地球科学进展 ›› 2018, Vol. 33 ›› Issue (11): 1169 -1180. doi: 10.11867/j.issn.1001-8166.2018.11.1169.

上一篇    下一篇

基于热力学模拟河套平原高砷地下水中硫代砷形态分布特征 *
潘敖然 1( ), 单慧媚 1, 2, *( ), 彭三曦 2, 3, 赵超然 1, 黄健 1, 闫志为 1   
  1. 1.桂林理工大学,环境科学与工程学院,广西 桂林 541004
    2.中国地质大学(武汉),盆地水文过程与湿地生态恢复学术创新基地,湖北 武汉 430074
    3.桂林理工大学,地球科学学院,广西 桂林 541004
  • 收稿日期:2018-09-15 修回日期:2018-10-08 出版日期:2018-11-20
  • 通讯作者: 单慧媚 E-mail:panaoran@163.com;shanhuimei@glut.edu.cn
  • 基金资助:
    国家自然科学基金项目“介质非均质性对硫代(亚)砷分布与迁移的影响研究”(编号:41502232);广西自然科学基金“高砷地下水中硫代砷形态分布特征及吸附/解析作用机理”(编号:2017GXNSFAA198096)资助.

Thermodynamic Modeling of Thioarsenic Species Distribution in High As Groundwater in Hetao Plain *

Aoran Pan 1( ), Huimei Shan 1, 2, *( ), Sanxi Peng 2, 3, Chaoran Zhao 1, Jian Huang 1, Zhiwei Yan 1   

  1. 1.College of Environmental Science and Engineering,Guilin University of Technology,Guilin 541004, China
    2.China University of Geosciences (Wuhan),Basin Hydrological Process and Wetland Ecological Restoration Academic Innovation Base,Wuhan 430074, China
    3.College of Earth Sciences and Engineering,Guilin University of Technology,Guilin 541004,China
  • Received:2018-09-15 Revised:2018-10-08 Online:2018-11-20 Published:2018-12-21
  • Contact: Huimei Shan E-mail:panaoran@163.com;shanhuimei@glut.edu.cn
  • About author:

    First author:Pan Aoran(1993-),male,Suzhou County,Anhui Province,Master student. Research areas include groundwater pollution and remediation. E-mail:panaoran@163.com

  • Supported by:
    Foundation item: Project supported by the National Natural Science Foundation of China "The effect of subgrid heterogeneity on scaling distribution and migration of thioarsenite/thioarsenate in sediments"(No.41502232);The Natural Science Foundation of Guangxi "Speciation,distribution and adsorption/desorption of thioarsenic in high arsenic groundwater"(No.2017GXNSFAA198096).

硫代砷作为一种最新识别的砷形态越来越受到关注。选取河套平原作为研究区,基于野外调查数据和热力学反应方程,模拟并分析高砷地下水中硫代砷形态的分布特征。结果表明:河套平原高砷地下水中亚砷酸盐是主要的砷形态,其次是硫代砷酸盐和砷酸盐,硫代亚砷酸盐含量最低。其中,硫代砷酸盐以一、三硫代砷酸盐为主,硫代亚砷酸盐以一硫代亚砷酸盐为主。埋深在5~40 m范围内,各种砷形态含量随深度增加变化不明显。40~80 m埋深范围内,亚砷酸盐含量随深度增加而逐渐减小,硫代砷酸盐含量随深度增加逐渐增大;硫化物浓度对砷形态分布存在显著影响,当硫化物浓度小于5 μg/L时,随着硫化物浓度的增加各形态无明显变化。当硫化物浓度大于5 μg/L时,随着硫化物浓度的增加,亚砷酸盐和砷酸盐的含量呈下降趋势,硫代砷酸盐和硫代亚砷酸盐的含量呈增加趋势,不同硫代亚砷酸盐和硫代砷酸盐形态之间存在相互转化。

Thioarsenic has gained increasing attention as a newly identified arsenic species. This paper selected Hetao Plain as the study area. Based on the field survey data and the thermodynamic reaction equation, the distribution characteristics of thioarsenic speciation in high-arsenic groundwater were simulated and analyzed. The results show that the major of arsenic speciation is arsenite, followed by thioarsenate and arsenate, and thethioarsenite concentrations are extremely low. Among them, monothioarsenate and trithioarsenate are the predominant thioarsnate species, with monothioarsenite being the dominant thioarsenite. In the buried depth of the range of 5~40 m, the content of various arsenic species does not change significantly with increasing depth. In the range of 40~80 m buried depth, the content of arsenite decreases with the increase of depth, and the content of thioarsenite increases with depth. Sulfide concentration has a significant effect on the distribution of arsenic species. When the concentration of sulfide is less than 5 μg/L, the various arsenic species do not change regularly with the increase of sulfide concentration. When the sulfide concentration is more than 5 μg/L, the content of arsenite and arsenate decreases with the increase of sulfide concentration, and the content of thioarsenate and thioarsenite tends to increase, and mutual transformation happens between different thioarsenite and thioarsenate species.

