地球科学进展 ›› 2010, Vol. 25 ›› Issue (2): 174 -183. doi: 10.11867/j.issn.1001-8166.2010.02.0174

研究论文 上一篇    下一篇

我国南方早古生代聚煤过程中硫的生物地球化学行为及成矿效应
姚素平;丁 海;胡凯;焦堃   
  1. 南京大学地球科学与工程学院,江苏  南京  210093
  • 收稿日期:2009-10-12 修回日期:2009-11-19 出版日期:2010-02-10
  • 通讯作者: 姚素平 E-mail:spyao@nju.edu.cn
  • 基金资助:

    国家自然科学基金项目“南方早古生代聚煤过程中硫的生物地球化学行为及金属元素富集与成矿机制”(编号:40973051)和“华南高碳质页岩中硫的生物地球化学循环及成矿效应”(编号:40638042)资助

Biogeochemical Characteristic and Mineralization Process of Sulfur during the Coal Accumulation Process in Early Paleozoic of Southern China

Yao Suping,Ding Hai,Hu Kai,Jiao Kun   

  1. School of Earth Sciences and Engineering, Nanjing University, Nanjing  210093, China
  • Received:2009-10-12 Revised:2009-11-19 Online:2010-02-10 Published:2010-02-10
  • Contact: Su-Ping YAO E-mail:spyao@nju.edu.cn

我国早古生代煤主要蕴藏在煤炭资源贫乏的南方各省,因坚硬似岩石又称之为石煤,储量极为丰富,仅浙江至广西就分布有长约1 600 km的石煤矿,石煤中含有或富集了多种金属元素,目前已发现的伴生元素达60多种,如钒、钼、磷、钡、镍、铀、金、银等,局部可形成工业矿床而作为某种矿物资源单独开采,是我国有待系统开发的潜在的多矿产资源。研究表明:石煤形成于以菌藻类为主的生物堆积和浅表海或古陆边缘的海相还原环境,含有大量的菌藻类(如蓝绿藻和褐藻)、古孢子、海绵骨针及一些分类尚不明确的原始动、植物等生物化石,具有低碳、高灰、高硫的特点,海相沉积环境和藻类对硫的机械富集与捕集是造成含石煤岩系中硫含量高的主要因素。石煤中富集的金属元素绝大多数是亲硫元素,早期聚煤作用过程是石煤中伴生元素富集的重要阶段,多金属硫化物是石煤中金属元素最重要的赋存形式,主要有硫磺、黄铁矿、黄铜矿、闪锌矿、方硫镍矿、辉镍矿、辉砷镍矿、针镍矿、含镍黄铁矿和硫钼矿等,大量实验及同位素研究资料揭示了细菌还原硫酸盐作用是导致大规模金属硫化物矿化最可能的生物营力,也是石煤和金属硫化物矿床主要的成煤和成矿机制,硫的生物地球化学行为直接影响了金属元素的富集与赋存状态,但早期聚煤过程中硫的生物地球化学转化过程和金属元素超常富集的关系等基础地质地球化学问题仍未得到完善解决。因此,深入研究早古生代聚煤过程中硫的生物地球化学行为,不仅可以揭示我国南方含石煤岩系与多金属硫化物的共生机理和成矿效应,为我国含煤岩系中硫的形成机理及金属微量元素的富集效应研究提供科学依据,而且可以为提炼石煤中的稀有金属提供理论支持,为我国国民经济建设提供更多急需的稀散、贵重金属材料。

The early Paleozoic coals were well-developed in southern provinces of China poor in coal resources. It was also known as “stone coal” due to being hard like rock. Stone coal was widely spread throughout southern China. Though the stone coal bed is discontinuous, the horizon can be recognized in a band of transitional shelf zone sediments stretching 1 600 km only across southern China from Zhejiang Province to Guangxi Province. There contains and sometimes enriches a variety of metal elements in stone coal. It has been found that as many as 60 species of associated elements such as vanadium, molybdenum, phosphorus, barium, nickel, uranium, gold, silver, etc. in stone coal up to now. Because some elements of the special enrichment can form industrial deposits in some areas, stone coal can be used as a single extraction of mineral resources and will have a great development potential to be multi-mineral resources. Researches show that stone coal formed in the marine reducing environment with abundant bacteria and algae bioaccumulation. A large number of fossils, such as bacteria and algae (e.g. Cyanobacteria and brown algae), acritarchs, the paleospore, the sponge spicules and a number of primitive fauna and flora whose categories are not clear contained in stone coal. Low carbon, high ash and high sulfur contents were the main characteristics of stone coal. The high sulfur quantity could be commonly interpreted as the marine sedimentary environment and the mechanical concentration and sequestration of algae. Most of the enrichment metal elements in stone coal are chalcophile. The early coal accumulation process is an important stage with enrichment of associated elements in stone coal. Polymetallic sulfides (e.g. sulfur, pyrite, chalcopyrite, sphalerite, vaesite, polydymite, dobschauite, millerite, blucite and