Please wait a minute...
img img
高级检索
地球科学进展  2018, Vol. 33 Issue (1): 12-15    DOI: 10.11867/j.issn.1001-8166.2018.01.0012
科技重大计划进展     
中国积雪特性及分布调查
王建1,8(), 车涛1,9, 李震2, 李弘毅1, 郝晓华1, 郑照军3, 肖鹏峰4, 李晓峰5, 黄晓东6, 钟歆玥1, 戴礼云1, 李红星1, 柯长青4, 李兰海7
1.中国科学院西北生态环境资源研究院,甘肃 兰州 730000
2. 中国科学院遥感与数字地球研究所,北京 100101
3.国家卫星气象中心,北京 100081
4. 南京大学,江苏 南京 210093
5.中国科学院东北地理与农业生态研究所,吉林 长春 130102
6.兰州大学,甘肃 兰州 730000
7.中国科学院新疆生态与地理研究所,新疆 乌鲁木齐 830011
8.江苏省地理信息资源开发与利用协同创新中心, 210097
9. 中国科学院青藏高原地球科学卓越创新中心, 北京 100101
Investigation on Snow Characteristics and Their Distribution in China
Jian Wang1,8(), Tao Che1,9, Zhen Li2, Hongyi Li1, Xiaohua Hao1, Zhaojun Zheng3, Pengfeng Xiao4, Xiaofeng Li5, Xiaodong Huang6, Xinyue Zhong1, Liyun Dai1, Hongxing Li1, Changqing Ke4, Lanhai Li7
1.Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences,Lanzhou 730000, China
2.Institute of Remote Sensing and Digital Earth,Beijing 100101, China
3.National Satellite Meteorological Centre,Beijing 100081, China
4.Nanjing University,Nanjing 210093, China
5.Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences,Changchun 130102, China
6.Lanzhou University,Lanzhou 730000,China
7.Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences,Urumchi 830011, China
8.Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210097, China
9. Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101, China
 全文: PDF(7855 KB)   HTML
摘要:

介绍了“中国积雪特性及分布调查”的背景、科学目标、调查内容及方案。调查的总体目标是建立中国全面而系统的积雪特性数据库,服务于气候变化、水资源调查和积雪灾害的数据需求。调查将从历史资料整编、典型积雪区积雪特性地面调查以及积雪遥感调查等方面展开。历史资料的整编包括收集气象站以及各单位已开展的积雪特性观测资料,并按照一定的规范进行整编;典型积雪区地面调查主要是在东北地区、新疆地区和青藏高原开展不同季节的积雪特性调查,以点、线、面3种方式开展,观测内容包括雪深、雪密度、雪水当量、积雪形态、表层硬度、液态水含量、雪粒径、雪层温度、雪土界面温度、介电常数以及积雪的若干化学特性;遥感积雪调查将利用地面调查的积雪特性信息改进已有的积雪参数反演算法,建立中国长序列的积雪面积、反照率以及雪水当量数据集。最终,利用地面和遥感调查所获取的积雪特性及分布数据集对中国进行积雪类型划分,并生产系列积雪特性及专题分布图。

关键词: 积雪特性积雪类型地面调查遥感调查中国    
Abstract:

The background, scientific objective, investigation contents and scheme of project “Investigation on snow characteristics and their distribution in China” was introduced in this paper. The general objective of the investigation is to build comprehensive and systematic database of snow characteristics in China, at the service of providing data for the climate change, water resource and snow disaster studies. The investigation will be performed on the three fields including the compilation of historical data, in situ measurement of snow characteristics in the typical regions, and investigation of snow characteristics using remote sensing methods. For the compilation of historical data, the historical snow data from the meteorological stations and research institutes will be firstly collected, and then they will be compiled based on a standard rule. In situ observation will be performed at point, line and area-scale on the typical regions which include Northeast region, Xinjiang Degion, and Qinghai-Tibet Plateau. The observation content will contain snow depth, snow density, snow water equivalent, snow particle shape, hardness of snowpack surface, liquid water content, grain size, snow temperature, snow/soil temperature, dielectric constant, and some chemical parameters. These snow characteristics are the priority information used for the modification of retrieval algorithm on snow parameters. Remote sensing methods will be used to build long-time series of snow cover, snow albedo and snow water equivalent datasets based on these modified algorithms. Finally, the snow characteristics from both in situ and remote sensing investigation will be used to classify snow types in China, and produce distribution maps of snow characteristic and other thematic maps.