中图分类号: 

图1 研究区地理位置图(据参考文献[ 4 ]修改)
Fig.1 Locations of study area (modified after reference [4])
表1 河套平原水化学组分
Table 1 Hetao plain water chemical composition
采样点 深度
/m
T
/℃
pH Eh
/mV
Ca2+
/(mg/L)
Mg2+
/(mg/L)
Na+
/(mg/L)
K+
/(mg/L)
HC O 3 -
/(mg/L)
S O 4 2 -
/(mg/L)
S2-
/(mg/L)
N O 3 -
/(mg/L)
N H 4 +
/(mg/L)
Fe2+
/(mg/L)
FeT
/(mg/L)
Cl-
/(mg/L)
As(Ⅲ)
/(μg/L)
As(Ⅴ)
/(μg/L)
AsT
/(μg/L)
参考文献
2 16.0 11.8 7.81 -127 46.7 75.2 329.0 4.07 468 340.00 0.050 43.80 0.01 320.0 45.70 48.00
3 15.0 12.1 7.48 -70 178.0 95.7 174.0 4.47 403 307.00 0.040 6.60 0.10 370.0 29.90 29.40
4 13.0 12.0 7.45 25 142.0 82.7 289.0 5.90 488 332.00 0.030 6.90 0.01 398.0 0.35 1.17
5 12.0 13.8 7.08 79 167.0 140.0 447.0 41.00 663 394.00 0.040 108.00 0.01 571.0 0.47 0.58
6 9.0 13.5 7.49 -68 11.6 10.2 928.0 1.11 699 76.80 0.030 3.20 0.17 1 122.0 101.00 128.00
7 18.0 9.8 7.58 -34 78.8 52.0 208.0 3.13 486 117.00 <0.010 4.30 0.11 270.0 7.70 9.57
8 13.0 11.2 7.88 -134 26.4 104.0 1 657.0 3.50 1 385 738.00 0.060 5.60 1.51 1 963.0 202.00 299.00
9 20.0 10.4 8.04 -128 21.5 62.4 1 157.0 2.10 1 193 0.23 0.060 0.01 1.08 1 538.0 355.00 417.00
10 17.0 10.1 8.25 -133 14.5 36.8 968.0 5.46 1 261 274.00 0.080 1.70 0.48 697.0 191.00 224.00
11 20.0 11.4 7.36 -40 113.0 90.5 333.0 12.70 678 427.00 0.030 0.01 0.19 337.0 42.00 51.70
13 12.0 10.9 7.40 63 135.0 99.1 265.0 5.71 596 373.00 <0.010 0.01 0.05 347.0 0.70 1.87
14 24.0 11.3 7.45 -105 68.7 58.3 389.0 4.96 760 330.00 0.040 1.40 0.64 219.0 45.50 45.80
15 25.0 9.9 7.40 -119 176.0 154.0 719.0 5.37 563 224.00 0.010 0.01 3.87 1 661.0 49.60 52.00 [11]
16 12.0 10.5 7.45 -80 111.0 101.0 553.0 7.89 525 74.10 <0.010 0.01 1.85 985.0 3.20 5.48
17 13.0 12.8 7.26 36 128.0 97.2 311.0 4.46 668 455.00 0.030 0.01 0.66 306.0 4.90 6.42
18 13.0 10.6 7.54 -113 56.0 27.2 74.4 2.38 236 108.00 0.010 0.01 1.02 72.8 6.42 7.58
19 5.0 10.8 7.44 -13 67.1 156.0 1 100.0 4.57 811 675.00 0.030 11.40 0.39 1 389.0 0.35 0.93
20 15.0 11.4 7.36 -113 92.2 56.8 170.0 3.89 455 199.00 <0.010 2.50 2.55 180.0 26.40 33.40
21 20.0 12.0 7.31 -119 148.0 213.0 590.0 7.55 617 72.60 0.010 0.01 5.90 1 354.0 32.00 39.70
22 28.0 11.4 7.54 -117 76.9 139.0 557.0 4.91 392 151.00 <0.010 0.01 1.11 1 093.0 19.80 25.30
23 23.0 14.0 7.39 -113 105.0 49.2 131.0 3.35 472 213.00 <0.010 0.25 2.81 144.0 31.40 37.00
24 13.0 11.3 7.43 -31 93.9 46.7 107.0 5.10 478 59.00 0.060 0.01 0.23 132.0 1.28 1.75
25 9.0 12.4 7.26 98 165.0 84.4 212.0 5.72 467 262.00 0.020 0.01 0.01 330.0 0.35 1.05