jordisite, etc.) are the main occurrences of metal elements in stone coal. A large number of experiments and isotope data reveal that the bacterial sulfate reduction is the most likely biological agent, and it not only leads to the large-scale mineralization of metal sulphide, but also is the major coal and ore-forming mechanism of the stone coal and metal sulphide deposits, and apparently the biogeochemical behavior of sulfur directly impacts the occurrence and enrichment of the metal elements. But the conversion of sulfur biogeochemical processes and the relationship between the abnormal enrichment of metals and other basic geological and geochemical issues are not yet to be improved to solve during the early coal accumulation process. Therefore, further study of biogeochemical behavior of sulfur in the early Palaeozoic coal accumulation process, not only helps revealing the symbiotic mechanism and ore-forming effect of stone-coal bearing formation and polymetallic sulfide in South China, but also helps providing scientific basis for the formation mechanism of sulfur and the enrichment effect of metal trace elements in China′s stone-coal bearing formation. In addition, those researches could help providing the theoretical support for the extraction of rare metals in the stone coal, and also help providing scattered and precious metal materials in urgent need for the construction of China's national economy.

中图分类号: 

[1] Li Yuanlü, Wang Xuzeng, Wu Chuanrong, et al. Integrated Survey Report about Stone Coal Resources of Southern China[M].Xi′an:China Coal Researh Institute, 1982.[李远虑, 王煦曾, 吴传荣, 等. 中国南方石煤资源综合考察报告[M].西安:煤炭科学院地质勘探分院地质研究所,1982.]
[2] Coal Industry Admins Bureau of Zhejiang Province. Comprehensive Utilization of Coal[M]. Beijing: China Coal Industry Publish House, 1980.[浙江省煤炭工业局. 石煤的综合利用[M]. 北京: 煤炭工业出版社, 1980.]
[3] Fan Delian, Yang Xiuling. Study of sedimentary petrology on the black shale and the polymetallic layers in the Lower Cambrian[C]//Sedimentary Petrology. Beijing: Science Press,1981.[范德廉, 杨秀玲.南方几省下寒武统黑色岩系及层状多金属富集层[C]//沉积岩石学研究(论文集). 北京: 科学出版社,1981.]
[4] Arthur M A. Stratigraphy, geochemistry and paleogeography of organic carbon rich Cretaceoussequences[C]//Ginsburg, Bernard, eds. Cretaceous Resources Events and Rhythms. Kluwer: Kluwer Academic Publishers,1979.
[5] Leggett J K. British Lower Paleozoic black shales and their paleooceanographic significance[J].Journal of the Geological Society,1980, 137(2): 139-156.
[6] Jenkyns H C. Cretaceous anoxice vents: From continents to oceans[J].Journal of the Geological Society,1980, 137(2): 171-188.
[7] Jiang Yuehua, Yue Wenzhe, Ye Zhizheng. Characteristics, sedimentary environment and originof the lowekr cambrian stone -like coal in southern china[J].Coal Geology of China,1994, 6(4): 26-31.[姜月华, 岳文浙, 业治铮. 中国南方下寒武统石煤的特征、沉积环境和成因[J]. 中国煤田地质, 1994, 6(4): 26-31.]
[8] Cornelius F,Reinhard G. Change of black shale organic material surface area during oxidative weathering:Implications for rock-water surface evolution[J].Geochimica et Cosmochimica Acta,2005, 69(5): 1 213-1 224.
[9] Martin J K, David R P, Ronald J H, Mineral surface control of organic carbon in black shale[J].Science,2002, 295(5 555):657-660.
[10] Huinby-Hunt M S, Wide P. Chemical depositional environments of calcic marine black shales[J].Economic Geology,1996, 91(1):4-13.
