地球科学进展 ›› 2015, Vol. 30 ›› Issue (7): 812 -822. doi: 10.11867/j.issn.1001-8166.2015.07.0812

上一篇    下一篇

西南印度洋中脊多金属硫化物矿产资源评价方法与指标体系
邵珂, 陈建平, 任梦依   
  1. 1.中国地质大学(北京),北京 100083
    2.中国地质大学(北京)国土资源与高新技术研究中心
  • 出版日期:2015-07-20

Evaluation Methodology and Indicator System of Polymetallic Sulfide Mineral Resources in the Southwest Indian Ocean

Ke Shao, Jianping Chen, Mengyi Ren   

  1. 1.China University of Geosciences(Beijing), Beijing 100083
    2.Institute of Land Resources and High Techniques, China University of Geosciences(Beijing),100083,China/Beijing Key Laboratory of Research and Exploration of Land Resources, Beijing 100083;
  • Online:2015-07-20 Published:2015-07-20

根据对海底多金属硫化物矿床成矿机理、成矿地质环境和地质异常信息的研究,确定了水深、构造、地震、重力异常、磁力异常等9项评价因子,通过指标标准化处理,建立了指标体系。采用层次分析法设计了4个层次的递阶结构模型。通过建立比较矩阵,确定了各层次因子的权重,形成了一套完善的评价方法和指标体系。根据评价结果,最有利区域(Ⅰ类区)占工区面积的58.33%,比较有利的前景区域(Ⅱ类区)占32.41%,二者也是近期突破的重点目标区。为下一步缩小勘探目标区提供了依据。

Based on the research of minerogenetic condition, ore-control factors, metallogenic geological environment and geological anomaly of polymetallic sulfide in Indian Ocean, the nine evaluation factors include water depth, structure, earthquake, gravity anomalies, magnetic anomalies, etc. were extracted and standardized. According to hierarchy analysis method, a structural model of four levels was designed. The comparison matrix was established to determinate thefactor weight. A set of perfectEvaluation methodology and indicator system was established. The results showed that the most favorable prospecting areas cover 58.33% of the research area and the more favorable prospecting areas cover 32.41% of the research area. This two areas are mainprospecting targets. This research findings provided a basis for lessening the target area in the future.

中图分类号: 