Key words: Snow characteristic    Snow type    In situ investigation    Remote sensing investigation    China.
收稿日期: 2017-10-25 出版日期: 2018-03-06
ZTFLH:  P426.63+5  
基金资助: 科技部国家科技基础资源调查专项“中国积雪特性及分布调查”(编号:2017FY100500)资助
作者简介:

作者简介:王建(1963-),男,安徽休宁人,研究员,主要从事积雪遥感和融雪径流模拟模型研究.E-mail:wjian@lzb.ac.cn

服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王建
车涛
李震
李弘毅
郝晓华
郑照军
肖鹏峰
李晓峰
黄晓东
钟歆玥
戴礼云
李红星
柯长青
李兰海

引用本文:

王建, 车涛, 李震, 李弘毅, 郝晓华, 郑照军, 肖鹏峰, 李晓峰, 黄晓东, 钟歆玥, 戴礼云, 李红星, 柯长青, 李兰海. 中国积雪特性及分布调查[J]. 地球科学进展, 2018, 33(1): 12-15.

Jian Wang, Tao Che, Zhen Li, Hongyi Li, Xiaohua Hao, Zhaojun Zheng, Pengfeng Xiao, Xiaofeng Li, Xiaodong Huang, Xinyue Zhong, Liyun Dai, Hongxing Li, Changqing Ke, Lanhai Li. Investigation on Snow Characteristics and Their Distribution in China. Advances in Earth Science, 2018, 33(1): 12-15.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2018.01.0012        http://www.adearth.ac.cn/CN/Y2018/V33/I1/12

