地球科学进展 ›› 2019, Vol. 34 ›› Issue (6): 629 -639. doi: 10.11867/j.issn.1001-8166.2019.06.0629

所属专题: 青藏高原研究——青藏科考 地震研究

研究论文 上一篇    下一篇

喜马拉雅造山带地震活动及其相关地质灾害
白玲 1, 2( ),宋博文 2, 3,李国辉 2,江勇 2, 3   
  1. 1. 中国科学院青藏高原地球科学卓越创新中心,北京 100101
    2. 中国科学院青藏高原研究所大陆碰撞 与高原隆升实验室,北京 100101
    3. 中国科学院大学,北京 100049
  • 收稿日期:2019-01-14 修回日期:2019-04-10 出版日期:2019-06-10
  • 基金资助:
    国家自然科学基金项目“2015年尼泊尔地震相关地质灾害的地震学成因”(编号:41761144076)和“第二次青藏高原综合科学考察研究”(2019QZKK0701)

Seismic Activity in the Himalayan Orogenic Belt and Its Related Geohazards

Ling Bai 1, 2( ),Bowen Song 2, 3,Guohui Li 2,Yong Jiang 2, 3,Sanjev Dhakal 2, 3   

  1. 1. Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences,Beijing 100101,China
    2. Key Laboratory of Continental Collision and Plateau Uplift,Institute of Tibetan Plateau Research,Chinese Academy of Sciences,Beijing 100101,China
    3. University of Chinese Academy of Sciences,Beijing 100049,China
  • Received:2019-01-14 Revised:2019-04-10 Online:2019-06-10 Published:2019-07-05
  • About author:Bai Ling(1973-), female, Beizhen City, Liaoning Province, Professor. Research areas include mechanism of earthquake, structure of the earth, and geohazard assessment in Himalayan-Tibetan region. E-mail: bailing@itpcas.ac.cn
  • Supported by:
    Foundation item: Project supported by the National Natural Science Foundation of China “The seismic control of geohazards related to the 2015 Nepal earthquake” (No. 41761144076) and "the 2nd Scientific Expedition to the Qinghai-Tibet Plateau"(No. 2019QZKK0701)

喜马拉雅造山带是地球上海拔最高、规模最大的陆陆板块俯冲碰撞带。在这条长达2 500 km的板块边界上,近年来多次发生破坏性地震,造成大规模的滑坡、房屋倒塌等次生灾害,给人民生命和财产安全造成严重的威胁。分别选取尼泊尔喜马拉雅、喜马拉雅东构造结和喜马拉雅西构造结地区近期发生的3个地震震群作为研究实例,基于中国科学院青藏高原研究所在研究区架设的区域流动地震台站记录的波形资料,对地震的震源位置和震源机制解进行计算。结果表明,在尼泊尔喜马拉雅地区,主喜马拉雅逆冲断裂是大地震的主要发震构造;东构造结地区的地震以逆冲和走滑型为主,表明印度板块向北东方向的逆冲推覆和青藏高原向东南逃逸的侧向挤出是该地区的主要构造背景;西构造结地区中深源地震多发,揭示了高角度大陆深俯冲的几何形态。

Himalayan orogenic belt is the highest and largest continental collision and subduction zone on the Earth. The Himalayan orogenic belt has produced frequent large earthquakes and caused several geohazards due to landslides and housing collapse, having an impact on the safety of life and property along a length of over 2500 km. Here we took three earthquake clusters as examples, which occurred at Nepal Himalaya, eastern Himalayan syntaxis and western Himalayan syntaxis, respectively. Here we calculated the earthquake locations and fault plane solutions based on the waveform data recorded by seismic stations deployed in source areas by the Institute of Tibetan Plateau Research, Chinese Academy of Sciences. We found that at the Nepal Himalayan, the Main Himalayan Thrust is the major tectonic structure for large earthquakes to occur. At the eastern Himalayan syntaxis, most earthquakes are of the reverse or strike-slip faulting. The major tectonic feature is the combination of the NE-dipping thrust with the southeastern escape of the Tibetan plateau. At the western Himalayan syntaxis, intermediate-depth earthquakes are active. These observations reveal the geometry of the deep subduction of the continental plate with steep dipping angle.