[11] Calvert S E, Fan Delian, Ye Jie, et al. Sedimentary geochemistry of manganese: Implications for the environment of formation of black shales[J].Economic Geology,1996,91(1):36-47.
[12] Liu Tiebing, Fan Delian, Ye Jie,et al. Origin of the black shale-hosted Chadian phosphorus-manganese deposit[J].Economic Geology,1996, 91(1):48-54.
[13] Steiner M, Zhu M, Zhao Y L, et al. Lower Cambrian Burgess Shale-type fossil associations of South China[J].Palaeogeography, Palaeoclimatology, Palaeoecology,2005, 220(1/2):129-152.
[14] Zhu Liying. Petrography of early Paleozoic highly metamorphosed boghead coal and its geological significance[J].Geological Review,1983, 29(3):245-261.[朱丽英.早古生代高变质藻煤的煤岩特征及其地质意义[J]. 地质论评,1983, 29(3):245-261.]
[15] Zhou Haoda. On the mechanism and the characteristics of early cambrian “stone coal” in lower Yangtze region and their relation to petroliferous potentials[J].Petroleum Geology & Expeximent,1990, 12(1): 36-43.[周浩达.下杨子区早寒武世“石煤”沉积特征与成因机理探讨——兼论与含油气性关系[J].石油实验地质, 1990, 12(1):36-43.]
[16] Oschmann W. Microbes and balck shales[C]//Riding R E, Awramik S M, eds. Microbial Sediments.Berlin: Springer Verlag,2000,137-148.
[17] Mao J, Lehmann B, Du A, et al. Re-Os dating of polymetallic Ni-Mo-PGE-Au mineralization in Lower Cambrian black shale of South China and its geological significance[J].Economic Geology,2000,97(5):1 051-1 061.
[18] Coveney R M Jr, Watney W L, Maples C R. Contrasting depositional models for Pennsylvanian black shale discerned from molybdenum abundances[J].Geology,1991,19(2):147-150.
[19] Algeo T J, Lyons T W. Mo-total organic carbon covariation in modern anoxic marine environments: Implication for analysis of paleoredox and paleohydrographic conditions[J].Paleooceanography,2006, 21,A1016, doi:10.1029/2009PA001112.
[20] Steiner M, Willis E, Erdtmann B D, et al. Submarine-hydrothermal exhalative ore layers in black shale from South China and associate fossils-insights into a Lower Cambrian facies and bio-evolution[J].PALAEO,2001,169(3/4):165-191.
[21] Li Shengrong, Gao Zhenmin. Source tracing of noble metal elements in Lower Cambrian black rock series of Guizhou-Hunan Provinces, China[J].Science in China (Series D), 2000, 30(2):169-174.[李胜荣, 高振敏.湘黔寒武系底部黑色岩系贵金属元素来源示踪[J]. 中国科学:D辑, 2000, 30(2):169-174.]
[22] Li Youyu. Geochemistry characteristics of Ni Mo Pt group elements in the Lower Cambrian bone coal in Hunan province[J].Journal of China Coal Society,1996, 21(3): 261-264.[李有禹.湖南下寒武统石煤中的镍钼铂族元素的地球化学特征[J]. 煤炭学报, 1996, 21(3): 261-264.]
[23] Jiang S Y, Chen Y Q, Ling H F, et al. Trance- and rare-earth element geochemistry and Pb-Pb dating of black shale and intercalated Ni-Mo-PGE-Au sulfide ores in Lower Cambrian strata, Yangtze Platform, South China[J].Mineralium Deposita,2006,41(5):453-467.
[24] Murowchick J B, Coveney R M Jr, Grauch R I, et al. Cyclic variation of sulfur isotopes in Cambrian stratabound Ni-Mo-(PGE-Au) ores of southern China[J]. Geochimica et Cosmochimica Acta,1994, 58(7):1 813-1 823.
[25] Goldberg T, Strauss Ha, Guo Q, et al. Reconstructing marine redox conditions for the early Cambrian Yangtze Platform: Evidence from biogenic sulphur and organic carbon isotopes[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2007, 254(1/2):175-193.
[26] Orberger B, Vymazalova A, Wagner C, et al. Biogenic origin of intergrown Mo-sulphide- and carbonaceous matter in Lower Cambrian black shales (Zunyi Formation, southern China)[J].Chemical Geology,2007, 238(3/4):213-231.