26 11.0 12.4 7.69 -115 83.0 73.0 135.0 2.31 348 80.00 0.010 449.00 0.01 87.3 12.50 12.60
27 18.0 11.8 7.72 -98 45.0 66.9 288.0 2.96 601 254.00 0.020 1.90 1.42 186.0 144.00 145.00
28 18.0 11.1 7.49 -147 84.0 60.4 80.5 2.86 390 131.00 0.040 2.50 1.62 114.0 29.20 40.80
29 20.0 11.1 7.35 -95 84.8 108.0 873.0 6.74 877 469.00 0.060 0.01 0.15 913.0 15.20 16.50
30 13.0 12.0 7.78 52 38.3 49.8 195.0 3.78 527 131.00 0.060 0.02 0.05 163.0 0.35 1.63
31 13.0 10.9 7.33 -86 176.0 117.0 345.0 6.22 542 526.00 0.050 0.01 2.92 489.0 22.60 29.30
采样点 深度
/m
T
/℃
pH Eh
/mV
Ca2+
/(mg/L)
Mg2+
/(mg/L)
Na+
/(mg/L)
K+
/(mg/L)
HC O 3 -
/(mg/L)
S O 4 2 -
/(mg/L)
S2-
/(mg/L)
N O 3 -
/(mg/L)
N H 4 +
/(mg/L)
Fe2+
/(mg/L)
FeT
/(mg/L)
Cl-
/(mg/L)
As(Ⅲ)
/(μg/L)
As(Ⅴ)
/(μg/L)
AsT
/(μg/L)
参考文献
32 20.0 11.3 8.06 5 19.7 27.3 314.0 5.68 618 0.03 0.070 0.01 0.64 233.0 428.00 482.00
33 30.0 11.7 7.73 -30 38.5 72.6 192.0 9.81 385 74.00 <0.010 0.01 0.14 328.0 3.62 4.20
34 18.0 12.3 7.66 -123 46.9 99.4 901.0 7.18 748 598.00 <0.010 0.01 2.14 921.0 77.60 10.00
35 17.0 11.3 8.01 -153 18.3 22.6 189.0 4.28 556 0.01 <0.010 0.02 0.74 44.6 305.00 348.00
36 25.0 10.9 7.65 -113 58.4 96.2 368.0 7.13 689 214.00 <0.010 0.01 1.96 413.0 12.30 78.20
37 18.0 12.3 7.30 -99 103.0 211.0 963.0 7.19 968 1 052.00 0.040 4.90 3.49 969.0 175.00 278.00
38 18.0 11.9 7.76 -113 56.4 240.0 2 662.0 9.85 1 608 395.00 <0.010 0.01 0.11 3 901.0 120.00 264.00
39 35.0 17.5 7.47 72 83.6 33.3 113.0 7.75 203 161.00 <0.010 22.50 0.07 163.0 0.70 10.60
40 20.0 12.1 7.01 -55 256.0 297.0 1 240.0 53.50 1 085 1 055.00 0.040 6.90 1.71 1 815.0 3.15 3.27
41 20.0 11.6 7.03 -76 132.0 364.0 1 754.0 6.16 711 1 303.00 <0.010 0.01 1.76 2 885.0 1.40 1.98
42 17.0 11.1 7.90 -55 27.4 46.1 670.0 5.03 897 279.00 0.030 0.01 0.67 458.0 19.60 20.90
43 8.0 13.2 7.38 -45 143.0 252.0 785.0 6.92 534 1 008.00 0.050 0.01 2.56 1 278.0 3.86 9.45
44 33.0 10.4 7.85 -54 20.6 93.4 564.0 6.70 640 52.60 0.040 5.80 0.88 779.0 20.40 67.70
45 31.0 11.0 7.72 -64 78.8 424.0 1 560.0 10.60 571 1 196.00 0.040 0.01 2.05 2 743.0 19.30 22.20
46 30.0 11.9 7.93 -30 28.1 32.3 306.0 3.82 660 0.19 0.050 0.01 0.95 216.0 404.00 483.00
47 38.0 12.4 7.77 -101 46.1 113.0 240.0 6.97 350 296.00 0.040 0.01 1.79 361.0 46.00 46.90 [11]
48 14.0 11.2 8.17 -54 16.0 41.0 936.0 2.90 1 277 407.00 0.060 0.01 0.42 768.0 119.00 125.00
49 80.0 11.4 7.96 -48 11.5 19.2 593.0 3.41 854 41.30 0.050 0.01 0.55 504.0 166.00 183.00
