦合及对干旱影响的进展及其关键科学问题[J]. 地球科学进展, 2021, 36(3): 265-275.
[4] 陈仁升, 沈永平, 毛炜峄, 张世强, 吕海深, 刘永强, 刘章文, 房世峰, 张伟, 陈春艳, 韩春坛, 刘俊峰, 赵求东, 郝晓华, 李如琦, 秦艳, 黄维东, 赵成先, 王书峰. 西北干旱区融雪洪水灾害预报预警技术:进展与展望[J]. 地球科学进展, 2021, 36(3): 233-244.
[5] 高艳红,许建伟,张萌,姜凤友. 中国 400 mm等降水量变迁与干湿变化研究进展[J]. 地球科学进展, 2020, 35(11): 1101-1112.
[6] 王鹏,邓红卫. 基于 GISLogistic回归模型的洪涝灾害区划研究[J]. 地球科学进展, 2020, 35(10): 1064-1072.
[7] 闫昕旸,张强,闫晓敏,王胜,任雪塬,赵福年. 全球干旱区分布特征及成因机制研究进展[J]. 地球科学进展, 2019, 34(8): 826-841.
[8] 蒋诗威,周鑫. 中国东南地区中世纪暖期和小冰期夏季风降水研究进展[J]. 地球科学进展, 2019, 34(7): 697-705.
[9] 尤元红,黄春林,张莹,侯金亮. Noah-MP模型中积雪模拟对参数化方案的敏感性评估[J]. 地球科学进展, 2019, 34(4): 356-365.
[10] 黄平, 周士杰. 全球变暖下热带降水变化研究回顾与挑战 *[J]. 地球科学进展, 2018, 33(11): 1181-1192.
[11] 黄平, 周士杰. 全球变暖下热带降水变化研究回顾与挑战[J]. 地球科学进展, 0, (): 1-.
[12] 张晓闻, 臧淑英, 孙丽. 近40年东北地区积雪日数时空变化特征及其与气候要素的关系[J]. 地球科学进展, 2018, 33(9): 958-968.
[13] 肖雄新, 张廷军. 基于被动微波遥感的积雪深度和雪水当量反演研究进展[J]. 地球科学进展, 2018, 33(6): 590-605.
[14] 陈亮, 段建平, 马柱国. 大气环流形势客观分型及其与中国降水的联系[J]. 地球科学进展, 2018, 33(4): 396-403.
[15] 王建, 车涛, 李震, 李弘毅, 郝晓华, 郑照军, 肖鹏峰, 李晓峰, 黄晓东, 钟歆玥, 戴礼云, 李红星, 柯长青, 李兰海. 中国积雪特性及分布调查[J]. 地球科学进展, 2018, 33(1): 12-15.
阅读次数
全文


摘要