[27] Ahschuier Z S, Sehnepfe M M, Silber C C, et al.Sulfur diagenesis in neverglades peat and origin of pyrite in coa1[J].Science,1983, 221(2): 221-227.
[28] Casagrande D J, Siefert I. Origins of sulfur in coal: Importance of the ester-sulphate content[J].Sciences,1977, 195(4 279): 675-676.
[29] Berner R A. Sedimentary pyrite formation: An update[J].Geochimica et Cosmochimica Acta,1984, 48(4): 605-615.
[30] Westgate L M, Anderson T F. Isotopic evidence for the origin of sulfur in the Herrin No. 6 Coal Member of Illinois[J].International Journal of Coal Geology,1984, 4(1): 1-20.
[31] Trudinger P A, Swaine D J. Biogeochemical Cycling of Mineral-forming Elements[M].Amsterdam,New York: Elsevier Scientific Pub.Co.,1979:293-401.
[32] Pasava J, Hladikova J, Dobes P. Origin of Proterozoic metal-rich black shales from the ohemian massif Czech Republic[J].Economic Geology,1996, 91(1): 63-79.
[33] Dai Shifeng, Ren Deyi, Zhou Qiang,et al. Study of TOF-SIMS on the pyritized rod like bacteria in the high sulfur coal[J].Journal of China Coal Society,2000, 25(2): 190-195.[代世峰, 任德贻, 周强,等.高硫煤中菌落成因黄铁矿的TOF-SIMS研究[J]. 煤炭学报, 2000, 25(2): 190-195.]
[34] Ye Lianjun,Li Juying, Chen Qiying, et al. Microbial-organic Minerallization and the Background[M]. Beijing: Ocean Press, 1998:225-253.[叶连俊,李菊英,陈其英,等.生物有机质成矿作用和成矿背景[M]. 北京: 海洋出版社, 1998:225-253.]
[35] Yan Baorui, Zhang Xigen. Microbial Metallogeny[M]. Beijing: Science Press, 2000.[阎葆瑞, 张锡根. 微生物成矿学[M].北京:科学出版社, 2000.]
[36] Dai Yongding, Song Haiming, Shen Jiying. Fossil bacteria in Xuanlong iron ore deposits of Hebei province[J]. Science in China (Series D), 2003, 33(8): 75l-759.[戴永定, 宋海明, 沈继英.河北宣龙铁矿化石细菌[J]. 中国科学:D辑, 2003, 33(8): 75l-759.]
[37] Ren Deyi, Zhao Fenghua, Dai Shifeng,et al. Trace Element Geochemistry of Coal[M]. Beijing: Science Press, 2006.[任德贻, 赵峰华, 代世峰,等. 煤的微量元素地球化学[M].北京: 科学出版社, 2006.]
[38] Swaine D J, Goodarzi F. Environmental Aspects of Trace Elements in coal[M]. Kluwer: Academic Publishers, 1995.
[39] Finkelman R B. Trace and minor elements in coal[C]//Michael H,ed. Organic Geochemistry. New York: Plenum Press, 1993:593-607.
[40] Deyi Ren, Fenghua Zhao, Yunquan Wang, et al. Distribution of minor and trace elements in Chinese coals[J].International Journal of Coal Geology,1999, 40(3/4): 109-118.[
[41] Tang Xiuyi, Huang Wenhui. Trace Element of China Coal\[M\]. Beijing: Commercial Press, 2004.[唐修义, 黄文辉. 中国煤中微量元素\[M\]. 北京: 商务印书馆, 2004.]
[42] Wu Chaodong,Yang Chengyun. The origin and geochemical characteristics of upper sinain_lower cambrian black shales in Western Hunan[J].Acta Petrrologica et Mineralogica,1999, 18(1): 26-39.[吴朝东, 杨承运. 湘西黑色岩系地球化学特征和成因意义[J]. 岩石矿物学杂志, 1999, 18(1): 26-39.]
[43] Zhang Ruguo.Study on Sulphur accumulation and cycling in mangrove forest in Pear River mouth[J].Soil and Environmental Sciences,1996, 5(2): 67-73.[张汝国. 珠江口红树林硫的累积和循环研究[J]. 热带亚热带土壤科学, 1996, 5(2): 67-73.]