50 32.0 11.3 7.78 -53 34.0 87.2 691.0 8.28 642 167.00 0.040 0.01 0.48 934.0 15.90 18.20
51 30.0 14.7 7.76 -27 105.0 128.0 211.0 7.95 292 0.01 0.040 0.01 1.22 748.0 291.00 363.00
52 22.0 12.2 7.59 -55 56.9 126.0 821.0 9.07 744 285.00 0.020 0.01 0.96 1 155.0 13.40 16.80
53 13.0 12.2 7.43 -76 66.0 97.4 632.0 2.98 736 650.00 0.040 2.20 0.05 482.0 0.58 1.17
54 12.0 11.0 7.53 -64 86.4 130.0 341.0 8.76 642 319.00 <0.010 0.01 1.99 470.0 26.40 31.20
55 15.0 10.6 7.86 -30 50.7 57.7 66.8 3.01 235 77.20 0.030 0.41 0.95 136.0 32.10 45.70
56 26.0 13.1 8.43 -101 8.9 11.3 311.0 2.96 565 7.90 0.120 0.01 0.19 148.0 121.00 167.00
57 22.0 11.9 8.12 -55 17.7 65.7 481.0 4.32 658 208.00 0.050 0.01 0.84 352.0 58.30 81.70
58 26.0 10.5 8.13 -45 4.3 18.0 195.0 2.80 443 14.00 0.060 2.20 0.18 40.5 447.00 572.00
59 20.0 10.1 7.87 -54 5.7 19.3 304.0 2.74 546 48.00 0.040 0.01 0.25 165.0 456.00 537.00
60 35.0 17.7 7.45 -54 67.7 60.9 129.0 3.54 436 172.00 0.040 2.20 0.01 96.0 1.52 3.73
61 12.0 12.7 7.68 -48 50.8 61.3 85.0 1.95 359 147.00 0.050 0.01 1.29 98.7 33.60 39.70
62 30.0 10.1 7.77 -53 72.6 93.7 195.0 4.34 481 246.00 0.040 5.50 1.56 264.0 11.80 17.70
63 30.0 9.8 7.88 -27 20.9 38.6 640.0 2.49 697 336.00 0.060 0.01 0.17 571.0 1.98 2.80
采样点 深度
/m
T
/℃
pH Eh
/mV
Ca2+
/(mg/L)
Mg2+
/(mg/L)
Na+
/(mg/L)
K+
/(mg/L)
HC O 3 -
/(mg/L)
S O 4 2 -
/(mg/L)
S2-
/(mg/L)
N O 3 -
/(mg/L)
N H 4 +
/(mg/L)
Fe2+
/(mg/L)
FeT
/(mg/L)
Cl-
/(mg/L)
As(Ⅲ)
/(μg/L)
As(Ⅴ)
/(μg/L)
AsT
/(μg/L)
参考文献
H12 10.0 11.5 7.72 -146 406.0 601 302.00 0.002 9.60 2.75 1.71 1.92 605.0 221.00 22.80
H13 19.5 11.5 7.56 -150 868.0 768 723.00 0.003 11.83 5.61 2.34 2.53 1 374.0 271.00 33.00 [12]
H32 10.0 11.5 7.80 -53.8 669.0 871 147.00 0.001 12.47 0.18 0.39 0.49 836.0 2.10 2.17 (T取均值
H34 19.5 11.5 7.86 -152 627.0 852 164.00 0.003 20.14 2.46 0.69 0.98 711.0 37.70 9.23 11.5 ℃)
H45 23.0 11.5 8.04 -172 299.0 622 7.00 0.017 7.72 4.29 0.09 0.22 232.0 505.00 37.40
1 100.0 11.5 7.90 125 49.9 16.0 37.7 2.38 191 90.60 0.006 <0.01 2.20 0.09 0.17 35.0 2.90 3.20 6.10
2 40.0 11.5 7.10 291 169.0 65.5 86.9 4.00 620 200.00 0.001 109.00 12.50 0.02 0.02 120.0 <1.0 <1.0 0.40
3 21.0 11.5 7.40 65 49.6 17.7 44.5 4.01 191 125.00 0.000 <0.01 0.00 0.00 0.38 27.4 35.20 19.10 54.20
4 80.0 11.5 8.30 61 71.9 22.7 60.5 3.13 212 150.00 0.002 1.00 1.50 0.31 0.49 51.5 39.70 10.40 50.00
5 42.0 11.5 8.00 52 73.3 21.2 29.8 2.21 214 107.00 0.018 4.20 2.60 0.47 0.68 48.8 92.40 5.10 97.50
