地球科学进展 ›› 2018, Vol. 33 ›› Issue (11): 1181 -1192. doi: 10.11867/j.issn.1001-8166.2018.11.1181.

上一篇    下一篇

全球变暖下热带降水变化研究回顾与挑战 *
黄平 1, 2, 3( ), 周士杰 2, 4   
  1. 1.中国科学院大气物理研究所,季风系统研究中心, 北京 100190
    2.中国科学院大气物理研究所,大气科学和地球流体力学数值模拟国家重点实验室, 北京 100029
    3. 全球变化与可持续发展协同创新中心, 北京 100875
    4.中国科学院大学, 北京 100049
  • 收稿日期:2018-06-06 修回日期:2018-10-10 出版日期:2018-11-20
  • 基金资助:
    国家自然科学基金项目“热带区域气候对全球变暖的响应机制”(编号:41722504);中央高校基本科研业务费专项资金资助.

Advances and Challenges in the Study on the Tropical Rainfall Changes Under Global Warming *

Ping Huang 1, 2, 3( ), Shijie Zhou 2, 4   

  1. 1.Center for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences,Beijing 100190,China
    2.State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics,Institute of Atmospheric Physics, Chinese Academy of Sciences,Beijing 100029, China
    3.Joint Center for Global Change Studies (JCGCS), Beijing 100875, China
    4.University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2018-06-06 Revised:2018-10-10 Online:2018-11-20 Published:2018-12-21
  • About author:

    First author:Huang Ping (1982-), male, Zizhong County, Sichuan Province, Professor. Research areas include tropical air-sea interaction and climate change. E-mail: huangping@mail.iap.ac.cn

  • Supported by:
    Foundation item:Project supported by the National Natural Science Foundation of China "Mechanisms of the response of tropical regional climate to global warming"(No.41722504);The Fundamental Research Funds for the Central Universities.

热带降水是全球能量水份循环的重要环节。热带降水在全球变暖下的变化是目前国际上广泛关注的气候变化问题之一。回顾了近30年来关于热带降水在观测中的变化以及基于气候模式预估未来变化方面的研究进展;总结了目前在热带区域降水变化机制方面的国际前沿研究进展及研究方法;最后讨论了目前气候模式预估未来区域降水变化所遇到的模式间差异大等影响预估可信度的问题,展望未来研究中面临的主要挑战。

Since tropical rainfall is important in the global energy and hydrologic cycle, the tropical rainfall changes under global warming have attracted extensive attention around the world in recent decades. The advances in the observational studies and model projection for the tropical rainfall changes under global warming were reviewed here. The frontiers in the mechanism of regional tropical rainfall changes and the approaches of rainfall change research are summarized. The large intermodel spread in the multi-model projections, the sources of uncertainty and the methods to reduce the uncertainty were also introduced. Finally, the challenges about the tropical rainfall changes were discussed.

中图分类号: 

图1 全球变暖背景下CMIP3模式模拟的水汽、降水、辐射、温度等变量的变化之间的关系 [ 23 ]
(a)温度与水汽的关系;(b)温度与降水的关系;(c)地表净向下辐射与降水的关系;(d)大气净辐射冷却与降水的关系
Fig.1 The relationship between projected changes and projected temperature and rainfall changes simulated in the CMIP3 models under global warming [ 23 ]
(a) Temperature change vs. column-integrated water vapor change; (b)Temperature change vs. precipitation change;(c)Precipitation change vs. net downward radiation change at the surface; (d) Precipitation change vs. net radiative cooling change of the atmosphere
图2 全球变暖下纬向平均的热带环流变化和热带降水各分量变化的季节循环
(a)500 hPa垂直速度变化;(b)动力项;(c)热力项;(d)两者之和 [ 10 ]