图1 印度洋洋中脊及热液喷口分布示意图
Fig. 1 The distribution of Indian Ocean ridge and hydrothermal vents
洋中脊构造环境中热液区水深分布
Fig.2 Statistical graph of water depth and mineral occurrence
图3 构造等密度有利区与矿点构造叠合图
Fig.3 Congruent map of favorable tectonic isodensity area,mineral occurrence and structure
图4 构造优益度与矿点统计图
Fig.4 Statistical graph of tectonic advantage and mineraloccurrence
图5 三大洋不同地质历史时期热液活动频率变化图 [ 16 ]
Fig.5 The hydrothermal activity frequency change chart of three oceans during different geologic periods [ 16 ]
表1 印度洋海底热液多金属硫化物矿床评价指标体系
Table 1 The evaluation indicator systems of the polymetallic sulfide mineral resources in the Indian Ocean
图6 印度洋海底热液多金属硫化物矿床层次评价递阶结构图
Fig. 6 The hierarchic evaluationdiagram of polymetallic sulfide mineral resources in the Indian Ocean
图7 西南印度洋合同区预测图
Fig. 7 The prediction map of polymetallic sulfide mineral resources in southwest Indian Ocean contract area
[1] Zhang Jiazheng, Zhao Minghui, Qiu Xuelin.Comprehensive geological and geophysical charcters of hydrothermal area at Southwest Indian Ridge[J]. Progress in Geophysics, 2012,27(6):2 685-2 697.
[张佳政,赵明辉,丘学林.西南印度洋洋中脊热液活动区综合地质地球物理特征[J].地球物理学进展,2012,27(6):2 685-2 697.]
[2] Li Sanzhong, Suo Yanhui, Liu Xin,et al.Tectonic reconstruction and mineralization models of the Indian Ocean: Insights from SWIR[J]. Geotectonica et Metallogenia, 2015, 39(1):30-41.
[李三忠,索艳慧,刘鑫,等.印度洋构造过程重建与成矿模式: 西南印度洋洋中脊的启示[J].大地构造与成矿学, 2015, 39(1):30-41.]
[3] Hannington M, Jamieson J, Monecke T, et al.The abundance of seafloor massivesulfide deposits[J]. Geology, 2011, 39(12): 1 155-1 158.
[4] Xu Xiaolong. Our country gets large-scale sample of polymetallic sulfide mineral in the Southwest Indian Ridge[EB/OL]. Chinese Ocean News(2009-02-13).http:∥www.oceanol.com/redian/kuaixun/2644.html.
[徐小龙.我国在西南印度洋中脊获取巨大多金属硫化物样品[EB/OL].中国海洋报(2009-02-13).http:∥www.oceanol.com/redian/kuaixun/2644.html.]
[5] Small C.Global systematics of mid-ocean ridge morphology[M]∥Buck W R, Delaney P T, Karson J A, et al, eds. Faulting and Magmatism at Mid-Ocean Ridges. Washington DC: American Geophysical Union, 1998, 106:1-26.
[6] Carbotte S,Scheirer D S.Variability of ocean crustal structure created along the global mid-ocean ridge[M]∥Davis E E, Elderfield H, eds. Hydrogeology of the Oceanic Lithosphere.Cambridge: Cambridge University Press, 2004:59-107.
[7] Liu Xinming, Lin Rongcheng, Huang Dingyong.Research progress of the chemosynthetic symbio-ses in the deep-sea hydrothermal vent[J].Advances in Earth Science,2013,28(7):794-846.
[刘昕明,林荣澄,黄丁勇.深海热液口化能合成共生作用的研究进展[J].地球科学进展,2013,28(7):794-846.]
[8] Fouquet Y.Where are the large hydrothermal sulphide deposits in the oceans?[J].Proceeding of the Royal Society A, 1997: 355:427-441.
[9] Gao Aiguo.Summarizing on the study of hydrothermal actives on the seafloor[J].Marine Geology and Quaternary Geology,1996, 16(1):103-110.
[高爱国. 海底热液活动研究综述[J].海洋地质与第四纪地质,1996, 16(1):103-110.]
[10] Pan Anyang, Yang Qunhui, Zhou Huaiyang, et al.Development of in-situ analyzing technologies of dissolved manganese and tron in deep-sea seawater[J].Advances in Earth Science, 2013,28(4):420-428.
[潘安阳,杨群慧,周怀阳,等.深海溶解态锰和铁的原位分析技术研究进展[J]. 地球科学进展,2013,28(4):420-428.]
[11] Liu Zedong, Wan Xiuquan, Liu Fukai.Long-term impact of geothermal heat flux on the deep ocean temperature and circulation[J]. Advances in Earth Science,2014,29(10):1 167-1 174.
[刘泽栋,万修全,刘福凯.海底地热通量对海洋深层温度和环流的长期影响[J]. 地球科学进展,2014,29(10):1 167-1 174.]
[12] Xia Jianxin,Li Chang, Ma Yanfang.Deep-sea hydrothermal activity:A hot research topic[J]. Journal of Geomechanics, 2007,13(2):179-191.
[夏建新,李畅,马彦芳.深海底热液活动研究热点[J].地质力学学报,2007,13(2):179-191.]
[13] Jing Chunlei.Analysis on the Regional Geological Background and Ore-controlling Factors of Submarine Hydrothermal Sulfide[D].Qingdao:The First Institute of Oceanography,SOA,2012.
