地球科学进展 ›› 2016, Vol. 31 ›› Issue (4): 391 -402. doi: 10.11867/j.issn.1001-8166.2016.04.0391.

所属专题: 青藏高原研究——青藏科考

上一篇    下一篇

喜马拉雅早古生代岩浆事件:以吉隆和聂拉木眼球状片麻岩为例
王晓先 1, 2( ), 张进江 2, 王佳敏 2, 3   
  1. 1.中国地震局地壳应力研究所 地壳动力学重点实验室,北京 100085
    2.北京大学地球与空间科学学院 造山带与地壳演化教育部重点实验室,北京 100871
    3.中国科学院地质与地球物理研究所,北京 100029
  • 收稿日期:2016-01-18 修回日期:2016-03-15 出版日期:2016-04-20
  • 基金资助:
    中国地震局地壳应力研究所中央级公益性科研院所基本科研业务专项项目“红河断裂带北段新生代构造活动历史研究”(编号:ZDJ2014-09);国家自然科学基金项目“藏南佩枯错片麻岩穹窿变形—变质作用及形成演化研究”(编号:41402175)资助

Early Paleozoic Magmatism in Himalayan Orogen: The Geochronological Study on Augen Gneisses from Gyirongand Nyalam Areas, Southern Tibet

Xiaoxian Wang 1, 2( ), Jinjiang Zhang 2, Jiamin Wang 2, 3   

  1. 1.Key Laboratory of Crustal Dynamics,Institute of Crustal Dynamics,China Earthquake Administration, Beijing 100085,China
    2.MOE Key Laboratory of Orogenic Belts and Crustal Evolution,School of Earth and Space Sciences,Peking University,Beijing 100871,China
    3.Institute of Geology and Geophysics,Chinese Academy of Sciences,Beijing 100029,China
  • Received:2016-01-18 Revised:2016-03-15 Online:2016-04-20 Published:2016-04-10
  • About author:

    First author:Wang Xiaoxian (1986-), male, Qingdao City, Shandong Province, Research Assistant. Research areas include structural geology and tectonics.E-mail:xiaoxianwang@pku.edu.cn

  • Supported by:
    Project supported by the Research Grant from Institute of Crustal Dynamics, China Earthquake Administration “Study on the tectonic activity of northern segment of Red River fault zone”(No.ZDJ2014-09);The National Natural Science Foundation of China “Structural deformation, metamorphism and tectonic evolution of Paiku Co gneiss dome, south Tibet”(No.41402175)

喜马拉雅造山带中段的吉隆和聂拉木地区出露一套眼球状片麻岩,其矿物组成为石英、钾长石、斜长石、黑云母和少量的白云母。片麻岩中锆石发育典型的岩浆韵律环带,LA-ICP-MS锆石U-Pb测年显示,2件样品中岩浆锆石的加权平均年龄分别为(488.5±1.1) Ma,(475.1±0.7) Ma和(468.1±2.5) Ma,代表研究区早古生代早期的岩浆作用。现有的早古生代地质记录表明,喜马拉雅地体存在早古生代造山事件,这一事件可与青藏高原南部和东南部的拉萨、羌塘、保山和腾冲地体内同一时代的构造热事件对比,指示区域早古生代造山作用。早古生代早期的造山作用是冈瓦纳大陆聚合之后,原特提斯洋岩石圈沿冈瓦纳大陆北缘俯冲调整的安第斯型造山作用的产物,而非超大陆内部块体拼合过程中陆—陆碰撞为主要特征的泛非造山作用。

In the Gyirong and Nyalam areas, a massive amount of augen gneisses are extensively exposed in the middle Himalayan orogen. They consist of quartz, K-feldspar, plagioclase, biotite and minor muscovite. Zircons from augen gneisses have magmatic rims indicated by concentric oscillatory zoning. LA-ICP-MS zircon U-Pb dating gave weighted mean ages of (488.5±1.1) Ma (MSWD=0.6)、(475.1±0.7) Ma (MSWD=1.5) and (468.1±2.5) Ma (MSWD=4.2), hinting early Paleozoic magmatism in the Greater Himalayan Crystalline complex (GHC). The data in this study and other published geochronological results of Cambrian-Ordovician magmatites demonstrated that early Paleozoic orogenesis existed in the Himalayas. Early Paleozoic tectonic events preserved in Himalayas are well compared with the contemporaneous ones in the Lhasa terrane, Qiangtang terrane, Baoshan terrane and Tengchong terrane located in the south and southeast of Tibet Plateau. Integrating previous studies, we suggested an Andean-type orogeny corresponding to dynamic adjusting of the plates by subduction of the Proto-Tethys Ocean lithosphere along the northern margin of Gondwana, instead of Pan-African orogeny that was characterized by the continent-continent collisions during Gondwana assembly.