Fig.2 Seasonal cycle of circulation change and decomposition of precipitation change under global warming
(a) Circulation change at 500 hPa; (b) Dynamic component;(c) Thermodynamic component;(d) The sum of dynamic and thermodynamic components [ 10 ]
图3 全球变暖下热带降水年平均变化的动力和热力分量
(a)动力项;(b)热力项;(c)两者的总和;(a)绿色曲线为热力项的-3×10 -3 Pa/(s·10 2)等值线;(c)红色曲线为降水变化0.4 mm/d等值线 [ 8 ]
Fig.3 The decomposition of annual-mean rainfall changes under global warming
(a)The dynamic component; (b) Thermodynamic components; (c) The sum of dynamic and thermodynamic components. In (a), the green curves are the -3×10 -3 Pa/(s·10 2) contour of thermodynamic component; In (c), the red curves are the 0.4 mm/d contour of rainfall change [ 8 ]
图4 全球变暖下,各分量对ENSO引起的热带降水异常变化贡献示意图
Fig.4 Diagram illustrating the formation mechanisms of the changes in ENSO-driven rainfall variability
图5 模式预估的未来热带太平洋降水在修订前后的对比
(a)模式预估的未来降水(填色),1 000 hPa风和相对海温的变化;(b)利用EPR方法估计的预估的未来降水(填色),风和相对海温变化的共同偏差;(c)经过校订之后的降水(填色),1 000 hPa风和相对海温的变化 [ 76 ]
Fig.5 The comparison between the corrected and original precipitation change
(a) Projected changes in precipitation (shaded), 1 000 hPa wind and relative SST; (b) Estimated change biases in precipitation (shaded) and 1 000 hPa wind; (c) Corrected changes in precipitation (shaded), 1 000 hPa wind (vectors), and relative SST [ 76 ]
[1] Trenberth K E.Changes in precipitation with climate change[J]. Climate Research, 2011, 47(1): 123-138.
doi: 10.3354/cr00953     URL    
[2] Trenberth K E,Dai A,Rasmussen R O Y M, et al. The changing character of precipitation[J]. Bulletin of the American Meteorological Society, 2003, 84(9): 1205-1217.
doi: 10.1175/BAMS-84-9-1205     URL    
[3] Li Donghuan,Zou Liwei,Zhou Tianjun.Changes of extreme indices over China in response to 1. 5 ℃ global warming projected by a regional climate model[J]. Advances in Earth Science, 2017, 32(4): 446-457.
[李东欢, 邹立维, 周天军. 全球1.5 ℃温升背景下中国极端事件变化的区域模式预估[J]. 地球科学进展, 2017, 32(4): 446-457.]
doi: 10.11867/j.issn.1001-8166.2017.04.0446     URL    
[4] Zhang Jianyun,Wang Guoqing,Liu Jiufu, et al. Review on worldwide studies for impact of climate change on water[J]. Yangtze River, 2009,40(8): 39-40.
[张建云, 王国庆, 刘九夫, 等. 国内外关于气候变化对水的影响的研究进展[J]. 人民长江, 2009,40(8): 39-40.]
doi: 10.3969/j.issn.1001-4179.2009.08.012     URL    
[5] Li Fengping,Zhang Guangxin,Dong Liqin.Studies for impact of climate change on hydrology and water resources[J]. Scientia Geographica Sinica, 2013, 33(4): 457-464.
[李峰平, 章光新, 董李勤. 气候变化对水循环与水资源的影响研究综述[J]. 地理科学, 2013, 33(4): 457-464.]
doi: 10.3969/j.issn.1672-8912.2016.06.033     URL    
[6] Deng Wei,Zhao Wei,Liu Bintao, et al. Water security and the countermeasures in South Asia based on the "belt and road" initiative[J]. Advances in Earth Science, 2018, 33(7): 687-701.
[邓伟, 赵伟, 刘斌涛, 等. 基于“一带一路”的南亚水安全与对策[J]. 地球科学进展, 2018, 33(7): 687-701.]
[7] Christensen J H,Kumar K K,Aldrian E,et al.Climate phenomena and their relevance for future regional climate change[M]∥Stocker T F, Qin D, Plattner G K,et al,eds. Climate Change 2013: The Physical Science Basis. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2013.
