地球科学进展 ›› 2017, Vol. 32 ›› Issue (8): 810 -817. doi: 10.11867/j.issn.1001-8166.2017.08.0810

所属专题: 地震研究

上一篇    下一篇

吉林省松原地区地震监测台站水化学特征
刘轶男 1, 2, 3( ), 孙凤霞 2, *( ), 崔月菊 2, 盘晓东 4, 马铭志 3, 张昕 3, 杜建国 2   
  1. 1.吉林大学地球科学学院,吉林 长春 130012
    2.中国地震局地震预报重点实验室(中国地震局地震预测研究所),北京 100036
    3.吉林省地震局丰满地震台, 吉林 吉林 132108
    4.吉林省地震局,吉林 长春 130117
  • 收稿日期:2017-03-23 修回日期:2017-06-10 出版日期:2017-10-20
  • 通讯作者: 孙凤霞 E-mail:jllyn@126.com;396425908@qq.com
  • 基金资助:
    国家自然科学基金项目“非静水压下水岩反应的实验研究”(编号:41373059);中国地震局地震监测、预测、科研三结合课题“ 丰满台流体异常研究”(编号:160702)资助

Hydrachemical Characteristics at the Seismic Stations in Songyuan District, Jilin Province

Yi’nan Liu 1, 2, 3( ), Fengxia Sun 2, *( ), Yueju Cui 2, Xiaodong Pan 4, Mingzhi Ma 3, Xin Zhang 3, Jianguo Du 2   

  1. 1.College of Geoscience, Jilin University, Changchun 130012, China
    2.China Earthquake Administration Key Laboratory of Earthquake Prediction (Institute of Earthquake Science), China Earthquake Administration, Beijing 100036, China
    3.Fengman Seismic Station, Jilin Bureau of Seismology, Jilin Jilin 132108, China
    4.Jilin Bureau of Seismology, Changchun 130117, China
  • Received:2017-03-23 Revised:2017-06-10 Online:2017-10-20 Published:2017-08-20
  • Contact: Fengxia Sun E-mail:jllyn@126.com;396425908@qq.com
  • About author:

    First author:Liu Yi’nan(1980-), female,Jilin City, Jilin Province,Engineer. Research areas include fluid geochemistry.E-mail:jllyn@126.com

  • Supported by:
    Project supported by the Natual Science Fuondation of China“Experimental study of water-rock reaction under no-hydrostatic pressure”(No.41373059);Combined Project of Monitoring, Prediction and Research of China Earthquake Administration“Investigation of fluid anomaly in Fengman Seismo Station”(No:160702)

根据水化学组分及氢、氧同位素组成,讨论了吉林省松原及其周边地区地下水水化学类型及成因。2014—2015年在松原及其附近的8个水井点采集了4次水样,用离子色谱分析了水的主要离子浓度,用液态水同位素分析仪分析了样品的氢、氧同位素组成。测量结果表明样品的矿化度为125.4~19 350.9 mg/L;δD和δ18O值分别为-71.7‰~-98.1‰和-9.0‰~-12.5‰。地下水的δD,δ18O组成表明该区地下水主要来源于大气降水。4次采样期间,陶赖昭潜水井水化学组成受人为环境影响,变化较大;其余水样采自承压井,水化学组成变化较小。其中东大什等5口井的地下水为低矿化度的HCO3-Na型,该水化学类型的形成受硅酸盐矿物的溶解及石油开采添加活性剂的共同影响,采样期间Na+和S O 4 2 - 出现了较为明显的波动,δ18O也出现了一定程度的漂移;扶余井受油田开采注酸影响,为Cl-Na型淡水;前郭井为Cl-Na型咸水,4次采样期间,其氢、氧同位素存在明显的波动,且矿化度存在明显的递增趋势,可能与采样前后发生的中、小地震有关。研究成果为今后震情跟踪和地震水化学异常的落实提供了科学依据。

The hydrochemical types and origins of underground water in Songyuan and vicinity, Liaoning Province were discussed based on the hydrochemical composition, δD and δ18O. The water samples from eight wells were collected 4 times during 2014 to 2015. The main ion concentrations of water were analyzed with an Ion Chromatography. Isotopic compositions of hydrogen and oxygen were analyzed with the Liquid Water Isotope Analyzer. The mineralization (TDS) of the water ranged from 125.4 mg/L to 19 350.9 mg/L. Values of δD and δ18O ranged from -71.7‰ to -98.1‰ and from -9.0‰ to -12.5‰, respectively. The isotopic data indicated that the water originated from meteorological precipitation. The chemical compositions of Taolaizhao phreatic water were influenced by the human activity while the other water samples collected from artesian well were less affected by the human activity. Water in Changling, Dongdashi, Taohaotai, Qianan and Ningjiang were characterized by HCO3-Na with low TDS values. Such chemical types of water with fluctuations of Na+, S O 4 2 - and δ18O drift were resulted from dissolving silicate minerals and adding surfactant during oil exploitation. Fresh water in Fuyu well was Cl-Na type, which was influenced by acid injection during oil exploitation. Water in Qianguo well was characterized by Cl-Na type with TDS up to 19 350.9 mg/L, the obvious fluctuations of hydrogen and oxygen isotopes and increasing ion concentrations in the Qianguo well may be caused by the earthquakes that occurred in the sampling duration. The results will provide the background of hydrochemistry, and will be of benefit to monitoring earthquake and certificating seismic-chemical anomalies in the future.