剖面测量内容 仪器
雪深 SR50A超声波
雪水当量 GMON3,人工
雪反照率 四分量表
表层温度 红外温度计
雪液态水含量、介电常数、积雪密度 雪特性分析仪(SPA)
风速,风向,大气压空气温度、相对
湿度
风温湿压传感器
积雪形态 形状卡片
积雪硬度 硬度计
积雪粒径(分层) 手持拍照显微镜、ICECUBE
雪层温度(分层) 温度计
雪土界面温度 温度计
雪压 雪压计
黑碳 采集雪样室内分析
阴阳离子 采集雪样室内分析
pH值 采集雪样室内分析
表1  积雪“点”观测内容及仪器
剖面测量内容 仪器
雪深(分层) 刻度尺
雪密度(分层) 雪特性分析仪(Snowfork),雪铲
雪水当量 雪压计
表层硬度 硬度计
雪液态水含量(分层) 雪特性分析仪(Snowfork)
雪粒径(分层) 手持拍照显微镜、ICECUBE
雪层温度(分层) 温度计
雪土界面温度 温度计
雪介电常数(分层) 雪特性分析仪(Snowfork)
雪样采集(分层) 采集袋或采集器
积雪形态 形状卡片
表2  积雪“线”观测内容及仪器
图1  地面积雪观测历史资料整编数据集构建流程
图2  积雪观测超级站、普通站以及气象台站分布图
图3  积雪剖面测量线路设计示意图
图4  超级站样方设计示意图红线为主干线,绿线为测雪线路
图5  中国积雪特性遥感调查技术路线图
图6  基于AVHRR的积雪面积产品制备流程图
图7  基于MODIS的积雪面积产品制备流程图
图8  雪水当量产品研制流程图
图9  积雪反照率产品研制流程图
[1] Qin Dahe, Chen Zhenlin, Luo Yong, et al.Updated understanding of climate change sciences[J]. Advances in Climate Change Research, 2007, 3(2): 63-73.[秦大河, 陈振林, 罗勇,等. 气候变化科学的最新认知[J]. 气候变化研究进展, 2007, 3(2): 63-73.]
doi: 10.3969/j.issn.1673-1719.2007.02.001
[2] Choi G, Robinson D, Kang S.Changing northern hemisphere snow seasons[J]. Journal of Climate, 2010, 23(19): 5 305-5 310.
doi: 10.1175/2010JCLI3644.1
[3] Che Tao, Li Xin.Spatial distribution and temporal variation of snow water resources in China during 1993-2002[J]. Journal of Glaciology and Geocryology, 2005,27(1): 64-67.[车涛,李新.1993—2002年中国积雪水资源时空分布与变化特征[J]. 冰川冻土, 2005, 27(1): 64-67.]
doi: 10.3969/j.issn.1000-0240.2005.01.009
[4] Wang Jian, Li Shuo.Influence of climate change on the runoff of melting snow in the arid mountainous areas in China[J]. Science in China (Series D), 2005, 35(7): 664-670.[王建, 李硕. 气候变化对中国内陆干旱区山区融雪径流的影响[J]. 中国科学: D 辑, 2005, 35(7): 664-670.]
doi: 10.3321/j.issn:1006-9267.2005.07.008
[5] Hu Ruji.Snow and Snow Disaster in China[M]. Beijing: Chinese Environment Science Press, 2013.[胡汝骥. 中国积雪与雪灾防治[M]. 北京:中国环境出版社,2013.]
[6] Feng Xuezhi, Zeng Qunzhu, Chen Xianzhang, et al.Study on monitoring snow disaster in tibet using remote sensing[J]. Collected Papers by Lanzhou Institute of Glaciology and Cryopedology, Chinese Academy of Sciences,1995,(8): 14-23.[冯学智,曾群柱,陈贤章,等. 西藏那曲雪灾的遥感监测研究[J].中国科学院兰州冰川冻土研究所集刊, 1995,(8): 14-23.]
[7] Cayan D R.Interannual climate variability and snowpack in the western United States[J]. Journal of Climate,1996, 9(5): 928-948.
doi: 10.1175/1520-0442(1996)009<0928:ICVASI>2.0.CO;2
[8] Lundberg A, Koivusalo H.Estimating winter evaporation in boreal forests with operational snow course data[J]. Hydrological Processes, 2003, 8(17): 1 479-1 493.
doi: 10.1002/hyp.1179
[9] Ma Lijuan, Qin Dahe.Spatial-temporal characteristics of observed key parameters for snow cover in China during 1957-2009[J]. Journal of Glaciology and Geocryology, 2012, 34(1): 1-11.[马丽娟, 秦大河. 1957—2009年中国台站观测的关键积雪参数时空变化特征[J]. 冰川冻土, 2012, 34(1): 1-11.]
[10] Wang Chenghai, Wang Zhilan, Cui Yang.Snow cover of China during the last 40 years: Spatial distribution and interannual variation[J]. Journal of Glaciology and Geocryology, 2009, 31(2): 301-310.[王澄海, 王芝兰, 崔洋. 40余年来中国地区季节性积雪的空间分布及年际变化特征[J]. 冰川冻土, 2009, 31(2): 301-310.]
[11] China Meteorological Administration.Ground Meteorological Observation Dpecifications[M]. Beijing: China Meteorological Press, 2003: 151-153.[中国气象局. 地面气象观测规范[M]. 北京: 气象出版社, 2003:151-153.]