[8] Huang P.Regional response of annual-mean tropical rainfall to global warming[J]. Atmospheric Science Letters, 2014, 15(2): 103-109.
doi: 10.1002/asl2.475     URL    
[9] Huang P,Xie S P.Mechanisms of change in ENSO-induced tropical Pacific rainfall variability in a warming climate[J]. Nature Geoscience, 2015, 8(12): 922-926.
doi: 10.1038/ngeo2571     URL    
[10] Huang P,Xie S P,Hu K, et al. Patterns of the seasonal response of tropical rainfall to global warming[J]. Nature Geoscience, 2013, 6(5): 357-361.
doi: 10.1038/ngeo1792     URL    
[11] Wentz F J,Ricciardulli L,Hilburn K A, et al. How much more rain will global warming bring[J]. Science, 2007, 317(5 835): 233-235.
doi: 10.1126/science.1140746     URL     pmid: 17540863
[12] Collins M,Knutti R,Arblaster J,et al.Long-term climate change: Projections, commitments and irreversibility[M]∥Stocker T F, Qin D, Plattner G K,et al,eds. Climate Change 2013: The Physical Science Basis. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2013.
[13] Lau W K M,Wu H T,Kim K M. A canonical response of precipitation characteristics to global warming from CMIP5 models[J]. Geophysical Research Letters, 2013, 40(12): 3 163-3 169.
doi: 10.1002/grl.50420     URL    
[14] Westra S,Fowler H J,Evans J P, et al. Future changes to the intensity and frequency of short-duration extreme rainfall[J]. Reviews of Geophysics, 2014, 52(3): 522-555.
doi: 10.1002/2014RG000464     URL    
[15] Chou C,Chen C,Tan P, et al. Mechanisms for global warming impacts on precipitation frequency and intensity[J]. Journal of Climate, 2012, 25(9): 3 291-3 306.
doi: 10.1175/JCLI-D-11-00239.1     URL    
[16] Xie S P,Deser C,Vecchi G A, et al. Global warming pattern formation: Sea surface temperature and rainfall[J]. Journal of Climate, 2010, 23(4): 966-986.
doi: 10.1175/2009JCLI3329.1     URL    
[17] Chou C,Neelin J D,Chen C A, et al. Evaluating the "rich-get-richer" mechanism in tropical precipitation change under global warming[J]. Journal of Climate, 2009, 22(8): 1 982-2 005.
doi: 10.1175/2008JCLI2471.1     URL    
[18] Held I M,Soden B J.Robust responses of the hydrological cycle to global warming[J]. Journal of Climate, 2006, 19: 5 686-5 699.
doi: 10.1175/JCLI3990.1     URL    
[19] Adler R F,Huffman G J,Chang A, et al. The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979-present)[J]. Journal of Hydrometeorology, 2003, 4(6): 1 147-1 167.
doi: 10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2     URL    
[20] Chou C,Chiang J C H,Lan C W, et al. Increase in the range between wet and dry season precipitation[J]. Nature Geoscience, 2013, 6(4): 263-267.
doi: 10.1038/NGEO1744     URL    
[21] Allan R P,Soden B J,John V O, et al. Current changes in tropical precipitation[J]. Environmental Research Letters, 2010, 5(2). DOI:10.1088/1748-9326/5/2/025205.
doi: 10.1088/1748-9326/5/2/025205     URL    
[22] Marvel K,Bonfils C.Identifying external influences on global precipitation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(48): 19 301-19 306.
doi: 10.1073/pnas.1314382110     URL     pmid: 24218561
[23] Vecchi G A, Soden B J.Global warming and the weakening of the tropical circulation[J]. Journal of Climate, 2007, 20(17): 4 316-4 340.
doi: 10.1175/JCLI4258.1     URL    
[24] Greve P,Orlowsky B,Mueller B, et al. Global assessment of trends in wetting and drying over land[J]. Nature Geoscience, 2014, 7(10): 716-721.
doi: 10.1038/ngeo2247     URL    
[25] Hegerl G C,Black E,Allan R P, et al. Challenges in quantifying changes in the global water cycle[J]. Bulletin of the American Meteorological Society, 2015, 96(7): 1 097-1 115.
doi: 10.1175/BAMS-D-13-00212.1     URL    
[26] Neelin J D,Münnich M,Su H, et al. Tropical drying trends in global warming models and observations[J]. Proceedings of the National Academy of Sciences, 2006, 103(16): 6 110-6 115.