中图分类号: 

图1 研究区地震构造简图
F1为第二松花江断裂;F2为扶余—肇东断裂;F3为大安—德都断裂;高程单位:m
Fig.1 Schematic diagram of seismic structure in the study area
F1.The second Songhuajiang River fault;F2.The Fuyu-Zhaodong fault; F3. The Da’an-Dedu fault; Elevation unit: m
图2 松原地区水样piper图
Fig.2 Piper diagram of the samples from the Songyuan district
表2 松原市井水主要矿物的饱和指数(SI)
Table 2 Saturation Indexes of main minerals in the Songyuan well
图3 松原地区水样的δD-δ 18O图
G.M.W.L为全球大气降水线 [ 25 ];L.M.W.L为中国东北地区大气降水线(δD=7.2δ 18O-2.4) [ 26 ]
Fig.3 δD-δ 18O diagram of the water samples from the Songyuan district
G.M.W.L stands for the global meteoric water line [ 25 ] and L.M.W.L for the meteoric water in Northeast China which foundation is(δD=7.2δ 18O-2.4) [ 26 ]
[1] Wang Chengmin.Scientific originalities and applications of the groundwater observation well-network for earthquake prediction in China[J].Journal of Disaster Prevention and Mitigation Engineering,1991,(3):4-8
汪成民.中国地震地下水动态观测网的科学创新与动态前景[J].防灾减灾工程学报,1991,(3):4-8.]
[2] Du Jianguo, Kang Chunli.A brief review on study of earthquake-caused change of underground fluid[J]. Earthquake, 2000, 20(Suppl.1):107-114.
[杜建国,康春丽. 地震地下流体发展概述[J].地震, 2000, 20(增刊1):107-114.]
[3] Zhang Weibin, Du Jianguo, Zhou Xiaocheng, et al.Hydrogeochemistry of thermal waters from the basin-range province in the west region of Beijing[J].Bulletin of Mineralogy, Petrology and Geochemistry, 2013,32(6):489-496.
[张炜斌,杜建国,周晓成,等.首都圈西部盆岭构造区地热水水文地球化学研究[J]. 矿物岩石地球化学通报,2013,32(6):489-496.]
[4] Zhang Wei, Wang Jiyi, E Xiuman. The Principle and Method of Hydrogeochemical Predict Earthquakes[M].Beijing: Science and Education Press, 1988.
[张炜, 王吉易, 鄂秀满. 水文地球化学预报地震的原理与方法[M].北京: 教育科学出版社,1988.]
[5] Luo Zhuoli, Guo Daqing, Zhang Tianzhong, et al.Earthquake Prediction Experiment District Is A New Technology and New Methods[M].Beijing: Seismological Press, 2002.
[罗灼礼,郭大庆,张天中,等. 实验场区地震预报新技术新方法[M].北京:地震出版社,2002.]
[6] Liu Yaowei, Ren Hongwei, Wang Bo.Application of environmental isotopes and tracer techniques to seismic subsurface fluids[J].Earth Science Frontiers, 2009,16(2):369-377.
[刘耀伟,任宏微,王博.环境同位素及其示踪技术在地震预测研究中的应用前景[J].地学前缘,2009,16(2):369-377.]
[7] Du Jianguo, Si Xueyun, Chen Yuxiang, et al.Geochemical anomalies connected with great earthquakes in China[M]Stefnsson ,ed.Geochemistry Research Advances. New York: Nova Science Publishers, Inc., 2008:57-92.
[8] Skelton Alasdair, Andrén Marareta, Kristmannsdttir Hrefna, et al.Changes in groundwater chemistry before two consecutive earthquakes in iceland[J]. Nature Geoscience, 2014, 7:752-756.
[9] Wang Chiyuen, Michael Manga.New strea MS and springs after the 2014 Mw 6.0 South Napa earthquake[J]. Nature Communications, 2015, 6:7 597, doi: 10.1038/ncomms8597.