[12] Cline D, Elder K, Bales R.Scale effects in a distributed snow water equivalence and snowmelt model for mountain basins[J]. Hydrological Processes, 1998, 12(10/11): 1 527-1 536.
doi: 10.1002/(ISSN)1099-1085
[13] Cline D W, Bales R C, Dozier J.Estimating the spatial distribution of snow in mountain basins using remote sensing and energy balance modeling[J]. Water Resources Research, 1998, 34(5): 1 275-1 285.
doi: 10.1029/97WR03755
[14] Luce C H, Tarboton D G, Cooley K R.The influence of the spatial distribution of snow on basin-averaged snowmelt[J]. Hydrological Processes, 1998, 12(10/11): 1 671-1 683.
doi: 10.1002/(ISSN)1099-1085
[15] Dozier J, Painter T.Multispectral and hyperspectral remote sensing of alpine snow properties[J]. Annual Review of Earth and Planetary Sciences, 2004, 32: 465-494.
doi: 10.1146/annurev.earth.32.101802.120404
[16] Cline D, Armstrong R, Davis R, et al.CLPX LSOS snow pit measurements[M]∥Parsons M, Brodzik M J, eds. CLPX-Ground: Snow Measurements at the Local Scale Observation Site (LSOS). Boulder, CO: National Snow and Ice Data Center, 2002.
[17] Cline D, Armstrong R, Davis R, et al.CLPX GBMR snow pit measurements[M]∥Parsons M, Brodzik M J, eds. CLPX-Ground: Ground Based Passive Microwave Radiometer (GBMR-7) Data. Boulder, CO: National Snow and Ice Data Center, 2002.
[18] Li Xin, Liu Shaomin, Ma Mingguo, et al.HiWATER: An integrated remote sensing experiment on hydrological andecological processes in the Heihe River Basin[J]. Advances in Earth Science, 2012, 27(5): 481-498.[李新, 刘绍民, 马明国,等. 黑河流域生态—水文过程综合遥感观测联合试验总体设计[J]. 地球科学进展, 2012, 27(5): 481-498.]
[19] Li X, Cheng G, Liu S, et al.Heihe Watershed Allied Telemetry Experimental Research (HiWATER): Scientific objectives and experimental design[J]. Bulletin of the American Meteorological Society, 2013, 94(8): 1 145-1 160.
doi: 10.1175/BAMS-D-12-00154.1
[20] Wang Jian, Che Tao, Zhang Lixin, et al.The cold regions hydrological remote sensing and ground-based synchronous observation experiment in the upper reaches of Heihe River[J]. Journal of Glaciology and Geocryology,2009, 31(2): 189-197.[王建, 车涛, 张立新,等. 黑河流域上游寒区水文遥感—地面同步观测试验[J]. 冰川冻土, 2009, 31(2): 189-197.]
doi: 10.3778/j.issn.1002-8331.1305-0234
[21] Ramsay B.Prospects for the interactive multisensor snow and Ice Mapping System (IMS)[C]∥57th Eastern Snow Conference. Syracuse, New York, USA, 1998.
[22] Jiang L M, Wang P, Zhang L X, et al.Improvement of snow depth retrieval for FY3B-MWRI in China[J]. Science in China (Series D), 2014, 57(6): 1 278-1 292.
doi: 10.1007/s11430-013-4798-8
[23] Che T, Dai L, Zheng X, et al.Estimation of snow depth from passive microwave brightness temperature data in forest regions of northeast China[J]. Remote Sensing of Environment,2016, 183: 334-349.
doi: 10.1016/j.rse.2016.06.005
[24] Che T, Xin L, Jin R, et al.Snow depth derived from passive microwave remote-sensing data in China[J]. Annals of Glaciology, 2008, 49(1): 145-154.
doi: 10.3189/172756408787814690
[25] Schaaf C, Gao F, Strahler A, et al.First operational BRDF, albedo nadir reflectance products from MODIS[J]. Remote Sensing of Environment, 2002, 83(1): 135-148.
doi: 10.1016/S0034-4257(02)00091-3
[26] Schaaf C, Wang Z, Strahler A.Commentary on Wang and Zender—MODIS snow albedo bias at high solar zenith angles relative to theory and to in situ observations in Greenland[J]. Remote Sensing of Environment, 2011, 115(5): 1 296-1 300.