doi: 10.1073/pnas.0601798103     URL    
[27] Chadwick R, Good P, Martin G, et al. Large rainfall changes consistently projected over substantial areas of tropical land[J]. Nature Climate Change, 2015, 6(2): 177-181.
doi: 10.1038/nclimate2805     URL    
[28] Zhang X, Zwiers F W, Hegerl G C, et al. Detection of human influence on twentieth-century precipitation trends[J]. Nature, 2007, 448(7 152): 461-465.
doi: 10.1038/nature06025     URL     pmid: 17646832
[29] Ma J, Xie S P.Regional patterns of sea surface temperature change: A source of uncertainty in future projections of precipitation and atmospheric circulation[J]. Journal of Climate, 2013, 26(8): 2 482-2 501.
doi: 10.1175/JCLI-D-12-00283.1     URL    
[30] Ma J,Chadwick R,Seo K H, et al. Responses of the tropical atmospheric circulation to climate change and connection to the hydrological cycle[J]. Annual Review of Earth and Planetary Sciences, 2018, 46(1): 549-580.
doi: 10.1146/annurev-earth-082517-010102     URL    
[31] Allan R P, Soden B J.Atmospheric warming and the amplification of precipitation extremes[J]. Science, 2008, 321(5 895): 1 481-1 484.
doi: 10.1126/science.1160787     URL     pmid: 18687921
[32] Lenderink G, Van Meijgaard E.Increase in hourly precipitation extremes beyond expectations from temperature changes[J]. Nature Geoscience, 2008, 1(8): 511-514.
doi: 10.1038/ngeo262     URL    
[33] Trenberth K E.Atmospheric moisture residence times and cycling: Implications for rainfall rates and climate change[J]. Climatic Change, 1998, 39(4): 667-694.
doi: 10.1023/A:1005319109110     URL    
[34] Boer G J.Climate change and the regulation of the surface moisture and energy budgets[J]. Climate Dynamics, 1993, 8(5): 225-239.
doi: 10.1007/BF00198617     URL    
[35] Allen M R,Ingram W J.Constraints on future changes in climate and the hydrologic cycle[J]. Nature, 2002, 419(6 903): 224-232.
doi: 10.1038/nature01092     URL     pmid: 12226677
[36] Stephens G L,Ellis T D.Controls of global-mean precipitation increases in global warming gcm experiments[J]. Journal of Climate, 2008, 21(23): 6 141-6 155.
doi: 10.1175/2008JCLI2144.1     URL    
[37] Stephens G L,Li J,Wild M, et al. An update on Earth's energy balance in light of the latest global observations[J]. Nature Geoscience, 2012, 5(10): 691-696.
doi: 10.1038/ngeo1580     URL    
[38] Richter I,Xie S P.Muted precipitation increase in global warming simulations: A surface evaporation perspective[J]. Journal of Geophysical Research, 2008, 113(D24). DOI:10.1029/2008JD010561.
doi: 10.1029/2008JD010561     URL    
[39] Vecchi G A,Soden B J,Wittenberg A T, et al. Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing[J]. Nature, 2006, 441(7 089): 73-76.
doi: 10.1038/nature04744     URL     pmid: 16672967
[40] Chou C,Neelin J D.Mechanisms of global warming impacts on regional tropical precipitation[J]. Journal of Climate, 2004, 17: 2 688-2 701.
doi: 10.1175/1520-0442(2004)0172.0.CO;2     URL    
[41] Seager R, Naik N, Vecchi G A.Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming[J]. Journal of Climate, 2010, 23(17): 4 651-4 668.
doi: 10.1175/2010JCLI3655.1     URL    
[42] Long S M, Xie S P.Intermodel variations in projected precipitation change over the North Atlantic: Sea surface temperature effect[J]. Geophysical Research Letters, 2015, 42(10): 4 158-4 165.
doi: 10.1002/2015GL063852     URL    
[43] Neelin J D,Battisti D S,Hirst A C, et al. ENSO theory[J]. Journal of Geophysical Research, 1998, 103(C7): 14 261-14 290.