[景春雷. 海底热液多金属硫化物成矿区域地质背景与控矿因素分析[D].青岛:国家海洋局第一海洋研究所,2012.]
[14] Georgen J E, Lin J, Dick H J B. Evidence from gravity anomalies for interactions of the Marion and Bouvet hotspotswith the Southwest Indian Ridge: Effects of transform offsets[J]. Earth and Planetary Science Letters, 2001,187:283-300.
[15] Fisher R L, Goodwillie A M.The physiography of the Southwest Indian Ridge[J]. Marine Geophysical Researches, 1997, 19(6):451-455.
[16] Patriat P, Sauter D, Munschy M, et al.A survey of the Southwest Indian Ridge Axis between Atlantis II Fracture zone and the Indian Ocean Triple Junction: Regional setting and large scale segmentation[J]. Marine Geophysical Researches, 1997, 19:457-480.
[17] Glasby G P.The relation between earthquakes, faulting and submarine hydrothermal mineralization[J]. Marine Georesources & Geotechnology, 1998, 16(2): 145-175.
[18] Mendel V, Sauter D.Seamount volcanism at the super slow-spreading Southwest Indian Ridge between 57°E and 70°E[J].Geology,1997,25:99-102.
[19] Yang Yaomin, Shi Xuefa, Liu Jihua, et al.Studies on the regional metallogical evolution and controlling factors of seafloor hydrothermal sulfides[J]. Acta Mineralogica Sinica, 2007, 27(Suppl.1): 367-368.
[杨耀民,石学法,刘季花,等.海底热液硫化物区域成矿演变与控制因素探讨[J]. 矿物学报, 2007, 27(增刊1): 367-368.]
[20] Dick H J B, Lin J, Schouten H. An ultraslow-spreading class of ocean ridge[J]. Nature, 2003, 426: 405-412.
[21] Zhao Pengda.Statistical Prediction of Mineraldeposit[M].Beijing: Geological Press,1994.
[赵鹏大. 矿床统计预测[M].北京:地质出版社,1994.]
[22] Wooldridge A L, Haggerty S E, Rona P A, et al.Magnetic properties and opaque mineralogy of rocks from selected seafloor hydrothermal sites at oceanic ridges[J]. Journal of Geophysical Research, 1990, 95: 12 351-12 374.
[23] McGregor B A, Harrison C G A, Lavelle J W, et al. Magnetic anomaly patterns on Mid-Atlantic Ridge crest at 26°N[J]. Journal of Grophysical Research, 1977, 82:231-328.
[24] Chen Hongmin.Introduction to Systems Engineering[M]. Beijing: Higher Education Press,2006.
[陈宏民. 系统工程导论[M]. 北京: 高等教育出版社,2006.]
[25] Xu Fengyin, Zhu Xingshan,Yan Qibin,et al.An approach to define weight of indexes in the quantitative evaluation of reservoirs[J]. Acta Petrolei Sinica,1996,17(2):29-34.
[徐风银,朱兴珊,颜其彬,等.储层定量评价中指标权重的计算途径[J] .石油学报, 1996,17(2):29-34.]
[26] Xu Shubai.The Principle of Analytic Hierarch[M].Tianjin:Tianjin University Press,1988.
[许树柏. 层次分析法原理[M].天津:天津大学出版社,1988.]
[27] Zhao Pengda,Chi Shundu.A preliminary view on geological anomaly[J].Earth Science,1991,16(3):241-246.
[赵鹏大,池顺都.初论地质异常[J].地球科学,1991,16(3):241-246.]
[1] 姜继兰,刘屹岷,李建平,张人禾. 印度洋偶极子研究进展回顾[J]. 地球科学进展, 2021, 36(6): 579-591.
[2] 杜岩,张涟漪,张玉红. 印度洋热带环流圈热盐输运及其对区域气候模态的影响[J]. 地球科学进展, 2019, 34(3): 243-254.
[3] 高峰,赵雪雁,宋晓谕,王宝,王鹏龙,牛艺博,王伟军,黄春林. 面向 SDGs的美丽中国内涵与评价指标体系[J]. 地球科学进展, 2019, 34(3): 295-305.
[4] 周洪建, 王曦. 特别重大自然灾害损失统计内容的国际对比——基于《特别重大自然灾害损失统计制度》和PDNA系统的分析[J]. 地球科学进展, 2017, 32(10): 1030-1038.
[5] 张虎才. 参加国际大洋发现计划IODP 361的启示[J]. 地球科学进展, 2016, 31(4): 422-427.
[6] 汪少勇, 李建忠, 郭秋麟, 李登华. 层次分析法在致密油有利区优选中的应用——以川中侏罗系大安寨段为例[J]. 地球科学进展, 2015, 30(6): 715-723.
[7] 周洪建, 王丹丹, 袁艺, 郝明月. 中国特别重大自然灾害损失统计的最新进展——《特别重大自然灾害损失统计制度》解析 *[J]. 地球科学进展, 2015, 30(5): 530-538.
[8] 卢辉雄, 王永军, 汪冰, 张恩, 王瑞军, 李名松. 基于GIS的层次分析法在沽源地区铀成矿预测中的应用[J]. 地球科学进展, 2014, 29(8): 968-973.
[9] 何彬彬,崔莹,陈翠华,陈建华. 基于地质空间数据挖掘的区域成矿预测方法[J]. 地球科学进展, 2011, 26(6): 615-623.
[10] 杜岩,方国洪. 印度尼西亚海与印度尼西亚贯穿流研究概述[J]. 地球科学进展, 2011, 26(11): 1131-1142.
[11] 李小虎,初凤友,雷吉江,赵建如. 慢速—超慢速扩张西南印度洋中脊研究进展[J]. 地球科学进展, 2008, 23(6): 595-603.
[12] 李天斌,肖学沛. 地下工程岩爆预测的综合集成方法[J]. 地球科学进展, 2008, 23(5): 533-540.
[13] 马建文,李加洪,高志海. 美国NASA建设地球观测科学数据产品生成与应用服务的量化体系综述[J]. 地球科学进展, 2007, 22(5): 521-526.
[14] 孙绩华,程建刚,肖子牛. 利用印度洋前期海温进行东亚地区月均降水的数值预报试验[J]. 地球科学进展, 2003, 18(6): 939-946.
[15] 毛汉英,余丹林. 区域承载力定量研究方法探讨[J]. 地球科学进展, 2001, 16(4): 549-555.
阅读次数
全文


摘要