中图分类号: 

图1 青藏高原—喜马拉雅地区1960年以来发生的 M w 5.0以上浅源和中深源地震和1000年以来发生的 M w 7.5以上浅源地震的分布[ 2 ]
Fig.1 Distribution of shallow and intermediate-depth earthquakes of M w 5.0 since 1960 and shallow earthquakes of M w 7.5 since 1000 in the Himalayan-Tibetan region [ 2 ]
图2 2015年尼泊尔地震序列(红色圆圈)、滑坡分布(黑色圆点)、加德满都盆地(黑色正方形)和青藏高原所架设台站的位置(红色三角形)[ 20 ]
Fig.2 The 2015 Gorkha earthquake sequence (red circles), landslides (black dots), the Kathmandu Basin (black squre), and seismic stations deployed by ITPCASred triangles[ 20 ]
图3 东构造结地区构造背景、地震分布与青藏高原研究所架设台站位置[ 28 ]
Fig.3 Tectonicsearthquakes, and seismic stations deployed by ITPCAS in the eastern Himalayan syntaxis [ 28 ]
图4 西构造结地区地质构造背景、地震活动[ 4 ]
Fig.4 Tectonics, seismicity in the western Himalayan syntaxis [ 4 ]
图5 喜马拉雅造山带1960年以来发生的大于 M w 5.5地震的震源机制解[ 2 ]
Fig.5 Focal mechanisms of earthquakes of M w>5.5 occurred in Himalayan orogenic belt since 1960 [ 2 ]
1 Ding Lin , Spicer R A , Yang Jian , et al . Quantifying the rise of the Himalaya orogen and implications for the South Asian monsoon[J]. Geology, 2017, 45(3):215-218.
2 Bai Ling , Li Guohui , Khan N G , et al . Focal depths and mechanisms of shallow earthquakes in the Himalayan-Tibetan region[J]. Gondwana Research, 2017, 41: 390-399.
3 Yin An , Harrison T M , Ryerson F J , et al . Tertiary structural evolution of the Gangdese Thrust System, southeastern Tibet[J]. Journal of Geophysical Research Solid Earth, 1994, 99(B9):18 175-18 201.
4 Bai Ling , Zhang Tianzhong . Complex deformation pattern of the Pamir-Hindu Kush region inferred from multi-scale double-difference earthquake relocations[J]. Tectonophysics, 2015, 638:177-184.
5 Ni J , Barazangi M . Seismotectonics of the Himalayan collision zone: Geometry of the underthrusting Indian plate beneath the Himalaya[J]. Journal of Geophysical Research Solid Earth, 1984, 89(B2):1 147-1 163.
6 Hetényi G , Bus Z . Shear wave velocity and crustal thickness in the Pannonian Basin from receiver function inversions at four permanent stations in Hungary[J]. Journal of Seismology, 2007, 11(4):405-414.
7 Nábělek J , Hetényi G , Vergne J , et al . Underplating in the Himalaya-Tibet collision zone revealed by the Hi-CLIMB experiment[J]. Science, 2009, 325(5 946):1 371-1 374.
8 Caldwell W B , Klemperer S L , Lawrence J F , et al . Characterizing the Main Himalayan Thrust in the Garhwal Himalaya, India with receiver function CCP stacking[J]. Earth & Planetary Science Letters, 2013, 367(2):15-27.
9 Lemonnier C , Marquis G , Perrier F , et al . Electrical structure of the Himalaya of central Nepal: High conductivity around the mid‐crustal ramp along the MHT[J]. Geophysical Research Letters, 1999, 26(21):381-392.
10 Berger A , Jouanne F , Hassani R , et al . Modelling the spatial distribution of present-day deformation in Nepal: How cylindrical is the Main Himalayan Thrust in Nepal[J]. Geophysical Journal International, 2004, 156(1):94-114.
11 Robert X , Van Der Beek P , Braun J , et al . Control of detachment geometry on lateral variations in exhumation rates in the Himalaya: Insights from low‐temperature thermochronology and numerical modeling[J]. Journal of Geophysical Research: Solid Earth, 2011, 116(B5). DOI:10.1029/2010JB007893 .
doi: 10.1029/2010JB007893    