doi: 10.1029/97JC03424     URL    
[44] Alexander M A, Blade I, Newman M, et al. The atmospheric bridge: The influence of ENSO teleconnections on air-sea interaction over the global oceans[J]. Journal of Climate, 2002, 15(16): 2 205-2 231.
doi: 10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2     URL    
[45] Deser C, Alexander M A, Xie S, et al. Sea surface temperature variability: Patterns and mechanisms[J]. Annual Review of Marine Science, 2010, 2(1): 115-143.
doi: 10.1146/annurev-marine-120408-151453     URL     pmid: 21141660
[46] Mcphaden M J, Zebiak S E, Glantz M H.ENSO as an integrating concept in earth science[J]. Science, 2006, 314(5 806): 1 740-1 745.
doi: 10.1126/science.1132588     URL    
[47] Power S, Delage F, Chung C, et al. Robust twenty-first-century projections of El Niño and related precipitation variability[J]. Nature, 2013, 502(7 472): 541-545.
doi: 10.1038/nature12580     URL     pmid: 24121439
[48] Chung C T Y,Power S B,Arblaster J M, et al. Nonlinear precipitation response to El Niño and global warming in the Indo-Pacific[J]. Climate Dynamics, 2013, 42(7/8): 1 837-1 856.
[49] Seager R,Naik N,Vogel L.Does global warming cause intensified interannual hydroclimate variability?[J]. Journal of Climate, 2012, 25(9): 3 355-3 372.
doi: 10.1175/JCLI-D-11-00363.1     URL    
[50] Cai W,Borlace S, Lengaigne M, et al. Increasing frequency of extreme El Niño events due to greenhouse warming[J]. Nature Climate Change, 2014, 4(2): 111-116.
doi: 10.1038/nclimate2100     URL    
[51] Zhou Z Q,Xie S P,Zheng X T, et al. Global warming-induced changes in El Niño teleconnections over the North Pacific and North America[J]. Journal of Climate, 2014, 27(24): 9 050-9 064.
doi: 10.1175/JCLI-D-14-00254.1     URL    
[52] Kug J S,An S I,Ham Y G, et al. Changes in El Niño and La Niña teleconnections over North Pacific-America in the global warming simulations[J]. Theoretical and Applied Climatology, 2009, 100(3/4): 275-282.
doi: 10.1007/s00704-009-0183-0     URL    
[53] DiNezio P N,Clement A C,Vecchi G A, et al. Climate response of the equatorial Pacific to global warming[J]. Journal of Climate, 2009, 22(18): 4 873-4 892.
doi: 10.1175/2009JCLI2982.1     URL    
[54] Kent C,Chadwick R,Rowell D P.Understanding uncertainties in future projections of seasonal tropical precipitation[J]. Journal of Climate, 2015, 28(11): 4 390-4 413.
doi: 10.1175/JCLI-D-14-00613.1     URL    
[55] Shepherd T G.Atmospheric circulation as a source of uncertainty in climate change projections[J]. Nature Geoscience, 2014, 7(10): 703-708.
doi: 10.1038/NGEO2253     URL    
[56] Bony S,Bellon G,Klocke D, et al. Robust direct effect of carbon dioxide on tropical circulation and regional precipitation[J]. Nature Geoscience, 2013, 6(6): 447-451.
doi: 10.1038/ngeo1799     URL     pmid: 16266983
[57] Hawkins E,Sutton R.The potential to narrow uncertainty in projections of regional precipitation change[J]. Climate Dynamics, 2011, 37(1/2): 407-418.
doi: 10.1007/s00382-010-0810-6     URL    
[58] Lau W K M,Kim K M. Robust Hadley circulation changes and increasing global dryness due to CO2 warming from CMIP5 model projections[J]. Proceedings of the National Academy of Sciences, 2015, 112(12): 3 630-3 635.
doi: 10.1073/pnas.1511280112     URL     pmid: 26106153
[59] Tao L,Hu Y,Liu J.Anthropogenic forcing on the Hadley circulation in CMIP5 simulations[J]. Climate Dynamics, 2015, 46(9/10): 3 337-3 350.