6 53.0 11.5 8.30 48 59.3 30.7 43.5 3.33 293 35.50 0.017 6.70 6.80 0.23 0.54 90.7 328.00 36.80 364.00 [13]
BH01 20.0 11.5 7.50 63 119.0 180.0 867.0 21.60 777 478.00 0.004 14.90 4.70 3.11 3.33 1 350.0 288.00 32.40 329.00 (T取均值
7 20.0 11.5 8.20 32 60.9 86.7 555.0 19.30 524 304.00 0.004 <0.01 4.30 2.07 2.16 823.0 99.90 23.20 123.00 11.5 ℃)
BH02 20.0 11.5 7.90 53 91.5 108.0 455.0 14.50 603 235.00 0.004 9.60 3.90 1.84 2.18 685.0 82.70 15.20 96.40
8 28.0 11.5 7.90 198 120.0 138.0 746.0 5.30 798 708.00 0.000 <0.01 3.60 0.03 0.13 929.0 <1 <1 0.40
9 20.0 11.5 8.00 61 33.7 64.0 596.0 5.17 847 36.80 0.002 2.10 3.00 0.28 1.61 557.0 26.50 9.40 35.90
BH03 20.0 11.5 7.90 59 50.4 77.9 629.0 13.40 845 148.00 0.004 9.30 2.50 0.59 0.99 725.0 38.80 8.20 47.90
10 23.0 11.5 8.40 49 16.0 21.0 314.0 3.89 617 <0.01 0.006 <0.01 4.80 0.50 0.70 232.0 580.00 85.40 666.00
BH04 23.0 11.5 8.00 43 24.7 33.0 299.0 13.80 626 5.40 0.013 3.60 4.60 0.16 0.38 236.0 515.00 37.00 555.00
5 9.0 10.4 8.43 -104 8.0 26.1 1 030.0 2.61 798 87.60 <0.001 0.01 0.07 0.07 1210.0 133.00 29.60 163.00
34 26.0 11.5 8.40 -134 28.7 32.4 279.0 3.18 730 0.01 0.013 0.01 0.41 0.68 166.0 656.00 94.60 750.00
37 18.0 11.5 8.87 -93 7.6 10.1 429.0 2.95 744 1.10 0.016 0.01 0.06 0.26 320.0 444.00 88.50 532.00
57 12.0 10.3 8.30 -133 46.1 60.2 109.0 3.41 371 150.00 0.008 0.01 0.57 0.96 90.1 32.00 7.29 40.10 [14]
59 18.0 10.6 8.78 -113 6.7 23.8 257.0 3.61 559 31.30 0.024 4.33 0.11 0.12 165.0 760.00 98.10 858.00
60 26.0 11.2 8.95 -159 9.5 15.4 334.0 2.58 634 10.90 0.030 0.01 0.14 0.16 194.0 182.00 62.90 245.00
70 23.5 11.0 8.38 -155 19.0 27.8 305.0 4.54 617 0.01 0.006 0.01 0.50 0.56 232.0 603.00 72.40 675.00
表2 砷的不同形态的化学热力学数据
Table 2 Chemical thermodynamic data of different forms of arsenic
砷形态 化学结构式 化学反应式 lgK 参考文献
亚砷酸盐 HnAs O 3 n - 3 H3AsO3 = H2As O 3 - + H+ -9.15 [15]
H3AsO3 = HAs O 3 2 - + 2H+ -23.85 [15]
H3AsO3 = As O 3 3 - + 3H+ -39.55 [15]
一硫代亚砷酸盐 HnAsS O 2 n - 3 H2S + H3AsO3 = H3AsSO2 + H2O 0.4 [16]
H3AsSO2 = H2AsS O 2 - + H+ -3.8 [17]
H2AsS O 2 - = HAsS O 2 2 - + H+ ≤-13.5 [17]
HAsS O 2 2 - = AsS O 2 3 - + H+ ≤-14.0 [17]
二硫代亚砷酸盐 HnAsS2On-3 H2S + H3AsSO2 = H3AsS2O + H2O 3.8 [16]
H3AsS2O = H2AsS2O- + H+ -3.8 [17]
H2AsS2O- = HAsS2O2- + H+ -6.5 [17]
HAsS2O2- = AsS2O3- + H+ -14.0 [17]
三硫代亚砷酸盐 HnAs S 3 n - 3 H2S + H3AsS2O = H3AsS3 + H2O 5.6 [16]
H3AsS3 = H2As S 3 - + H+ -3.77 [17]
H2As S 3 - = HAs S 3 2 - + H+ -6.53 [17]
HAs S 3 2 - = As S 3 3 - + H+ -9.29 [17]