中图分类号: 

图1 喜马拉雅造山带中东段地质简图(据参考文献[49]修改)
GCT:大反冲断层;STDS:藏南拆离系;MCT:主中央逆冲断裂;MBT:主边界逆冲断裂;MFT:主前锋逆冲断裂;THS:特提斯喜马拉雅沉积岩系;GHC:大喜马拉雅结晶杂岩;LHS:小喜马拉雅沉积系;SS:西瓦里克前陆盆地沉积;NHGD:北喜马拉雅片麻岩穹窿
Fig.1 Sketch geological map of the middle and east Himalayan orogen (modified after reference[49])
GCT:Great Counter Thrust;STDS:South Tibet Detachment System;MCT:Main Central Thrust;MBT:Main Boundary Thrust;MFT:Main Frontier Thrust;THS:Tethyan Himalayan Sedimentary Sequence;GHC:Greater Himalayan Crystalline Complex;LHS:Lesser Himalayan Sequence; SS:Siwalik Foreland Basin Sedimentary;NHGD:Northern Himalayan Gneiss Domes
图2 吉隆(a)和聂拉木地区(b)跨大喜马拉雅和特提斯喜马拉雅地质剖面图(剖面位置见 图1 )
Fig.2 Geological cross-sections of the GHC and THS in Gyirong and Nyalam regions (See Fig. 1 for the locations of the cross-sections)
图3 藏南吉隆(a,b,c)和聂拉木地区(d,e,f)眼球状片麻岩露头和显微照片
(a),(b)吉隆眼球状片麻岩露头;(c)吉隆眼球状片麻岩矿物组合,正交偏光;(d),(e)聂拉木眼球状片麻岩露头;(f)聂拉木眼球状片麻岩矿物组合,正交偏光。Qtz.石英;Pl.斜长石;Kfs.钾长石;Mus.白云母;Bi.黑云母
Fig.3 Photographs and photomicrographs of augen gneisses in Gyirong (a, b, c) and Nyalam (d, e, f), southern Tibet
(a),(b)Outcrop of augen gneiss from Gyirong;(c)Mineral assemblage of augen gneiss from Gyirong,crossed nicols;(d),(e)Outcrop of augen gneiss from Nyalam;(f)Mineral assemblage of augen gneiss from Nyalam,crossed nicols. Qtz.Quartz;Pl.Plagioclase;Kfs.K-feldspar;Mus.Muscovite;Bi.Biotite
图4 藏南吉隆和聂拉木地区眼球状片麻岩代表性锆石CL图像(a,c)和U-Pb谐和图(b,d)
Fig.4 CL images of representative zircons (a, c) and U-Pb concordia diagrams (b, d) for zircons from augen gneisses in Gyirong and Nyalam areas, southern Tibet
表1 藏南吉隆和聂拉木地区眼球状片麻岩样品GY-01和NY-01 LA-ICP-MS锆石U-Pb同位素测试数据
Table 1 LA-ICP-MS zircon U-Pb isotopic data of augen gneisses from Gyirong and Nyalam, southern Tibet
分析
点号
含量/10-6 Th/U 同位素比值 表观年龄/Ma
Th U 207Pb/235U ±1σ 206Pb/238U ±1σ 208Pb/232U ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ
GY-01-01 124.3 734.1 0.17 0.59209 0.00964 0.07616 0.00054 0.02803 0.00046 472 6 473 3
GY-01-02 69.8 361.7 0.19 0.59637 0.01079 0.07680 0.00057 0.02863 0.00055 475 7 477 3
GY-01-03 149.1 639.4 0.23 0.59738 0.00752 0.07677 0.00050 0.02748 0.00032 476 5 477 3
GY-01-04 83.0 316.0 0.26 0.61544 0.00882 0.07864 0.00054 0.02757 0.00036 487 6 488 3
GY-01-05 85.1 422.8 0.20 0.62024 0.00769 0.07860 0.00052 0.02748 0.00034 490 5 488 3
GY-01-06 70.7 346.1 0.20 0.61472 0.01051 0.07890 0.00057 0.02812 0.00049 487 7 490 3
GY-01-07 57.7 218.1 0.26 0.61420 0.01167 0.07835 0.00059 0.02736 0.00046 486 7 486 4
GY-01-08 119.5 332.1 0.36 0.59581 0.01117 0.07645 0.00057 0.02807 0.00047 475 7 475 3
GY-01-09 90.7 457.4 0.20 0.59284 0.00787 0.07643 0.00051 0.02776 0.00038 473 5 475 3
GY-01-10 132.6 230.5 0.43 0.59602 0.00540 0.07608 0.00047 0.02728 0.00014 475 3 473 3
GY-01-11 66.3 305.0 0.22 0.59705 0.01398 0.07695 0.00064 0.02841 0.00064 475 9 478 4
GY-01-12 66.2 221.8 0.30 0.61787 0.01030 0.07895 0.00057 0.02716 0.00039 489 6 490 3
GY-01-13 74.0 311.9 0.24 0.61809 0.00933 0.07858 0.00054 0.02708 0.00038 489 6 488 3
GY-01-14 86.0 238.7 0.36 0.59591 0.01694 0.07617 0.00071 0.02650 0.00060 475 11 473 4
GY-01-15 119.3 332.1 0.36 0.59742 0.01034 0.07677 0.00056 0.02613 0.00047 476 7 477 3
GY-01-16 94.2 455.5 0.21 0.59750 0.00757 0.07628 0.00050 0.02416 0.00031 476 5 474 3
GY-01-17 143.3 430.7 0.33 0.59459 0.01103 0.07600 0.00057 0.02437 0.00049 474 7 472 3
GY-01-18 105.3 470.9 0.22 0.60008 0.00819 0.07581 0.00051 0.02439 0.00032 477 5 471 3