doi: 10.1007/s00382-015-2772-1     URL    
[60] Hu Y,Fu Q.Observed poleward expansion of the Hadley circulation since 1979[J]. Atmospheric Chemistry and Physics, 2007, 7(19): 5 229-5 236.
doi: 10.5194/acp-7-5229-2007     URL    
[61] Fu Q,Johanson C M,Wallace J M, et al. Enhanced mid-latitude tropospheric warming in satellite measurements[J]. Science, 2006, 312(5 777): 1 179.
doi: 10.1126/science.1125566     URL    
[62] Schneider T,Bischoff T,Haug G H.Migrations and dynamics of the intertropical convergence zone[J]. Nature, 2014, 513(7 516): 45-53.
doi: 10.1038/nature13636     URL     pmid: 25186899
[63] Hu Y,Li D,Liu J.Abrupt seasonal variation of the ITCZ and the Hadley circulation[J]. Geophysical Research Letters, 2007, 34(18): L18814. DOI: 10.1029/2007GL030950.
doi: 10.1029/2007GL030950     URL    
[64] Chadwick R,Boutle I,Martin G.Spatial patterns of precipitation change in CMIP5: Why the rich do not get richer in the tropics[J]. Journal of Climate, 2013, 26(11): 3 803-3 822.
doi: 10.1175/JCLI-D-12-00543.1     URL    
[65] Su H, Jiang J H,Zhai C, et al. Weakening and strengthening structures in the Hadley circulation change under global warming and implications for cloud response and climate sensitivity[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(10): 5 787-5 805.
doi: 10.1002/2014JD021642     URL    
[66] Lin J L.The double-ITCZ problem in IPCC AR4 coupled GCMs: Ocean-atmosphere feedback analysis[J]. Journal of Climate, 2007, 20(18): 4 497-4 525.
doi: 10.1175/JCLI4272.1     URL    
[67] Bayr T,Dommenget D.The tropospheric land-sea warming contrast as the driver of tropical sea level pressure changes[J]. Journal of Climate, 2013, 26(4): 1 387-1 402.
doi: 10.1175/JCLI-D-11-00731.1     URL    
[68] Xie S P,Deser C,Vecchi G A, et al. Towards predictive understanding of regional climate change[J]. Nature Climate Change, 2015, 5(10): 921-930.
doi: 10.1038/nclimate2689     URL    
[69] IPCC. Climate Change 2013: The Physical Science Basis[M]. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press,2013.
[70] Goddard L M,Kumar A,Solomon A, et al. A verification framework for interannual-to-decadal predictions experiments[J]. Climate Dynamics, 2013, 40(1): 245-272.
doi: 10.1007/s00382-012-1481-2     URL    
[71] Deser C,Phillips A S,Alexander M A.Twentieth century tropical sea surface temperature trends revisited[J]. Geophysical Research Letters, 2010, 37(10). DOI:10.1029/2010GL043321.
doi: 10.1029/2010GL043321     URL    
[72] Brown J N,Sen Gupta A,Brown J R, et al. Implications of CMIP3 model biases and uncertainties for climate projections in the western tropical Pacific[J]. Climatic Change, 2013, 119(1): 147-161.
doi: 10.1007/s10584-012-0603-5     URL    
[73] Cox P M,Pearson D,Booth B B, et al. Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability[J]. Nature, 2013, 494(7 437): 341-344.
doi: 10.1038/nature11882     URL    
[74] Bracegirdle T J,Stephenson D B.On the robustness of emergent constraints used in multimodel climate change projections of Arctic warming[J]. Journal of Climate, 2013, 26(2): 669-678.
doi: 10.1175/JCLI-D-12-00537.1     URL    
[75] Collins M,Chandler R E,Cox P M, et al. Quantifying future climate change[J]. Nature Climate Change, 2012, 2(6): 403-409.
doi: 10.1038/nclimate1414    
[76] Huang P,Ying J.A multimodel ensemble pattern regression method to correct the tropical Pacific SST change patterns under global warming[J]. Journal of Climate, 2015, 28(12): 4706-4 723.