12 Avouac J P , Meng Lingsen , Wei Shengji , et al . Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake[J]. Nature Geoscience, 2015, 8(9):708.
13 Elliott J R , Jolivet R , González P J , et al . Himalayan megathrust geometry and relation to topography revealed by the Gorkha earthquake[J]. Nature Geoscience, 2016, 9(2):174-180.
14 Wang Xin , Wei Shengji , Wu Wenbo . Double-ramp on the Main Himalayan Thrust revealed by broadband waveform modeling of the 2015 Gorkha earthquake sequence [J]. Earth and Planetary Science Letters, 2017, 473: 83-93.
15 Bondár I , Engdahl E R , Villase?or A , et al . ISC-GEM: Global instrumental earthquake catalogue (1900-2009), II. Location and seismicity patterns[J]. Physics of the Earth & Planetary Interiors, 2015, 239(3):2-13.
16 Zhu Lupei , Helmberger D V . Advancement in source estimation techniques using broadband regional seismograms[J]. Bulletin of the Seismological Society of America, 1996, 86(5):1 634-1 641.
17 Kikuchi M , Kanamori H . Inversion of complex body waves—III[J]. Bulletin of the Seismological Society of America, 1991,81(6): 2 335-2 350.
18 Schweitzer J . HYPOSAT—An enhanced routine to locate seismic events[J]. Pure & Applied Geophysics, 2001, 158(1/2):277-289.
19 Waldhauser F , Ellsworth W L . A double-difference earthquake location algorithm: Method and application to the northern Hayward fault, California[J]. Bulletin of the Seismological Society of America, 2000, 90(6):1 353-1 368.
20 Bai Ling , Liu Hongbing , Ritsema J , et al . Faulting structure above the Main Himalayan Thrust as shown by relocated aftershocks of the 2015 M w7.8 Gorkha, Nepal, earthquake[J]. Geophysical Research Letters, 2016, 43(2): 637-642.
21 Liu Jing , Ji Chen , Zhang Jinyu , et al . Tectonic setting and general features of coseismic rupture of the 25 April, 2015 M w 7.8 Gorkha, Nepal earthquake[J]. Chinese Science Bulletin, 2015, 60(27):2 640-2 655.
刘静,纪晨,张金玉,等 . 2015年4月25日尼泊尔M w7.8级地震的孕震构造背景和特征[J]. 科学通报, 2015, 60(27): 2 640-2 655.
22 Kargel J S , Leonard G J , Shugar D H , et al . Geomorphic and geologic controls of geohazards induced by Nepal's 2015 Gorkha earthquake[J]. Science, 2016, 351(6 269):aac8353.
23 Regmi A D , Dhital M R , Zhang J Q , et al . Landslide susceptibility assessment of the region affected by the 25 April 2015 Gorkha earthquake of Nepal[J]. Journal of Mountain Science, 2016, 13(11):1 941-1 957.
24 Yamada M , Hayashida T , Mori J , et al . Building damage survey and microtremor measurements for the source region of the 2015 Gorkha, Nepal, earthquake[J]. Earth Planets & Space, 2016, 68(1):117.
25 Adhikari L B , Gautam U P , Koirala B P , et al . The aftershock sequence of the 2015 April 25 Gorkha-Nepal earthquake[J]. Geophysical Supplements to the Monthly Notices of the Royal Astronomical Society, 2015, 203(3): 2 119-2 124.
26 Wang Dun , Mori J . Short-Period Energy of the 25 April 2015 M w7.8 Nepal earthquake determined from backprojection using four arrays in Europe, China, Japan, and Australia[J]. Bulletin of the Seismological Society of America, 2016, 106(1):259-266.
27 Rahman M M , Bai Ling , Khan N G , et al . Probabilistic seismic hazard assessment for Himalayan-Tibetan region from historical and instrumental earthquake catalogs[J]. Pure and Applied Geophysics, 2018, 175: 685-705.