GY-01-19 80.4 264.4 0.30 0.59810 0.01039 0.07621 0.00055 0.02367 0.00036 476 7 473 3
GY-01-20 64.1 259.0 0.25 0.59487 0.00942 0.07637 0.00054 0.02381 0.00037 474 6 474 3
GY-01-21 92.8 381.3 0.24 0.59949 0.00889 0.07617 0.00052 0.02330 0.00035 477 6 473 3
GY-01-22 70.6 272.1 0.26 0.59700 0.01091 0.07666 0.00057 0.02353 0.00041 475 7 476 3
GY-01-23 78.0 294.0 0.27 0.59593 0.00983 0.07665 0.00054 0.02336 0.00036 475 6 476 3
GY-01-24 115.6 284.8 0.41 0.59779 0.00973 0.07657 0.00054 0.02389 0.00033 476 6 476 3
GY-01-25 118.7 275.5 0.43 0.61792 0.00919 0.07893 0.00054 0.02416 0.00028 489 6 490 3
GY-01-26 77.2 330.1 0.23 0.59394 0.00915 0.07693 0.00053 0.02520 0.00037 473 6 478 3
GY-01-27 97.7 650.4 0.15 0.59082 0.00745 0.07727 0.00051 0.02425 0.00035 471 5 480 3
GY-01-28 184.6 855.2 0.22 0.59025 0.00996 0.07616 0.00055 0.02509 0.00048 471 6 473 3
GY-01-29 91.5 325.2 0.28 0.59383 0.01230 0.07655 0.00060 0.02507 0.00049 473 8 476 4
GY-01-30 78.1 612.0 0.13 0.59905 0.00941 0.07694 0.00054 0.02509 0.00044 477 6 478 3
GY-01-31 164.3 469.1 0.35 0.59667 0.00731 0.07673 0.00050 0.02482 0.00024 475 5 477 3
GY-01-32 88.2 242.4 0.36 0.59918 0.01250 0.07660 0.00060 0.02395 0.00045 477 8 476 4
GY-01-33 103.2 499.4 0.21 0.59956 0.00827 0.07654 0.00052 0.02445 0.00034 477 5 475 3
GY-01-34 108.2 448.6 0.24 0.61670 0.00893 0.07886 0.00054 0.02548 0.00035 488 6 489 3
GY-01-35 79.6 356.1 0.22 0.59594 0.00901 0.07652 0.00053 0.02458 0.00036 475 6 475 3
GY-01-36 73.6 362.0 0.20 0.59815 0.00958 0.07641 0.00054 0.02418 0.00039 476 6 475 3
GY-01-37 84.8 601.5 0.14 0.59524 0.00701 0.07629 0.00049 0.02490 0.00035 474 4 474 3
GY-01-38 138.3 810.5 0.17 0.59323 0.00677 0.07646 0.00049 0.02463 0.00034 473 4 475 3
NY-01-01 235.6 712.1 0.33 0.58078 0.01064 0.07481 0.00106 0.03165 0.00070 465 7 465 6
NY-01-02 66.4 473.5 0.14 0.57114 0.00974 0.07396 0.00104 0.02929 0.00107 459 6 460 6
NY-01-03 181.5 478.5 0.38 0.59033 0.00964 0.07589 0.00106 0.02783 0.00073 471 6 472 6
NY-01-04 99.7 670.9 0.15 0.58607 0.00876 0.07541 0.00105 0.02903 0.00072 468 6 469 6
NY-01-05 191.8 558.8 0.34 0.58744 0.01096 0.07550 0.00107 0.02838 0.00082 469 7 469 6
NY-01-06 65.2 333.6 0.20 0.56982 0.00816 0.07347 0.00102 0.02674 0.00075 458 5 457 6
NY-01-07 107.1 438.5 0.24 0.57037 0.01077 0.07526 0.00107 0.02930 0.00088 458 7 468 6
NY-01-08 145.6 438.3 0.33 0.59976 0.01151 0.07687 0.00110 0.03031 0.00087 477 7 477 7
NY-01-09 168.1 681.6 0.25 0.58218 0.00844 0.07498 0.00104 0.03286 0.00082 466 5 466 6
NY-01-10 90.5 226.5 0.40 0.57997 0.00913 0.07495 0.00105 0.02897 0.00081 464 6 466 6
NY-01-11 233.9 567.8 0.41 0.59272 0.00877 0.07455 0.00104 0.03827 0.00085 473 6 464 6
NY-01-12 233.9 567.8 0.41 0.58145 0.01060 0.07486 0.00106 0.02920 0.00080 465 7 465 6
NY-01-13 267.3 552.8 0.48 0.58655 0.00880 0.07501 0.00104 0.03602 0.00086 469 6 466 6
NY-01-14 136.9 374.4 0.37 0.56752 0.00864 0.07360 0.00103 0.03323 0.00140 456 6 458 6
NY-01-15 107.5 329.2 0.33 0.58415 0.01084 0.07510 0.00107 0.02818 0.00088 467 7 467 6
NY-01-16 125.7 474.2 0.27 0.59695 0.00920 0.07703 0.00107 0.02889 0.00067 475 6 478 6
NY-01-17 235.6 514.9 0.46 0.58642 0.00850 0.07507 0.00104 0.02692 0.00061 469 5 467 6
NY-01-18 70.7 477.3 0.15 0.57848 0.00828 0.07492 0.00104 0.02358 0.00052 463 5 466 6
NY-01-19 77.4 329.8 0.23 0.58272 0.00860 0.07534 0.00105 0.02718 0.00054 466 6 468 6