[10] Zhou Xiaocheng, Du Jianguo, Chen Zhi, et al.Geochemistry of soil gas in the seismic fault zone produced by the Wenchuan MS 8.0 earthquake, southwestern China[J]. Geochemical Transactions, 2010, doi:10.1186/1467-4866-11-5.
[11] Zhou Xiaocheng, Wang Wanchun, Chen Zhi, et al.Gas geochemistry of hot springs in western Sichuan Province, China after the Wenchuan MS 8.0 earthquake[J].Terrestrial, Atmospheric & Oceanic Sciences, 2014,26(4):361-373.
[12] Chen Zhi, Du Jianguo, Zhou Xiaocheng, et al. Hydrochemistry of the hot springs in western Sichuan Province related to the Wenchuan MS 8.0 earthquake[J]. The Scientific World Journal,2014, doi:org/10.1155/2014/901432.
[13] Chen Zhi, Du Jianguo, Zhou Xiaocheng, et al.Hydrogeochemical changes of mud volcanoes and springs in north Tianshan related to the June 30, 2012 Xinyuan MS 6.6 earthquake[J]. Earthquake, 2014,34(3):97-107.
[陈志,杜建国,周晓成,等. 2012年6月30日新源MS 6.6地震前后北天山泥火山及温泉的水化学变化[J].地震,2014,34(3):97-107.]
[14] Hu Wangshui, Lü Bingquan, Zhang Wenjun, et al.An approach to tectonic evolution and dynamics of the Songliao Basin[J].Chinese Journal of Geology, 2005,40(1):16-31.
[胡望水,吕炳全,张文军,等.松辽盆地构造演化及成盆动力学探讨术[J].地质科学,2005,40(1):16-31.]
[15] Li Enze, Liu Cai, Zhang Lianghuai, et al.The correlation of structure and earthquake in Songliao Basin[J]. Progress in Geophysics, 2012,27(4):1 337-1 349.
[李恩泽,刘财,张良怀,等.松辽盆地地震构造与地震活动相关性研究[J].地球物理学进展,2012,27(4):1 337-1 349.]
[16] Sun Fengxia, Cui Yueju, Zheng Hongwei, et al.Hydrochemcal response of hot springs around the Hetao Basin to the 15 April 2015 MS 5.8 Alxa Zuoqi earthquake[J].Earthquake, 2016,36(2): 105-118.
[孙凤霞,崔月菊,郑红巍,等. 河套盆地周缘泉水地球化学对2015年4月15日MS 5.8阿左旗地震的响应[J]. 地震,2016,36(2):105-118.]
[17] Ying Bo, Chenglin Liu, Yanjun Zhao, et al.Chemical and isotopic characteristics and origin of spring waters in the Lanping-Simao Basin, Yunnan, Southwestern[J]. Chemie der Erde-Geochemistry,2015,75(3):287-300.
[18] Zhang Bing, Song Xianfang, Zhang Yinghua, et al.Relationship between surface water and groundwater in the second Songhua River Basin[J]. Advances in Water Science, 2014,25(3):336-347.
[张兵,宋献方,张应华,等.第二松花江流域地表水与地下水相互关系[J]. 水科学进展,2014,25(3):336-347.]
[19] Han Guilin, Liu Congqiang.Hydrogeochemistry of rivers in Guizhou Province, China: Constraints on crustal weathering in Karst Terrain[J]. Advances in Earth Science, 2005, 20(4):394-406.
[韩贵琳,刘丛强.贵州喀斯特地区河流的研究——碳酸盐岩溶解控制的水文地球化学特征[J]. 地球科学进展, 2005, 20(4):394-406.]
[20] Huang Qibo, Qin Xiaoqun, Liu Pengyu, et al.The influence of allogenic water and sulfuric acid to karst carbon sink in karst subterranean river in Southern Hu’nan[J]. Advances in Earth Science, 2017, 32(3): 307-318.
[黄奇波, 覃小群, 刘朋雨, 等. 非岩溶水和硫酸参与溶蚀对湘南地区地下河流域岩溶碳汇通量的影响[J]. 地球科学进展, 2017, 32(3): 307-318.]