28 Bai Ling , Li Guohui , Song Bowen . The source parameters of the M6.9 Mainling, Tibet earthquake and its tectonic implications[J]. Chinese Journal Geophysics, 2017, 60(12):4 956-4 963.
白玲,李国辉,宋博文 . 2017年西藏米林6.9级地震震源参数及其构造意义[J]. 地球物理学报, 2017, 60(12):4 956-4 963.
29 Ding Lin , Zhong Dalai , Yin An , et al . Cenozoic structural and metamorphic evolution of the eastern Himalayan syntaxis (Namche Barwa)[J]. Earth & Planetary Science Letters, 2001, 192(3):423-438.
30 Ben-Menahem A , Aboodi E , Schild R . The source of the great Assam earthquake — An interplate wedge motion[J]. Physics of the Earth & Planetary Interiors, 1974, 9(4):265-289.
31 Chen Wangping , Molnar P . Seismic moments of major earthquakes and the average rate of slip in central Asia[J]. Journal of Geophysical Research, 1977, 82(20):2 945-2 969.
32 Li Baokun , Diao Guiling , Xu Xiwei , et al . Redetermination of the source parameters of the Zayu, Tibet M8.6 earthquake sequence in 1950[J]. Chinese Journal Geophysics, 2015, 58(11): 4 254-4 265.
李保昆,刁桂苓,徐锡伟,等 . 1950年西藏察隅M8.6强震序列震源参数复核[J]. 地球物理学报, 2015, 58(11):4 254-4 265.
33 Yang Jianya , Bai Ling , Li Guohui , et al . Seismicity in the eastern Himalayan syntaxis and its tectonic implications[J]. Recent Developments in World Seismology, 2017,(6):12-18.
杨建亚,白玲,李国辉,等 . 东喜马拉雅构造结地区地震活动及其构造意义[J]. 国际地震动态, 2017,(6):12-18.
34 Cheng Cheng , Bai Ling , Ding Lin , et al . Crustal structure of Eastern Himalayan Syntaxis revealed by receiver function method[J]. Chinese Journal Geophysics, 2017, 60(8):2 969-2 979.
程成,白玲,丁林,等 . 利用接收函数方法研究喜马拉雅东构造结地区地壳结构[J]. 地球物理学报, 2017, 60(8):2 969-2 979.
35 Lister G , Kennett B , Richards S , et al . Boudinage of a stretching slablet implicated in earthquakes beneath the Hindu Kush[J]. Nature Geoscience, 2008, 1(3):196-201.
36 Chen Wangping , Yang Zhaohui . Earthquakes beneath the Himalayas and Tibet: Evidence for strong lithospheric mantle[J]. Science, 2004, 304(5 679):1 949-1 952.
37 Zhu Lupei , Helmberger D V . Intermediate depth earthquakes beneath the India‐Tibet Collision Zone[J]. Geophysical Research Letters, 2013, 23(5):435-438.
38 Schultepelkum V , Monsalve G , Sheehan A , et al . Imaging the Indian subcontinent beneath the Himalaya[J]. Nature, 2005, 435(7 046):1 222-1 225.
39 Priestley K , Jackson J , Mckenzie D . Lithospheric structure and deep earthquakes beneath India, the Himalaya and southern Tibet[J]. Geophysical Journal of the Royal Astronomical Society, 2010, 172(1):345-362.
40 Li Wei , Chen Yun , Yuan Xiaohui , et al . Continental lithospheric subduction and intermediate-depth seismicity: Constraints from S-wave velocity structures in the Pamir and Hindu Kush[J]. Earth and Planetary Science Letters, 2018, 482: 478-489.
41 Royden L H , Burchfiel B C , King R W , et al . Surface deformation and lower crustal flow in eastern Tibet[J]. Science, 1997, 276(5 313):788-790.
42 Wei Wei , Xie Chao , Zhou Bengang , et al . Location of the mainshock and aftershock sequences of the M6. 9 Mainling earthquake, Tibet[J]. Chinese Science Bulletin, 2018, 63(15):1 493-1 501.
韦伟,谢超,周本刚,等 . 西藏米林M6. 9级地震及其余震序列地震定位[J]. 科学通报, 2018, 63(15):1 493-1 501.