NY-01-20 178.1 519.5 0.34 0.60506 0.00931 0.07744 0.00108 0.03476 0.00088 480 6 481 6
NY-01-21 139.0 481.1 0.29 0.57729 0.00853 0.07496 0.00104 0.02858 0.00073 463 5 466 6
NY-01-22 137.1 365.2 0.38 0.61076 0.00889 0.07795 0.00108 0.03118 0.00065 484 6 484 6
NY-01-23 286.0 491.0 0.58 0.58459 0.00820 0.07532 0.00104 0.02560 0.00061 467 5 468 6
NY-01-24 124.1 686.1 0.18 0.57685 0.00850 0.07503 0.00104 0.03388 0.00079 462 5 466 6
NY-01-25 96.9 260.2 0.37 0.59239 0.00849 0.07600 0.00105 0.02913 0.00103 472 5 472 6
NY-01-26 107.4 572.7 0.19 0.57432 0.00879 0.07488 0.00104 0.02643 0.00073 461 6 465 6
NY-01-27 124.5 610.4 0.20 0.59302 0.00924 0.07597 0.00106 0.02375 0.00050 473 6 472 6
图5 青藏高原南部早古生代造山事件汇总(数据来自参考文献[2~45, 54~62])
Fig.5 Sketch map showing Early Paleozoic tectonic events in the southern part of Tibet Plateau (data from references[2~45, 54~62])
图6 喜马拉雅地体早古生代所处位置(a)及其构造演化模式图(b)(据参考文献[14, 63,64]修改)
Fig.6 Location (a) and schematic illustrations of tectonic evolution (b) of the Himalayan orogen during early Paleozoic (modified after references[14, 63,64])
[1] Li Z X, Bogdanova S V, Collins A S, et al.Assembly, configuration, and break-up history of Rodinia: A synthesis[J]. Precambrian Research, 2008, 160(1/2): 179-210.
[2] Cawood P A, Johnson M R W, Nemchin A A. Early Paleozoic orogenesis along the Indian margin of Gondwana: Tectonic response to Gondwana assembly[J]. Earth and Planetary Science Letters, 2007, 255(1/2): 70-84.
[3] Garzanti E, Casnedi R, Jadoul F.Sedimentary evidence of a Cambro-Ordovician orogenic event in the Northwestern Himalaya[J]. Sedimentary Geology, 1986, 48(3/4): 237-265.
[4] Baig M S, Lawrence R D, Snee L W.Evidence for late Precambrian to early Cambrian orogeny in northwest Himalaya,Pakistan[J]. Geological Magazine, 1988, 125(1): 83-86.
[5] Valdiya K S.Proterozoic sedimentation and Pan-African geodynamic development in the Himalaya[J]. Precambrian Research, 1995, 74(1/2): 35-55.
[6] Wiesmayr G, Grasemann B, Draganits E, et al.The main pre-Himalayan and Himalayan deformation phases in the Pin valley(Spiti, Tethyan Himalaya, NW India)[J]. Geological Bulletin of the University of Peschawar (Special Issue), 1998, 31: 212-213.
[7] Miller C, Thöni M, Frank W, et al.The early Paleozoic magmatic event in the Northwest Himalaya, India: Source, tectonic setting and age of emplacement[J]. Geological Magazine, 2001, 138(3): 237-251.
[8] Liu Wencan, Liang Dingyi, Wang Keyou.The discovery of Ordovician and its significance in the Kangmar area, southern Tibet[J]. Earth Science Frontiers, 2002, 9(4): 247-248.
[刘文灿, 梁定益, 王克友. 藏南康马地区奥陶系的发现及其地质意义[J]. 地学前缘, 2002, 9(4): 247-248.]
[9] Gehrels G E, DeCelles P G, Martin A, et al. Initiation of the Himalayan orogen as an early Paleozoic thin-skinned thrust belt[J]. GSA Today, 2003, 13(9): 4-9.
[10] Gehrels G E, DeCelles P G, Ojha T P, et al. Geologic and U-Pb geochronologic evidence for Early Paleozoic tectonism in the Dadeldhura thrust sheet, far-west Nepal Himalaya[J]. Journal of Asian Earth Sciences, 2006, 28(4/5/6): 385-408.
[11] Zhou Zhiguang, Liu Wencan, Liang Dingyi.Discovery of the Ordovician and its basal conglomerate in the Kangmar area, southern Tibet—With a discussion of the relation of the sedimentary cover and unifying basement in the Himalayas[J].Geological Bulletin of China, 2004, 23(7): 655-663.
[周志广, 刘文灿, 梁定益. 藏南康马奥陶系及其底砾岩的发现并初论喜马拉雅沉积盖层与统一变质基底的关系[J]. 地质通报, 2004, 23(7): 655-663.]