[44] White D, Theissen R. The Origin of Coal[M]. US Bureau of Mines Bulletin, 1914:38.
[45] Williams E G, Keith M L. Relationship between sulfur in coals and the occurrence of marine roof[J].Economic Geology,1963, 58(5): 720-729.
[46] Hunt J W, Hobday D K. Petrographic composition and sulfur content of coals associated with alluvial fans in the Permian Sydney and Gunnedah Basins, eastern Australia[J].International Association of Sedimentologists,1984, 7: 43-60.
[47] Rimmer S M, Davis A. Geologic controls on the inorganic composition of Lower Kittanning Coal[C]//Vorres K S,ed. Mineral Matter and Ash in Coal, 301.American Chemical Society Symposium Series,1986: 41-52.
[48] Goodarzi F. Concentration of elements in lacustrine coals from zone A, Hat Creek Deposits No.1, British Columbia, Canada[J].International Journal of Coal Geology,1987, 8(3): 247-268.
[49] Cohen A D, Spackman W S, Dolsen P. Occurrence and distribution of sulfur in peat-forming environments of southern Florida[J].International Journal of Coal Geology,1984, 4(1): 73-96.
[50] Tang Dazhen, Yang Qi, Zhou Chunguang, et al. Genetic relationships between swamp microenvironment and sulfur distribution of the Late Paleozoic coals in North China[J].Science in China (Series D),2000,30(6): 584-591.[汤达祯, 杨起, 周春光,等. 华北晚古生代成煤沼泽微环境与煤中硫成因关系研究[J]. 中国科学:D辑, 2000, 30(6): 584-591.]
[51] Spears D A, Caswell S A. Mineral matter in coals: cleat minerals and their origin in some coals from the English Midlands[J].International Journal of Coal Geology,1986, 6(2):107-125.
[52] Demchuk T D. Epigenetic pyrite in a low-sulfur, sub-bituminous coal from the central Alberta Plains[J].International Journal of Coal Geology,1992, 21(3): 187-196.
[53] Amend J P, Edwards K J, Lyons T W, eds. Special Paper-Geological Society of America, 379. Sulfur Biogeochemistry Past and Present[M]. Washington DC: American Chemical Society,2004.
[54] Liao Jialong,Yao Suping, Ding Hai. The characteristics and controlling factor of sulfur in the sediments of coastal mangrove peat[J].Geological Journal of China Universities,2008, 14(4): 620-630.[廖家隆, 姚素平, 丁海.滨海红树林泥炭沉积物中硫的赋存特点及其控制因素[J]. 高校地质学报, 2008,14(4): 620-630.]
[55] Chou C L. Geochemistry of sulfur in coal[C]//Orr W L, White C M, eds. Geochemistry of Sulfur in Fossil Fuels. American Chemical Society Symposium Series, 429. Washington DC, 1990:30-52.
[56] Ren Deyi, Lei Jiajin, Tang Yuegang. The microarea analysis and distribution characteristics of the organic sulfur in macerals[J].Coal Geology & Exploration,1993, 21(1): 27-29.[任德贻, 雷加锦, 唐跃刚.煤中显微组分有机硫的微区分析和分布特征[J]. 煤田地质与勘探, 1993, 21(1): 27-29.]
[57] Lei Jiajin, Ren Deyi, Tang Yuegang. Sulfur-accumulating model of superhigh organosulfur coal from Guiding, China[J].Chinese Science Bulletin,1994, 39(15): 1 405-1 408.[雷加锦, 任德贻, 唐跃刚. 贵州超高有机硫煤硫的的聚集模式[J]. 科学通报, 1994, 39(15): 1 405-1 408.]
[58] Lin S, Morse J W. Sulfate reduction and iron sulfide mineral formation in Gulf of Mexico anoxic sediments[J].American Journal of Science,1991, 291(1): 55-89.
[59] Borowski W S, Paui C K, Ussler W. Marine porewater sulfate profiles indicate in situ methane flux from underlying gas hydrate[J].Geology,1996, 24(7): 655-658.
[60] Westrich J T, Berner R A. The role of sedimentary organic matter in bacterial sulfate reduction: The G-Model tested[J].Limnology Oceanography,1984, 29(2):236-249.