doi: 10.1016/j.rse.2011.01.002
[27] Wang K, Wang P, Liu J, et al.Variation of surface albedo and soil thermal parameters with soil moisture content at a semidesert site on the western Tibetan Plateau[J]. Bound-Layer Meteor, 2005, 116(1): 117-129.
doi: 10.1007/s10546-004-7403-z
[28] Huang Xiaodong, Zhang Xuetong, Li Xia, et al.Accuracy analysis for MODES snow products of MOD10A1 and MOD10A2[J].Journal of Glaciology and Geocryology,2007,29(5):721-729.[黄晓东, 张学通, 李霞,等. 北疆牧区MODIS积雪产品MOD10A1和MOD10A2的精度分析与评价[J]. 冰川冻土, 2007, 29(5): 721-729.]
[29] Liang S, Zhao X, Liu S, et al.A long-term Global Land Surface Satellite (GLASS) data-set for environmental studies[J]. International Journal of Digital Earth,2013, 6(Supp1.): 5-33.
doi: 10.1080/17538947.2013.805262
[30] Hall D, Riggs G, Salomonson V, et al.MODIS snow-cover products[J].Remote Sensing of Environment,2002, 83(1): 181-194.
doi: 10.1016/S0034-4257(02)00095-0
[31] Lucht W, Schaaf C, Strahler A.An algorithm for the retrieval of albedo from space using semiempirical BRDF models[J]. IEEE Transactions on Geoscience and Remote Sensing,2000, 38(2): 977-998.
doi: 10.1109/36.841980
[32] IPCC. Climate change: The physical science basis[M]∥Stocker T F, Qin D, Plattner G K, et al,eds.Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press,2013.
[33] Dai L, Che T, Wang J, et al.Snow depth and snow water equivalent estimation from AMSR-E data based on a priori snow characteristics in Xinjiang, China[J]. Remote Sensing of Environment,2012, 127: 14-29.
doi: 10.1016/j.rse.2011.08.029
[34] Painter T H, Barrett A P, Landry C C, et al.Impact of disturbed desert soils on duration of mountain snow cover[J]. Geophysical Research Letters,2007, 34(12).DOI:10.1029/2007GL030284.
doi: 10.1029/2007GL030284
[35] Flanner M G, Shell K M, Barlage M, et al.Radiative forcing and albedo feedback from the Northern Hemisphere cryosphere between 1979 and 2008[J]. Nature Geoscience,2011, 4(3): 151-155.
doi: 10.1038/ngeo1062
[1] 陈亮, 段建平, 马柱国. 大气环流形势客观分型及其与中国降水的联系[J]. 地球科学进展, 2018, 33(4): 396-403.
[2] 吴绍洪, 高江波, 戴尔阜, 赵东升, 尹云鹤, 杨琳, 郑景云, 潘韬, 杨勤业. 中国陆地表层自然地域系统动态研究:思路与方案[J]. 地球科学进展, 2017, 32(6): 569-576.
[3] 陈晓龙, 周天军. 使用订正的“空间型标度”法预估1.5 ℃温升阈值下地表气温变化[J]. 地球科学进展, 2017, 32(4): 435-445.
[4] 汪品先. 未雨绸缪——迎接大洋钻探学术新计划的制定[J]. 地球科学进展, 2017, 32(12): 1229-1235.
[5] 杨占红, 罗宏, 薛婕, 张保留. 中印两国碳排放形势及目标比较研究[J]. 地球科学进展, 2016, 31(7): 764-773.
[6] 张 勇, 戎志国, 闵 敏. 中国遥感卫星辐射校正场热红外通道在轨场地辐射定标方法精度评估[J]. 地球科学进展, 2016, 31(2): 171-179.
[7] 任诗鹤, 王辉, 刘娜. 中国近海海洋锋和锋面预报研究进展[J]. 地球科学进展, 2015, 30(5): 552-563.
[8] 陆大道. 辉煌的成就,更高的使命——写在第33届国际地理学大会在北京召开之前[J]. 地球科学进展, 2015, 30(10): 1075-1080.
[9] 贾路路, 相龙伟, 汪汉胜. 地壳结构对GRACE估算中国大陆地表垂直负荷形变的影响*[J]. 地球科学进展, 2014, 29(7): 828-834.
[10] 魏柱灯, 方修琦, 苏筠, 萧凌波. 过去2 000年气候变化对中国经济与社会发展影响研究综述[J]. 地球科学进展, 2014, 29(3): 336-343.
[11] 潘竟虎, 刘伟圣. 基于腹地划分的中国城市群空间影响范围识别[J]. 地球科学进展, 2014, 29(3): 352-360.
[12] 巫建华, 解开瑞, 吴仁贵, 郭国林, 刘帅. 中国东部中生代流纹岩—粗面岩组合与热液型铀矿研究新进展[J]. 地球科学进展, 2014, 29(12): 1372-1382.
[13] 葛全胜, 方修琦, 郑景云. 中国历史时期气候变化影响及其应对的启示*[J]. 地球科学进展, 2014, 29(1): 23-29.
[14] 包汉勇,郭战峰,张罗磊,黄亚平. 太平洋板块形成以来的中国东部构造动力学背景[J]. 地球科学进展, 2013, 28(3): 337-346.
[15] 王林,陈文. 误差订正空间分解法在中国的应用[J]. 地球科学进展, 2013, 28(10): 1144-1153.