[12] Li Cai, Wu Yanwang, Wang Ming,et al.Significant progress on Pan-African and Early Paleozoic orogenic events in Qinghai-Tibet Plateau—Discovery of Pan-African orogenic unconformity and Cambrian System in the Gangdise area, Tibet, China[J]. Geological Bulletin of China, 2010, 29(12): 1 733-1 736.
[李才, 吴彦旺, 王明, 等. 青藏高原泛非—早古生代造山事件研究重大进展——冈底斯地区寒武系和泛非不整合的发现[J]. 地质通报, 2010, 29(12): 1 733-1 736.]
[13] Huang Yong, Hao Jiaxu, Bai Long,et al.Stratigraphic and petrologic response to Late Pan-African movement in Shidian area, western Yunnan Province[J]. Geological Bulletin of China, 2012, 31(2/3): 306-313.
[黄勇, 郝家栩, 白龙, 等. 滇西施甸地区晚泛非运动的地层学和岩石学响应[J]. 地质通报, 2012, 31(2/3): 306-313.]
[14] Cai Zhihui, Xu Zhiqin, Duan Xiangdong,et al.Early stage of Early Paleozoic orogenic event in western Yunnan Province, southeastern margin of Tibet Plateau[J]. Acta Petrologica Sinica, 2013, 29(6): 2 123-2 140.
[蔡志慧, 许志琴, 段向东, 等. 青藏高原东南缘滇西早古生代早期造山事件[J]. 岩石学报, 2013, 29(6): 2 123-2 140.]
[15] Marquer D, Chawla H S, Challandes N.Pre-Alpine high-grade metamorphism in High-Himalaya crystalline sequences: Evidence for Lower Paleozoic Kinnaur Kailash granite and surrounding rocks in the Sutlej Valley (Himacha Pradesh, India)[J]. Eclogae Geologiae Helvetiae, 2000, 93(2): 207-220.
[16] Godin L, Parrish R R, Brown R L, et al.Crustal thickening leading to exhumation of the Himalayan metamorphic core of central Nepal: Insight from U-Pb geochronology and 40Ar/39Ar thermochronology[J]. Tectonics, 2001, 20(5): 729-747.
[17] Gehrels G E, DeCelles P G, Ojha T P, et al. Geologic and U-Th-Pb geochronology evidence for early Paleozoic tectonism in the Kathmandu thrust sheet,central Nepal Himalaya[J]. Geological Society of America Bulletin, 2006, 118(1/2): 185-198.
[18] Gehrels G, Kapp P, DeCells P, et al. Detrital zircon geochronology of pre-Tertiary strata in the Tibetan-Himalayan orogen[J]. Tectonics, 2011, 30(5): TC5016,doi:10.1029/2011TC002868.
[19] Chen F K, Li X H, Wang X L, et al.Zircon age and Nd-Hf isotopic composition of the Yunnan Tethyan belt, southwestern China[J]. International Journal of Earth Sciences, 2007, 96(6): 1 179-1 194.
[20] Lee J, Whitehouse M J.Onset of mid-crustal extensional flow in southern Tibet: Evidence from U/Pb zircon ages[J]. Geology, 2007, 35(1): 45-48.
[21] Song Shuguang, Ji Jianqing, Wei Chunjing,et al.Early Paleozoic granite in Nujiang River of northwest Yunnan in southwestern China and its tectonic implications[J]. Chinese Science Bulletin, 2007, 52(8): 927-930.
[宋述光, 季建清, 魏春景, 等. 滇西北怒江早古生代片麻状花岗岩的确定及其构造意义[J].科学通报, 2007, 52(8): 927-930.]
[22] Lee J, Hacker B R, Dinklage W S, et al.Evolution of the Kangmar Dome, southern Tibet: Structural, petrologic, and thermochronologic constrains[J]. Tectonics, 2000, 19(5): 872-895.
[23] Quigley M C, Yu L J, Gregory C, et al.U-Pb SHRIMP zircon geochronology and T-t-d history of the Kampa Dome, southern Tibet[J]. Tectonophysics, 2008, 446(1/4): 97-113.
[24] Dong Xin, Zhang Zeming, Wang Jinli, et al.Provenance and formation age of the Nyingchi Group in the southern Lhasa terrane, Tibetan Plateau: Petrology and zircon U-Pb geochronology[J]. Acta Petrologica Sinica, 2009, 25(7): 1 678-1 694.
[董昕, 张泽明, 王金丽, 等. 青藏高原拉萨地体南部林芝岩群的物质来源与形成年代:岩石学和锆石U-Pb年代学[J]. 岩石学报, 2009, 25(7): 1 678-1 694.]
[25] Ji Wenhua, Chen Shoujian, Zhao Zhenming,et al.Discovery of the Cambrian volcanic rocks in the Xainza area, Gandese orogenic belt, Tibet, China and its significance[J]. Geological Bulletin of China, 2009, 28(9): 1 350-1 354.
[计文化, 陈守建, 赵振明, 等. 西藏冈底斯构造带申扎—带寒武系火山岩的发现及其地质意义[J]. 地质通报, 2009, 28(9): 1 350-1 354.]