[61] Dellwig O, Watermann F, Brumsack H J, et al. Sulphur and iron geochemistry of Holocene coastal peats (NW Germany): A tool for palaeoenvironmental reconstruction[J].Palaeogeography,  Palaeoclimatology, Palaeoecology, 2001, 167(3): 359-379.
[62] Pelsh A D.About New Autotrophic Hydrogenthiobacteria[M].Trudy Solyanoi Laboratorii, vypusk,1936, 5: 109-126.
[63] Holmer M, Kristensen E, Banta G, et al. Biogeochemical cycling of sulfur and iron in sediments of a south-east Asian mangrove, Phuket Island, Thailand[J]. Oceanographic Literature Review,1995, 42(5): 346.
[64] Wang Zhenle. The mineral composition of stone coal in Western Zhejiang[J].Coal Geology & Exploration,1980,(3): 30-33.[王真乐. 浙西石煤的矿物组成[J]. 煤田地质与勘探, 1980,(3): 30-33.]
[65] Miller L P. Formation of metal sulphides through the activities of sulphate-reducing bacteria[J].Contributions from Boyce Thompson Institute,1950, 16:85-89.
[66] Baas Becking L G M, Moore D. Biogenic sulfides[J].Economic Geology,1961, 56(2):259-272.
[67] Labrens M,Druschel G K, Thomsen-Ebert T. Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria[J].Science,2000,290(5 497):1 744-1 747.
[68] Kramarenko L E. Bacterial biocenoses in underground waters of some mineral fields and their geological importance[J].Mikrobiologiya,1962, 31: 564-569.
[69] Sakaguchi T, Burgess J G, Matsunaga T. Magnetite formation by a sulphate-reducing bacterium[J].Nature,1993, 365(6 441): 47-49.
[70] Tebo B M, Obraztsova A Y. Sulfate-reducing bacterium grows with Cr(Ⅵ), V(Ⅵ), Mn(Ⅳ)and Fe(Ⅲ)as electron acceptors[J].FEMS Microbiology Letters,1998, 162(1): l93-198.
[71] Watson J H P, Ellwood D C, Deng Q X, et al. Heavy metal adsorption on bacterially produced FeS[J].Minerals Engineering,1995,8(10):1 097-1 108.
[72] Watson J H P, Cressey B A, Roberts A P, et al. Structural and magnetic studies on heavy-metal-absorbing iron sulfide nanoparticles produced by sulfate-reducing bacteria[J].Journal of Magnestism and Magnetic Materials,2000, 214(1/2):13-20.
[73] Goldhaber M B, Kaplan I R. The sulfur cycle[C]//Goldberg E D, ed. The Sea (vol. 5).New York:Wiley,1974:569-655.
[74] Rickard D T, Luther G W. Kinetics of pyrite formation by the H2S oxidation of iron (Ⅱ) monosulfide in aqueous solutions between 25 and 125℃: The mechanism[J].Geochimica et Cosmochimica Acta,1997, 61(1): 135-147.
[75] Tang Yuegang, Ren Deyi. The genesis of pyrites in coal[J].Geological Review,1996, 42(1): 64-70.[唐跃刚, 任德贻. 煤中黄铁矿的成因研究[J]. 地质论评, 1996, 42(1): 64-70.]
[76] Raiswell R. Kinetic controls on depth variations in localized pyrite formation[J].Chemical Geology,1993, 107(1 993):467-469.
[77] Raiswell R, Plant J. The incorporation of trace elements into pyrite during diagenesis of Black Shales, Yorkshire, England[J].Economic Geology,1980, 75(5):684-699.
[78] Wang Q, Morse J W. Pyrite formation under conditions approximating those in anoxic sediments I. Pathway and morphology[J].Marine Chemistry,1996, 52(2):99-121.
[79] Schoonen M A A, Barnes H L. Reactions forming pyrite and marcasite from solution:Ⅰ.Nucleation of FeS2 below 100℃[J].Geochimica et Cosmochimica Acta,1991,55(6):1 495-1 504.
[80] Schoonen M A A, Barnes H L. Reactions forming pyrite and marcasite from solution:Ⅱ.Via FeS precursors below 100℃[J].Geochimica et Cosmochimica Acta,1991,55(6): 1 505-1 514.
[81] Schoonen M A A, Barnes H L. Reactions forming pyrite and marcasite from solution: Ⅲ. Hydrothermal processes[J].Geochimica et Cosmochimica Acta,1991, 55(12): 3 491-3 504.