doi: 10.1175/JCLI-D-14-00833.1     URL    
[77] Hall A.Projecting regional change[J]. Science, 2014, 346(6216): 1 461-1 462.
doi: 10.1126/science.aaa0629     URL    
[78] Collins M,Minobe S,Barreiro M, et al. Challenges and opportunities for improved understanding of regional climate dynamics[J]. Nature Climate Change, 2018, 8(2): 101-108.
doi: 10.1038/s41558-017-0059-8UNREFEREED:     URL    
[79] Luan Yihua,Yu Yongqiang,Zheng Weipeng.Review of development and application of high resolution global climate system model[J]. Advances in Earth Science, 2016, 31(3): 258-268.
[栾贻花, 俞永强, 郑伟鹏. 全球高分辨率气候系统模式研究进展[J]. 地球科学进展, 2016, 31(3): 258-268.]
doi: 10.11867/j.issn.1001-8166.2016.03.0258     URL    
[80] Ying J,Huang P.Cloud-radiation feedback as a leading source of uncertainty in the tropical Pacific SST warming pattern in CMIP5 models[J]. Journal of Climate, 2016, 29(10): 3 867-3 881.
doi: 10.1175/JCLI-D-15-0796.1     URL    
[81] Zhou Z,Xie S.Effects of climatological model biases on the projection of tropical climate change[J]. Journal of Climate, 2015, 28(24): 9 909-9 917.
doi: 10.1175/JCLI-D-15-0243.1     URL    
[1] 王澄海, 张晟宁, 张飞民, 李课臣, 杨凯. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[2] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[3] 夏松, 刘鹏, 江志红, 程军. CMIP5CMIP6模式在历史试验下对 AMOPDO的模拟评估[J]. 地球科学进展, 2021, 36(1): 58-68.
[4] 徐一丹,李建平,汪秋云,林霄沛. 全球变暖停滞的研究进展回顾[J]. 地球科学进展, 2019, 34(2): 175-190.
[5] 史培军, 王爱慧, 孙福宝, 李宁, 叶涛, 徐伟, 王静爱, 杨建平, 周洪建. 全球变化人口与经济系统风险形成机制及评估研究[J]. 地球科学进展, 2016, 31(8): 775-781.
[6] 林霄沛, 许丽晓, 李建平, 罗德海, 刘海龙. 全球变暖“停滞”现象辨识与机理研究[J]. 地球科学进展, 2016, 31(10): 995-1000.
[7] 陈幸荣, 蔡怡, 谭晶, 黄勇勇, 汪雷. 全球变暖hiatus现象的研究进展[J]. 地球科学进展, 2014, 29(8): 947-955.
[8] 陈仁升, 阳勇, 韩春坛, 刘俊峰, 康尔泗, 宋耀选, 刘章文. 高寒区典型下垫面水文功能小流域观测试验研究[J]. 地球科学进展, 2014, 29(4): 507-514.
[9] 余克服, 张光学, 汪稔. 南海珊瑚礁: 从全球变化到油气勘探—第三届地球系统科学大会专题评述[J]. 地球科学进展, 2014, 29(11): 1287-1293.
[10] 叶黎明,罗鹏,杨克红. 天然气水合物气候效应研究进展[J]. 地球科学进展, 2011, 26(5): 565-574.
[11] 王会军. 东亚区域能量和水分循环对我国极端气候影响研究的一些初步进展[J]. 地球科学进展, 2010, 25(6): 563-570.
[12] 苗爱梅,武捷,贾利冬. 1958—2008年山西气温变化的特征及趋势研究[J]. 地球科学进展, 2010, 25(3): 264-272.
[13] 陈泮勤,程邦波,王芳,曲建升. 全球气候变化的几个关键问题辨析[J]. 地球科学进展, 2010, 25(1): 69-75.
[14] 曾静静,曲建升,张志强. 国际温室气体减排情景方案比较分析[J]. 地球科学进展, 2009, 24(4): 436-443.
[15] 蓝永超,胡兴林,肖洪浪,林纾. 全球变暖情景下黑河山区水循环要素变化研究[J]. 地球科学进展, 2008, 23(7): 739-747.
阅读次数
全文


摘要