[26] Liu S, Hu R Z, Gao S, et al.U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on the age and origin of Early Paleozoic I-type granite from the Tengchong-Baoshan block, western Yunnan Province, SW China[J].Journal of Asian Earth Sciences, 2009, 36(2/3): 168-182.
[27] Hu Peiyuan, Li Cai, Su Li,et al.Zircon U-Pb dating of granitic gneiss in Wugong Mountain area, central Qiangtang, Qinghai-Tibet Plateau: Age records of Pan-African movement and Indo-China movement[J].Geology in China, 2010, 37(4): 1 050-1 061.
[胡培远, 李才, 苏犁, 等. 青藏高原羌塘中部蜈蚣山花岗片麻岩锆石U-Pb定年——泛非与印支事件的年代学记录[J]. 中国地质, 2010, 37(4): 1 050-1 061.]
[28] Shi Chao, Li Rongshe, He Shiping,et al.LA-ICP-MS zircon U-Pb dating for gneissic garnet-bearing biotite granodiorite in the Yadong area, southern Tibet, China and its geological significance[J].Geological Bulletin of China, 2010, 29(12): 1 745-1 753.
[时超, 李荣社, 何世平, 等. 藏南亚东地区片麻状石榴子石黑云花岗闪长岩LA-ICP-MS锆石U-Pb测年及其地质意义[J]. 地质通报, 2010, 29(12): 1 745-1 753.]
[29] Xie Chaoming, Li Cai, Su Li,et al.LA-ICP-MS U-Pb dating of zircon from granite-gneiss in the Amdo area, northern Tibet, China[J]. Geological Bulletin of China, 2010, 29(12): 1 737-1 744.
[解超明, 李才, 苏犁, 等. 藏北安多地区花岗片麻岩锆石LA-ICP-MS U-Pb定年[J]. 地质通报,2010, 29(12): 1 737-1 744.]
[30] Pullen A, Kapp P, Gehrels G E, et al.Metamorphic rocks in central Tibet: Lateral variations and implications for crustal structure[J]. Geological Society of America Bulletin, 2011, 123(3/4): 585-600.
[31] Wang Xiaoxian, Zhang Jinjiang, Yang Xiongying,et al.Zircon SHRIMP U-Pb ages, Hf isotopic features and their geological significances of the Greater Himalayan Crystalline complex augen gneiss in Gyirong area, south Tibet[J]. Earth Science Frontiers, 2011, 18(2): 127-139.
[王晓先, 张进江, 杨雄英, 等. 藏南吉隆地区早古生代大喜马拉雅片麻岩锆石SHRIMP U-Pb年龄、Hf同位素特征及其地质意义[J]. 地学前缘, 2011, 18(2): 127-139.]
[32] Dong Meiling, Dong Guochen, Mo Xuanxue,et al.Geochronology and geochemistry of the Early Paleozoic granitoids in Baoshan block, western Yunnan and their implications[J]. Acta Petrologica Sinica, 2012, 28(5): 1 453-1 464.
[董美玲, 董国臣, 莫宣学, 等. 滇西保山地块早古生代花岗岩类的年代学、地球化学及意义[J]. 岩石学报, 2012, 28(5): 1 453-1 464.]
[33] Guynn J, Kapp P, Gehrels G E, et al.U-Pb geochronology of basement rocks in central Tibet and paleogeographic implications[J]. Journal of Asian Earth Sciences, 2012, 43(1): 23-50.
[34] Lin Shiliang, Cong Feng, Gao Yongjuan,et al.LA-ICP-MS zircon U-Pb age of gneiss from Gaoligong Mountain Group on the southeastern margin of Tengchong block in western Yunnan Province[J]. Geological Bulletin of China, 2012, 31(2/3): 258-263.
[林仕良, 丛峰, 高永娟, 等. 滇西腾冲地块东南缘高黎贡山群片麻岩LA-ICP-MS锆石U-Pb年龄及其地质意义[J]. 地质通报, 2012, 31(2/3): 258-263.]
[35] Liu Qisheng, Ye Peisheng, Wu Zhonghai.SHRIMP zircon U-Pb dating and petrogeochemistry of Ordovician granite bodies in the southern segment of Gaoligong Mountain, western Yunnan Province[J].Geological Bulletin of China, 2012, 31(2/3): 250-257.
[刘琦胜, 叶培盛, 吴中海. 滇西高黎贡山南段奥陶纪花岗岩SHRIMP锆石U-Pb测年和地球化学特征[J]. 地质通报, 2012, 31(2/3): 250-257.]
[36] Wang X X, Zhang J J, Santosh M, et al.Andean-type orogeny in the Himalayas of south Tibet: Implications for early Paleozoic tectonics along the Indian margin of Gondwana[J].Lithos, 2012, 154: 248-262.
[37] Wang Y J, Xing X W, Cawood P A, et al. Petrogenesis of early Paleozoic peraluminous granite in the Sibumasu block of SW Yunnan and diachronous accretionary orogenesis along the northern margin of Gondwana[J].Lithos, 2013, 182/183: 67-85.
[38] Xiong Changli, Jia Xiaochuan, Yang Xuejun,et al.LA-ICP-MS zircon U-Pb dating of Ordovician Mengmao monzogranite in Longling area of western Yunnan Province and its tectonic setting[J].Geological Bulletin of China, 2012, 31(2/3): 277-286.