43 Tai Lingxue , Gao Yuan , Liu Geng , et al ., Crustal seismic anisotropy in the southeastern margin of Tibetan Plateau by China Array data: Shear-wave splitting from temporary observations of the first pahse[J]. Chinese Journal of Geophys, 2015, 58(11): 4 079-4 091.
太龄雪,高原,刘庚,等 . 利用中国地震科学台阵研究青藏高原东南缘地壳各向异性:第一期观测资料的剪切波分裂特征[J].地球物理学报, 2015,58(11): 4 079-4 091.
44 Beaumont C , Jamieson R A , Nguyen M H , et al . Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation[J]. Nature, 2001, 414(6 865):738-742.
45 Jamieson R A , Beaumont C , Nguyen M H , et al . Provenance of the Greater Himalayan Sequence and associated rocks: Predictions of channel flow models[J]. Geological Society London Special Publications, 2006, 268:165-182.
46 Bollinger L , Henry P , Avouac J P . Mountain building in the Nepal Himalaya: Thermal and kinematic model[J]. Earth & Planetary Science Letters, 2006, 244(1):58-71.
47 Gao Rui , Lu Zhanwu , Klemperer S L , et al . Crustal-scale duplexing beneath the Yarlung Zangbo suture in the western Himalaya[J]. Nature Geoscience, 2016, 9(7):555.
48 Burchfiel B C , Royden L H . North-south extension within the convergent Himalayan region[J]. Geology, 1985, 13(10):679.
49 Kohn M J . P-T-t data from central Nepal support critical taper and repudiate large-scale channel flow of the Greater Himalayan Sequence[J]. Geological Society of America Bulletin, 2008, 120(3):259-273.
50 Wobus C , Heimsath A , Whipple K , et al . Active out-of-sequence thrust faulting in the central Nepalese Himalaya[J]. Nature, 2005, 434(7 036):1 008-1 011.
51 Zhang Xiaoshuang , Liu Jie . Data assimilation and three-dimensional visualization of lithospheric structures of the eastern margin of the Tibetan Plateau[J]. Advances in Earth Science, 2017, 32(9): 996-1 005.
张小双,刘洁 . 岩石圈三维结构模型综合与可视化——以青藏高原东缘为例[J].地球科学进展, 2017, 32(9):996-1 005.
52 Wang Ting . A bibliometrical analysis of international cooperation research in the field of Tibetan Plateau[J]. Advances in Earth Science, 2016, 31(6):650-662.
王婷 . 基于文献计量的青藏高原国际合作研究态势分析[J].地球科学进展, 2016, 31(6):650-662.
53 Bai Ling , Klemperer S L , Mori J , et al . Lateral variation of the Main Himalayan Thrust controls the rupture length of the 2015 Gorkha earthquake in Nepal [J]. Science Advances, 2019, 5: eaav0723.
[1] 王晓先, 张进江, 王佳敏. 喜马拉雅早古生代岩浆事件:以吉隆和聂拉木眼球状片麻岩为例[J]. 地球科学进展, 2016, 31(4): 391-402.
[2] 崔月菊, 杜建国, 李营, 刘雷, 周晓成, 陈扬, 陈志, 韩晓昆. 张渤地震带高光谱气体地球化学特征[J]. 地球科学进展, 2016, 31(1): 59-65.
[3] 唐亚明, 冯卫, 李政国. 黄土滑塌研究进展[J]. 地球科学进展, 2015, 30(1): 26-36.
[4] 薛东剑,何政伟 陶舒,张东辉. “5.12”震后区域地质灾害危险性评价研究[J]. 地球科学进展, 2011, 26(3): 311-318.
[5] 唐春安. 东北矿区资源开采诱发的工程地质灾害与环境损伤特征[J]. 地球科学进展, 2004, 19(3): 490-494.
[6] 黄润秋. 中国西部地区典型岩质滑坡机理研究[J]. 地球科学进展, 2004, 19(3): 443-450.
[7] 彭建兵;马润勇;卢全中;李喜安;邵铁全. 青藏高原隆升的地质灾害效应[J]. 地球科学进展, 2004, 19(3): 457-466.
[8] 周志芳;朱海生. 城市地质灾害中的地下水环境效应[J]. 地球科学进展, 2004, 19(3): 467-471.
[9] 徐兴旺,蔡新平,肖骑彬,梁光河,张宝林,王杰. 滇西北衙地区热水岩溶作用及其伴生的地质灾害[J]. 地球科学进展, 2003, 18(6): 912-920.
[10] 李武显,李献华. 蛇绿岩中的花岗质岩石成因类型与构造意义[J]. 地球科学进展, 2003, 18(3): 392-397.
[11] 孙枢. 探索奥秘与服务社会的地质学——第31届国际地质大会综述[J]. 地球科学进展, 2001, 16(3): 300-302.
[12] 陈奇. 我国地质灾害研究若干问题探讨[J]. 地球科学进展, 1993, 8(1): 35-38.
[13] 陶明信 徐永昌 马玉贞 陈发源. 煤矿二氧化碳突出与研究[J]. 地球科学进展, 1992, 7(5): 40-.
[14] 郑剑东. 浅谈大陆构造——板块构造的回顾与反思[J]. 地球科学进展, 1991, 6(3): 50-55.
阅读次数
全文


摘要