砷酸盐 HnAs O 4 n - 3 H3AsO4 = H2As O 4 - + H+ -2.3 [15]
H3AsO4 = HAs O 4 2 - + 2H+ -9.46 [15]
H3AsO4 = As O 4 3 - + 3H+ -21.11 [15]
一硫代砷酸盐 HnAsS O 3 n - 3 H2S + H3AsO4 = H3AsSO3 + H2O 11.0 [16]
H3AsSO3 = H2AsS O 3 - + H+ -3.3 [18]
H2AsS O 3 - = HAsS O 3 2 - + H+ -7.2 [18]
HAsS O 3 2 - = AsS O 3 3 - + H+ -11.0 [18]
二硫代砷酸盐 HnAsS2 O 2 n - 3 H2S + H3AsSO3 = H3AsS2O2 + H2O 0.1 [16]
H3AsS2O2 = H2AsS2 O 2 - + H+ 2.4 [16]
H2AsS2 O 2 - = HAsS2 O 2 2 - + H+ -7.1 [18]
HAsS2 O 2 2 - = AsS2 O 2 3 - + H+ -10.8 [18]
三硫代砷酸盐 HnAsS3On-3 H2S + H3AsS2O2 = H3AsS3O + H2O 3.5 [16]
H3AsS3O = H2AsS3O- + H+ 1.7 [16]
H2AsS3O- = HAsS3O2- + H+ -1.5 [16]
HAsS3O2- = AsS3O3- + H+ -10.8 [18]
四硫代砷酸盐 HnAs S 4 n - 3 H2S + H3AsS3O = H3AsS4 + H2O 2.6 [16]
H3AsS4 = H2As S 4 - + H+ 2.3 [16]
H2As S 4 - = HAs S 4 2 - + H+ -1.5 [16]
HAs S 4 2 - = As S 4 3 - + H+ -5.2 [18]
图2 不同氧化还原电对计算值与实测的Eh值对比
Fig.2 The Eh values of different redox couples were compared with the measured values
表3 不同氧化还原电对计算值与实测的Eh值相对误差
Table 3 The Eh relative error between measured values and calculated values of different redox couples
图3 不同氧化还原电对模拟与实测As(Ⅲ)/AsT值对比
Fig.3 The As(Ⅲ)/AsT values obtained by different redox couples were compared with the measured values
表4 河套平原高砷地下水中不同形态砷占总砷百分含量统计表
Table 4 Statictical data of arsenic concentrations in high arsenic groundwater from Hetao Plain
图4 河套平原高砷地下水中不同砷形态随地下水位埋深的变化
Fig.4 Variation of different arsenic forms with groundwater level in high arsenic groundwater of Hetao Plain
表5 河套平原高砷地下水中不同深度各种形态砷占总砷含量统计表
Table 5 Statistical table of various forms of arsenic in total arsenic content at different depths in high arsenic groundwater from Hetao Plain
图5 河套平原高砷地下水中不同砷形态随硫化物浓度的变化
Fig.5 Variation of different arsenic forms with sulfide concentration in high arsenic groundwater of Hetao Plain
[1] Jia Yongfeng,Guo Huaming.Hot topics and trends in the study of high arsenic groundwater[J]. Advances in Earth Science,2013,28(1):51-61.
[贾永锋,郭华明. 高砷地下水研究的热点及发展趋势[J].地球科学进展,2013, 28(1):51-61.]
doi: 10.11867/j.issn.1001-8166.2013.01.0051     URL    
[2] Prosun B,Alan H W,Kenneth G S,et al. Arsenic in the environment: Biology and chemistry[J]. Science of the Total Environment,2007,379(2):109-120.
doi: 10.1016/j.scitotenv.2007.02.037     URL     pmid: 17434206
[3] Guo Huaming,Yang Suzhen,Shen Zhaoli.High arsenic groundwater in the world: Overview and research perspectives[J]. Advances in Earth Science, 2007,22(11):1 109-1 117.