[熊昌利, 贾小川, 杨学俊, 等. 滇西龙陵地区勐冒奥陶纪二长花岗岩LA-ICP-MS锆石U-Pb定年及其构造环境[J]. 地质通报, 2012, 31(2/3): 277-286.]
[39] Yang Xuejun, Jia Xiaochuan, Xiong Changli,et al.LA-ICP-MS zircon U-Pb age of metamorphic basic volcanic rock in Gongyanghe Group of southern Gaoligong Mountain, western Yunnan Province, and its geological significance[J]. Geological Bulletin of China, 2012, 31(2/3): 264-276.
[杨学俊, 贾小川, 熊昌利, 等. 滇西高黎贡山南段公养河群变质基性火山岩LA-ICP-MS锆石U-Pb年龄及其地质意义[J]. 地质通报, 2012, 31(2/3): 264-276.]
[40] Zhu D C, Zhao Z D, Niu Y L, et al.Cambrian bimodal volcanism in the Lhasa Terrane, southern Tibet: Record of an early Paleozoic Andean-type magmatic arc in the Australian proto-Tethyan margin[J].Chemical Geology, 2012, 328: 290-308.
[41] Hu P Y, Li C, Wang M, et al.Cambrian volcanism in the Lhasa terrane, southern Tibet: Record of an early Paleozoic Andean-type magmatic arc along the Gondwana proto-Tethyan margin[J].Journal of Asian Earth Sciences, 2013, 77: 91-107.
[42] Li Zaihui, Lin Shiliang, Cong Feng,et al.Magmatism and geochemistry of the Early Paleozoic of the Tengchong-Baoshan block, western Yunnan, China: Implications for petrogenesis and tectonics[J].Bulletin of Mineralogy, Petrology and Geochemistry, 2013, 32(6): 689-703.
[李再会, 林仕良, 丛峰, 等. 滇西腾冲-保山地块早古生代岩浆作用和地球化学: 岩石成因和构造背景[J]. 矿物岩石地球化学通报, 2013, 32(6): 689-703.]
[43] Xie C M, Li C, Su L, et al.Pan-African and early Paleozoic tectonothermal events in the Nyainrong microcontinent:Constraints from geochronology and geochemistry[J]. Science in China (Series D), 2013, 56(12): 2 066-2 079.
[44] Ding H X, Zhang Z M, Dong X, et al.Cambrian ultrapotassic rhyolites from the Lhasa terrane, south Tibet: Evidence for Andean-type magmatism along the northern active margin of Gondwana[J]. Gondwana Research, 2015, 27(4): 1 616-1 629.
[45] Xing Xiaowan, Zhang Yuzhi, Wang Yuejun,et al.Zircon U-Pb geochronology and Hf isotopic composition of the Ordovician granitic gneisses in Ximeng area, west Yunnan Province[J].Geotectonica et Metallogenia, 2015, 39(3): 470-480.
[邢晓婉, 张玉芝, 王岳军, 等. 西盟地区奥陶纪花岗片麻岩的锆石U-Pb年代学、Hf同位素组成特征及其大地构造意义[J]. 大地构造与成矿学, 2015, 39(3): 470-480.]
[46] Chen Hanlin, Chen Shenqiang, Lin Xiubin.A review of the Cenozoic tectonic evolution of Pamir syntax[J].Advances in Earth Science, 2014, 29(8): 890-902.
[陈汉林, 陈沈强, 林秀斌. 帕米尔弧形构造带新生代构造演化研究进展[J]. 地球科学进展, 2014, 29(8): 890-902.]
[47] Deng Tao, Wang Xiaoming, Wang Shiqi, et al.Evolution of the Chinese Neogene mammalian faunas and its relationship to uplift of the Tibetan Plateau[J].Advances in Earth Science, 2015, 30(4): 407-415.
[邓涛, 王晓鸣, 王世骐, 等. 中国新近纪哺乳动物群的演化与青藏高原隆升的关系[J]. 地球科学进展, 2015, 30(4): 407-415.]
[48] Zhang J J, Santosh M, Wang X X, et al.Tectonics of the northern Himalaya since the India-Asia collision[J].Gondwana Research, 2012, 21(4): 939-960.
[49] Wang Xiaoxian, Zhang Jinjiang, Yan Shuyu,et al.Structural characteristics and active time of the Kangmar detachment, southern Tibet[J].Geotectonica et Metallogenia, 2015, 39(2): 250-259.
[王晓先, 张进江, 闫淑玉, 等. 藏南康马拆离断层的构造特征及其活动时代[J]. 大地构造与成矿学, 2015, 39(2): 250-259.]
[50] Brookfield M E.The Himalayan passive margin from Precambrian to Cretaceous[J].Sedimentary Geology, 1993, 84(1/4): 1-35.
[51] Zhang Jinjiang.A review on the extensional structures in the northern Himalaya and southern Tibet[J]. Geological Bulletin of China, 2007, 26(6): 639-649.
[张进江. 北喜马拉雅及藏南伸展构造综述[J]. 地质通报, 2007, 26(6): 639-649.]