[21] Tian Dayong,Cui Zhongyuan,Kong Qingxuan,et al.A preliminary study on the forming condition of the natural soda water in Baoquan town, Heilongjiang Province[J].Geology and Resources, 2008, 17(3):219-221.
[田大勇,崔仲元,孔庆轩,等. 黑龙江省克东县宝泉镇天然苏打水形成条件浅析[J].地质与资源,2008,17(3):219-221.]
[22] Li Jing.Geochemistry of Clayey Aquitard Pore Water and Its Implication on Environment—A Case Study in the Coastal Plain of Northwest Bohai Bay[D]. Wuhan:China University of Geosciences,2015.
[李静. 粘性土弱透水层空隙水地球化学特征及其环境指示——以渤海湾西北岸滨海平原为例[D].武汉:中国地质大学,2015.]
[23] Tang Shanyu, Yang Chengzhi.Petroleum sulfonate precipitation and redissolution in brine[J].Oilfield Chemistry,1988,5(1):28-33.
[唐善彧,杨承志.石油磺酸盐在盐溶液中的沉淀与溶解[J]. 油田化学,1988,5(1):28-33.]
[24] Cheng Bin, Zhang Zhijun, Liang Chenghao.Analysis on composition and structure of sodium petroleum sulfonate for EOR[J]. Advances in Fine Petrochemicals,2004,5(6):14-19.
[程斌,张志军,梁成浩. 三次采油用石油磺酸钠的组成和结构分析[J].精细石油化工进展,2004,5(6):14-19.]
[25] Craig H.Isotopic variations in meteoric waters[J]. Science, 1961, 133:1 702-1 703.
[26] Li Xiaofei, Zhang Mingjun, Ma Qian, et al.Characteristics of stable isotopes in precipitation over northeast China and its water vapor sources[J]. Environmental Science, 2012,33(9):2 924-2 931.
[李小飞,张明军,马潜,等. 我国东北地区大气降水稳定同位素特征及其水汽来源[J].环境科学,2012,33(9):2 924-2 931.]
[27] Li Yaju, Zhang Mingjun,Wang Shengjie,et al.Progress of research of stable isotope in precipitation in China:A review[J]. Journal of Glaciology and Geocryology, 2011,33(3):624-633.
[李亚举,张明军,王圣杰, 等.我国大气降水中稳定同位素研究进展[J].冰川冻土,2011,33(3):624-633.]
[1] 魏新元, 栾锡武, 孟凡顺, 冉伟民, 鲁银涛, 刘泽璇, 王嘉, 胡庆, 张丹丹. 帝汶海槽构造与地震特征对深部板块的约束[J]. 地球科学进展, 2022, 37(3): 277-289.
[2] 胡庆, 栾锡武, 冉伟民, 魏新元, 王嘉, 叶传红, 韦明盟, 龚梁轩, 刘泽璇. 北伊里安盆地北缘海底滑坡特征及成因研究[J]. 地球科学进展, 2022, 37(3): 303-315.
[3] 杨雄, 祝意青, 申重阳, 赵云峰. 2019年甘肃夏河 MS 5.7地震前后重力场异常特征分析[J]. 地球科学进展, 2021, 36(5): 510-519.
[4] 刘建安, 于雪晴, 彭彤, 杜金洲. 近海海水养殖海域海底地下水排放的研究进展[J]. 地球科学进展, 2021, 36(12): 1235-1246.
[5] 涂梦昭,刘志锋,何春阳,任强,卢文路. 基于 GRACE卫星数据的中国地下水储量监测进展[J]. 地球科学进展, 2020, 35(6): 643-656.
[6] 黄婉彬,鄢春华,张晓楠,邱国玉. 城市化对地下水水量、水质与水热变化的影响及其对策分析[J]. 地球科学进展, 2020, 35(5): 497-512.
[7] 曹天正, 韩冬梅, 宋献方, 刘伟, 杜荻. 滨海地区地表水—地下水相互作用研究进展的文献计量分析[J]. 地球科学进展, 2020, 35(2): 154-166.
[8] 白玲,宋博文,李国辉,江勇. 喜马拉雅造山带地震活动及其相关地质灾害[J]. 地球科学进展, 2019, 34(6): 629-639.
[9] 黄稳柱,张文涛,李芳. 基于光纤传感的多参量地震综合观测技术研究[J]. 地球科学进展, 2019, 34(4): 424-432.
[10] 王思佳,刘鹄,赵文智,李中恺. 干旱、半干旱区地下水可持续性研究评述[J]. 地球科学进展, 2019, 34(2): 210-223.
[11] 王文科, 宫程程, 张在勇, 陈立. 旱区地下水文与生态效应研究现状与展望[J]. 地球科学进展, 2018, 33(7): 702-718.
[12] 刘鹄, 赵文智, 李中恺. 地下水依赖型生态系统生态水文研究进展[J]. 地球科学进展, 2018, 33(7): 741-750.
[13] 毛经伦, 祝意青. 地面重力观测数据在地震预测中的应用研究与进展[J]. 地球科学进展, 2018, 33(3): 236-247.
[14] 赵文智, 周宏, 刘鹄. 干旱区包气带土壤水分运移及其对地下水补给研究进展[J]. 地球科学进展, 2017, 32(9): 908-918.
[15] 谷洪彪, 迟宝明, 王贺, 张耀文, 王明远. 柳江盆地地表水与地下水转化关系的氢氧稳定同位素和水化学证据[J]. 地球科学进展, 2017, 32(8): 789-799.
阅读次数
全文


摘要