[郭华明,杨素珍,沈照理.富砷地下水研究进展[J].地球科学进展,2007,22(11): 1 109-1 117.]
doi: 10.3321/j.issn:1001-8166.2007.11.002     URL    
[4] Deng Yamin.Geochemical Processes of High Arsenic Groundwater System at Western Hetao Basin[D]. Beijing:University of Geosciences,2008.
[邓娅敏. 河套盆地西部高砷地下水系统中的地球化学过程研究[D].北京:中国地质大学,2008.]
[5] Planer-Friedrich B,London J,McCleskey R B, et al. Thioarsenates in geothermal waters of yellowstone national park: Determination, preservation, and geochemical importance[J]. Environmental Science & Technology,2007,41(15):5 245-5 251.
doi: 10.1021/es070273v     URL     pmid: 17822086
[6] Nicole S,Keller A S,Bergur S.Determination of arsenic speciation in sulfidic waters by ion chroma to graphy hydride-generation atomic fluorescence spectrometry (IC-HG-AFS)[J]. Talanta,2014,128:466-472.
doi: 10.1016/j.talanta.2014.04.035     URL     pmid: 25059187
[7] Katrin H,William A M,Simon F,et al. Experimental evaluation of sampling, storage and analytical protocols for measuring arsenic speciation in sulphidic hot spring waters[J]. Microchemical Journal,2017,130:162-167.
doi: 10.1016/j.microc.2016.08.008     URL    
[8] Wang Mindai,Guo Qinghai,Guo Wei, et al. Synthesis,identification and quantitative analysis of aqueous thioarsenates[J]. Chinese Journal of Analytical Chemistry,2016,44(11):1715-1720.
[王敏黛,郭清海,郭伟,等.硫代砷化物的合成、鉴定和定量分析方法研究[J].分析化学,2016,44(11):1715-1720.]
doi: 10.11895/j.issn.0253-3820.160167     URL    
[9] Zhuang Yaqin,Guo Qinghai,Liu Mingliang, et al. Geochemical simulation of thioarsenic speciation in high temperature,sulfide-rich hot springs:A case study in the rehai hydrothermal area,Tengchong,Yunnan[J]. Earth Science,2016,41(9):1 499-1 510.
[庄亚芹,郭清海,刘明亮,等.高温富硫化物热泉中硫代砷化物存在形态的地球化学模拟:以云南腾冲热海水热区为例[J].地球科学,2016,41(9):1 499-1 510.]
[10] Tong Jiarong,Shan Huimei,Liu Chongxuan, et al. Study on thioarsenic species: Analytical techniques and their environmental behavior[J]. Environmental Science & Technology,2018,41(3):156-162.
[童佳荣,单慧媚,刘崇炫,等.硫代砷形态测试分析技术及环境行为特征[J]. 环境科学与技术,2018, 41(3):156-162.]
URL    
[11] Guo Huaming,Yang Suzhen,Tang Xiaohui, et al. Groundwater geochemistry and its implications for arsenic mobilization in shallow aquifers of the Hetao Basin,Inner Mongolia[J]. Science of the Total Environment, 2007,393(1):131-144.
doi: 10.1016/j.scitotenv.2007.12.025     URL     pmid: 18234287
[12] Li Yuan,Guo Huaming,Hao Chunbo.Arsenic release from shallow aquifers of the Hetao Basin,Inner Mongolia: Evidence from bacterial community in aquifer sediments and groundwater[J]. Ecotoxicology, 2014,23(10):1 900-1 914.
doi: 10.1007/s10646-014-1313-8     URL     pmid: 25139033
[13] Guo Huaming, Zhang Yang, Jia Yongfeng, et al. Spatial and temporal evolutions of groundwater arsenic approximately along the flow path in the Hetao Basin,Inner Mongolia[J]. Chinese Science Bulletin,2013,58(25):3 070-3 079.
doi: 10.1007/s11434-013-5773-7     URL    
[14] Guo Huaming,Zhang Bo,Zhang Yang.Control of organic and iron colloids on arsenic partition and transport in high arsenic groundwaters in the Hetao Basin,Inner Mongolia[J]. Applied Geochemistry,2010,26(3):360-370.
doi: 10.1016/j.apgeochem.2010.12.009     URL    
[15] Parkhurst D L, Appelo C.User's Guide to PHREEQC(Version2): A Computer Program for Speciation,Batch-Reaction,One-Dimensional Transport,and Inverse Geochemical Calculations[R]. Water-Resours Investigations Report, Denver: U.S. Geological Survey, 1999.