[82] Donald R, Southam G. Low temperature anaerobic bacterial diagenesis of ferrous monosulfide to pyrite[J]. Geochimica et Cosmochimica Acta,1999, 63(13/14): 2 019-2 023.
[83] Wilkin R T, Barnes H L. Pyrite formation by reactions of iron monosulfides with dissolved inorganic and organic sulfur species[J]. Geochimica et Cosmochimica Acta,1996, 60(21): 4 167-4 179.
[84] Canfield D E, Thamdrup B, Fleischer S. Isotope fractionation and sulfur metabolism by pure and enrichment cultures of elemental sulfur-disproportionating bacteria[J]. Limnology and Oceanography,1998, 43(2): 253-264.
[85] Rickard D T. Kinetics and mechanism of pyrite formation at low temperatures[J].American Journal of Science,1975, 275(6): 636-652.
[86] Hurtgen M T, Lyons T W, Ingall E D. Anomalous enrichments of iron monosulfides transformations: Examples from Effingham Inlet, Orca Basin, and the Black Sea[J].American Journal of Science,1999, 299(7): 100-101.
[87] Neal A L, Techkamjanaruk S, Dohnalkova A, et al. Iron sulfide and sulfur species produced at hematite surfaces in the presence of sulfate-reducing bacteria[J].Geochimica et Cosmochiamica Acta,2001, 65(2): 223-235.

[1] 陈璐,孙若愚,刘羿,徐海. 海洋铜锌同位素地球化学研究进展[J]. 地球科学进展, 2021, 36(6): 592-603.
[2] 王云峰, 杨红梅. 金属硫化物矿床的成矿热液硫同位素示踪[J]. 地球科学进展, 2016, 31(6): 595-602.
[3] 王晓先, 张进江, 王佳敏. 喜马拉雅早古生代岩浆事件:以吉隆和聂拉木眼球状片麻岩为例[J]. 地球科学进展, 2016, 31(4): 391-402.
[4] 侯荣娜, 王淑华, 张翔, 侯克选, 张铖, 王金荣. 中祁连西段花岗岩类的地球化学特征及构造意义[J]. 地球科学进展, 2015, 30(9): 1034-1049.
[5] 邵珂, 陈建平, 任梦依. 西南印度洋中脊多金属硫化物矿产资源评价方法与指标体系[J]. 地球科学进展, 2015, 30(7): 812-822.
[6] 高会旺, 姚小红, 郭志刚, 韩志伟, 高树基. 大气沉降对海洋初级生产过程与氮循环的影响研究进展[J]. 地球科学进展, 2014, 29(12): 1325-1332.
[7] 洪义国. 硝酸盐氮氧稳定同位素分馏过程记录的海洋氮循环研究进展[J]. 地球科学进展, 2013, 28(7): 751-764.
[8] 陶贞,张超,高全洲,李元. 陆地硅的生物地球化学循环研究进展[J]. 地球科学进展, 2012, 27(7): 725-732.
[9] 吴丰昌,郑建,潘响亮,黎文,邓秋静,莫昌琍,朱静,刘碧君,劭树勋,郭建阳. 锑的环境生物地球化学循环与效应研究展望[J]. 地球科学进展, 2008, 23(4): 350-356.
[10] 侯立军;刘敏;许世远;欧冬妮;刘巧梅;刘华林;蒋海燕. 潮滩生态系统中生源要素氮的生物地球化学过程研究综述[J]. 地球科学进展, 2004, 19(5): 774-781.
[11] 张桂玲;张经. 海洋中溶存甲烷研究进展[J]. 地球科学进展, 2001, 16(6): 829-835.
[12] 高原,Robert A. Duce. 沿海海—气界面的化学物质交换[J]. 地球科学进展, 1997, 12(6): 553-563.
[13] 陈宗团,徐立,洪华生. 河口沉积物—水界面重金属生物地球化学研究进展[J]. 地球科学进展, 1997, 12(5): 434-439.
[14] 叶连俊,范璞,马宝林,黄第藩,程克明. 中、新生代陆相沉积盆地生物地球化学循环、古环境与成矿[J]. 地球科学进展, 1995, 10(5): 427-431.
[15] 张昀. 新地球观[J]. 地球科学进展, 1992, 7(1): 57-.
阅读次数
全文


摘要