[52] Aikman A B, Harrison T M, Ding L.Evidence for early (>44 Ma) Himalayan crustal thickening, Tethyan Himalaya, southeastern Tibet[J].Earth and Planetary Science Letters, 2008, 274(1/2): 14-23.
[53] Ludwig K R.User’s Manual for Isoplot/Ex Version 3.00: A geochronological took kit for Microsoft Excel version 3.00[J].Berkeley: Berkeley Centre, Special Publication, 2003, 4: 1-70.
[54] Johnson M R W, Oliver G J H, Parrish R R, et al. Synthrusting metamorphism, cooling, and erosion of the Himalayan Kathmandu Complex, Nepal[J]. Tectonics, 2001, 20(3): 394-415.
[55] Zhang Zeming, Wang Jinli, Shen Kun,et al.Paleozoic circum-Gondwana orogens: Petrology and geochronology of the Namche Barwa Complex in the eastern Himalayan syntaxis, Tibet[J]. Acta Petrologica Sinica, 2008, 24(7): 1 627-1 637.
[张泽明, 王金丽, 沈昆, 等. 环东冈瓦纳大陆周缘的早古生代造山作用: 东喜马拉雅构造结南迦巴瓦岩群的岩石学和年代学证据[J]. 岩石学报, 2008, 24(7): 1 627-1 637.]
[56] Zhang Shizhen, Li Fenqi, Li Yong,et al.Early Ordovician strongly peraluminous granite in the middle section of the Yalung Zangbo junction zone and its geological significance[J].Science in China(Series D), 2014, 44(7): 1 388-1 402.
[张士贞, 李奋其, 李勇, 等. 雅鲁藏布江结合带中段早奥陶世强过铝质花岗岩的厘定及其地质意义[J]. 中国科学:D辑,2014, 44(7): 1 388-1 402.]
[57] Visonà D, Rubatto D, Villa I M.The mafic rocks of Shao La (Kharta, S. Tibet): Ordovician basaltic magmatism in the greater Himalayan crystallines of central-eastern Himalaya[J].Journal of Asian Earth Sciences, 2010, 38(1/2): 14-25.
[58] Foster G L.The Pre-Neogene Thermal History of the Nanga Parbat Haramosh Massif and the NW Himalaya[D]. Milton Keynes: The Open University, United Kingdom, 2000.
[59] Xu Zhiqin, Yang Jingsui, Liang Fenghua,et al.Pan-African and Early Paleozoic orogenic events in the Himalaya terrane: Inference from SHRIMP U-Pb zircon ages[J]. Acta Petrologica Sinica, 2005, 21(1): 1-12.
[许志琴, 杨经绥, 梁凤华, 等. 喜马拉雅地体的泛非—早古生代造山事件年龄记录[J]. 岩石学报, 2005, 21(1): 1-12.]
[60] Li Cai, Dong Yongsheng, Zhai Qingguo,et al.Discovery of Eopaleozoic ophiolite in the Qiangtang of Tibet Plateau: Evidence form SHRIMP U-Pb dating and its tectonic implications[J].Acta Petrologica Sinica, 2008, 24(1): 31-36.
[李才, 董永胜, 翟庆国, 等. 青藏高原羌塘早古生代蛇绿岩—堆晶辉长岩的锆石SHRIMP定年及其意义[J]. 岩石学报, 2008, 24(1): 31-36.]
[61] Peng Zhimin, Geng Quanru, Wang Liquan,et al.Zircon U-Pb ages and Hf isotopic characteristics of granitic gneiss from Bunsumco, central Qiangtang, Qinghai-Tibet Plateau[J].Chinese Science Bulletin, 2014, 59(26): 2 621-2 629.
[彭智敏, 耿全如, 王立全, 等. 青藏高原羌塘中部本松错花岗质片麻岩锆石U-Pb年龄、Hf同位素特征及地质意义[J]. 科学通报, 2014, 59(26): 2 621-2 629.]
[62] Hu P Y, Zhai Q G, Jahn B M, et al. Early Ordovician granites from the south Qiangtang terrane, northern Tibet: Implications for the early Paleozoic tectonic evolution along the Gondwanan proto-Tethyan margin[J].Lithos, 2015, 220/223: 318-338.
[63] Cawood P A, Buchan C.Linking accretionary orogenesis with supercontinent assembly[J].Earth-Science Reviews, 2007, 82(3/4): 217-256.
[64] Li X H, Li Z X, Li W X.Detrital zircon U-Pb age and Hf isotope constrains on the generation and reworking of Precambrian continental crust in the Cathaysia Block, South China: A synthesis[J].Gondwana Research,2014, 25(3): 1 202-1 215.
[1] 白玲,宋博文,李国辉,江勇. 喜马拉雅造山带地震活动及其相关地质灾害[J]. 地球科学进展, 2019, 34(6): 629-639.
[2] 侯荣娜, 王淑华, 张翔, 侯克选, 张铖, 王金荣. 中祁连西段花岗岩类的地球化学特征及构造意义[J]. 地球科学进展, 2015, 30(9): 1034-1049.
[3] 姚素平,丁 海,胡凯,焦堃. 我国南方早古生代聚煤过程中硫的生物地球化学行为及成矿效应[J]. 地球科学进展, 2010, 25(2): 174-183.
阅读次数
全文


摘要