[16] Helz G R,Tossell J A.Thermodynamic model for arsenic speciation in sulfidic waters: A novel use of ab initio computations[J]. Geochimica et Cosmochimica Acta,2008,72(18): 4 457-4 468.
doi: 10.1016/j.gca.2008.06.018     URL    
[17] Zakaznova-Herzog V P,Seward T M. A spectrophotometric study of the formation and deprotonation of thioarsenite species in aqueous solution at 22℃[J]. Geochimica et Cosmochimica Acta, 2012,83:48-60.
doi: 10.1016/j.gca.2011.12.022     URL    
[18] Thilo E,Hertzog K,Winkler A.Uber vorgange bei der bildung des arsen(V)-sulfids beim ansauern von tetrathioarsenatlosungen. Z[J]. Zeitschrift für Anorganische und Allgemeine Chemie,1970,373(2):111-121.
doi: 10.1002/(ISSN)1521-3749     URL    
[19] Yang Suzhen,Guo Huaming,Tang Xiaohui, et al. Distribution of abnormal groundwater arsenic in Hetao Plain,Inner Mongolia[J]. Earth Science Frontiers,2018,15(1):242-249.
[杨素珍,郭华明,唐小惠,等.内蒙古河套平原地下水砷异常分布规律研究[J].地学前缘,2018,15(1):242-249.]
doi: 10.3321/j.issn:1005-2321.2008.01.030     URL    
[20] Guo Huaming,Zhang Bo,Li Yuan, et al. Concentrations and patterns of rare earth elements in high arsenic groundwaters from the Hetao Plain,Inner Mongolia[J]. Earth Science Frontiers,2010,17(6):59-66.
[郭华明,张波,李媛,等.内蒙古河套平原高砷地下水中稀土元素含量及分异特征[J].地学前缘,2010,17(6):59-66.]
URL    
[21] Gao Cunrong.Discussion on arsenic pollution mechanism of groundwater in Hetao Plain[J]. The Chinese Journal of Geological Hazard and Control,1999,(2):26-33.
[高存荣. 河套平原地下水砷污染机理的探讨[J].中国地质灾害与防治学报,1999, 10(2):26-33.]
URL    
[22] Gao Cunrong,Liu Wenbo,Feng Cuie.Distribution characteristics of saline groundwater and high-arsenic groundwater in the Hetao Plain, Inner Mongolia[J]. Acta Geoscientica Sinica,2014,35(2):139-148.
[高存荣,刘文波,冯翠娥,等.内蒙古河套平原地下咸水与高砷水分布特征[J].地球学报,2014,35(2):139-148.]
doi: 10.3975/cagsb.2014.02.03     URL    
[1] 黄婉彬,鄢春华,张晓楠,邱国玉. 城市化对地下水水量、水质与水热变化的影响及其对策分析[J]. 地球科学进展, 2020, 35(5): 497-512.
[2] 李昂,王化锋,宁立波,胡闯,朱晛亭. 边坡裂隙岩体内凝结水形成区域的分布特征[J]. 地球科学进展, 2020, 35(2): 189-197.
[3] 覃荣高,邱仁敏,黎明,曹广祝,王金生,仵彦卿. 包气带—含水层地下水污染风险评估研究进展[J]. 地球科学进展, 2020, 35(2): 111-123.
[4] 赵文智, 周宏, 刘鹄. 干旱区包气带土壤水分运移及其对地下水补给研究进展[J]. 地球科学进展, 2017, 32(9): 908-918.
[5] 刘轶男, 孙凤霞, 崔月菊, 盘晓东, 马铭志, 张昕, 杜建国. 吉林省松原地区地震监测台站水化学特征[J]. 地球科学进展, 2017, 32(8): 810-817.
[6] 黄奇波, 覃小群, 刘朋雨, 张连凯, 苏春田. 非岩溶水和硫酸参与溶蚀对湘南地区地下河流域岩溶碳汇通量的影响[J]. 地球科学进展, 2017, 32(3): 307-318.
[7] 毛绪美,梁杏,王凤林,韩庆之. 多源 4He及其积累年龄揭示的深层地下水更新能力[J]. 地球科学进展, 2011, 26(4): 417-425.
阅读次数
全文


摘要