地球科学进展 ›› 2015, Vol. 30 ›› Issue (7): 802 -811. doi: 10.11867/j.issn.1001-8166.2015.07.0802

上一篇    下一篇

陕北地区河川基流的时空演变规律
顾磊, 张洪波*( ), 陈克宇, 俞奇骏   
  1. 1.长安大学环境科学与工程学院;陕西 西安 710054
    2.长安大学旱区地下水文与生态效应教育部重点实验室,陕西 西安 710054
  • 出版日期:2015-07-20
  • 基金资助:
    国家自然科学基金项目“考虑人类扰动的旱灾危机诊断与应对机制研究”(编号:51379014);陕西省科学技术研究发展计划项目“多水源供给模式下灌区旱灾诱发危机诊断与预警”(编号:2014KJXX-54)资助

Spatial-temporal Evolution of River Baseflow in Northern Shaanxi

Lei Gu, Hongbo Zhang( ), Keyu Chen, Qijun Yu   

  1. 1. School of Environmental Science and Engineering, Chang’an University, Xi’an, 710054
    2. Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry ofEducation,Xi’an,710054
  • Online:2015-07-20 Published:2015-07-20

陕北地区地下水关系复杂,且与地表水交换十分频繁,给区域水资源评价与利用提出了严峻的挑战。通过估算陕北风沙区高家堡水文站和黄土区高石崖、曹坪水文站的基流量过程,分析了各站基流序列与对应区域的面降水序列的演化趋势及变异驱动关系;研究了其多时间尺度变化特征。结果表明:①风沙区地下水对径流补给量远大于黄土区;②不同地区的河川基流量均显著减少,主要受人类活动驱动;③各站基流量的周期及丰枯变化与其面降水量序列的周期变化在中小尺度上响应较为密切;④风沙区降水—径流关系较黄土区更为不稳定,原因在于其受到地下水蓄滞和侧向补给的影响更显著。在变化环境下的影响,风沙区水循环过程将更趋复杂多变,因此水资源评价中必须考虑地下水的影响。

The interaction between groundwater and surface water in northern Shaanxi is quite complicated and frequent under the influence of regional hydrogeological condition and human intervention. These performances bring serious challenges to regional water resources assessment and utilization. The river baseflow process at Gaojiabu Station in windy desert region, Gaoshiya and Caoping Station in loess region were taken as research objects, and their variation trends and change points in the river baseflow series were analyzed in this paper. In addition, to explore the cause of the baseflow change, this research compared their correlations with precipitations in the same area respectively from two aspects of flow variation and multitimescale characteristics. The results show that: ①groundwater recharges for river flow in windy desert region significantly exceed those in loess region; ②baseflows of all the rivers in the study area reducing significantly are mainly determined by human intervention such as the extensive pumping of groundwater; ③periodic changes of baseflow in each station response closely to precipitation change on meso-scale and small-scales; ④precipitation-runoff relationships in windy desert regions are much more complicated and unstable than loess region, which is mainly because of its more significant impact from groundwater storage and the lateral recharge change. Under the changing environment, the water cycle in windy desert regions would be in complexity and variability. Therefore, it is recommended that, groundwater changes need to be considered in regional water resources assessment.

中图分类号: 

图1 各水文站点分布图
Fig.1 Distribution of hydrological stations to study
表1 各站基流及径流统计
Table1 Statistics of baseflow and runoff in each station
表2 趋势检验与秩和检验统计表
Table 2 Statistics of trend test and rank-sum test
表3 各站基流周期与降水周期对比
Table 3 Comparison of baseflow cycle and precipitation cycle in each station
图2 各站基流和降水序列小波变换系数模平方等值线图
(a)高石崖基流;(b)高石崖降水;(c)曹坪基流;(d)曹坪降水;(e)高家堡基流;(f)高家堡降水
Fig.2 Modulus square contour of the wavelet coefficients of baseflow and precipitation
Baseflow (a) and precipitation (b) in Gaoshiya station; Baseflow (c) and precipitation (d) in Caoping station; Baseflow (e) and precipitation (f) in Gaojiabu station
图3 各站基流和降水序列小波变换系数模平方等值线图
(a)高石崖基流;(b)高石崖降水;(c)曹坪基流;(d)曹坪降水;(e)高家堡基流;(f)高家堡降水
Fig.3 Real part contour of the wavelet coefficients of baseflow and precipitation
Baseflow (a) and precipitation (b) in Gaoshiya station; Baseflow (c) and precipitation (d) in Caoping station; Baseflow (e) and precipitation (f) in Gaojiabu station
[21] Zheng Xiaodong, Lu Fan, Ma Jing.Hanjiang River Basin precipitation multiple time scales characteristics and with circulation factors correlation analysis[J]. Advances in Earth Science, 2013, 28(5): 618-626.
[郑晓东, 鲁帆, 马静. 汉江流域降水多时间尺度特性及其与环流因子的相关性分析[J]. 地球科学进展, 2013, 28(5): 618-626.]
[22] Qian Yunping, Jiang Xiuhua, Jin Shuangyan.Analysis on the chatacteristic and variation of base flow in loessial plateau of the middle reaches of Huanghe River[J]. Journal of Earth Sciences and Environment, 2004, 26(2): 88-91.
[钱云平, 蒋秀华, 金双彦. 黄河中游黄土高原区河川基流特点及变化分析[J]. 地球科学与环境学报, 2004, 26(2): 88-91.]
[23] Fu Bojie, Qiu Yang, Wang Jun, et al.Effect simulations of land use change on the runoff and erosion for a Gully Catchment of the Loess Plateau, China[J]. Acta Geographica Sinica, 2002, 57(6): 717-722.
[傅伯杰, 邱扬, 王军, 等. 黄土丘陵小流域土地利用变化对水土流失的影响[J]. 地理学报, 2002, 57(6): 717-722.]
[24] Gao Xiaohong, Wang Yimou.Using remote sensing and GIS to analyze land use dynamic change in Yulin, Shaanxi[J]. Arid Land Geography, 2004, 27(1): 106-111.
[高小红, 王一谋. 遥感与GIS支持下的榆林地区土地利用动态变化研究[J]. 干旱区地理, 2004, 27(1): 106-111.]
[25] Li Zhongfeng, Wang Yimou, Feng Yusun, et al.Analysis of land use change in Yulin prefecture based on RS and GIS[J]. Journal of Soil and Water Conservation, 2003, 17(2): 97-99, 140.
[李忠峰, 王一谋, 冯毓荪, 等. 基于RS与GS的榆林地区土地利用变化分析[J]. 水土保持学报, 2003, 17(2): 97-99, 140.]
[26] Zhang Xiaoping, Zhang Lu, Wang Yong, et al.Tempo spatially responses of the annual streamflow to LUCC in the middle reaches of Yellow River, China[J]. Science of Soil and Water Conservation, 2009, 7(1): 19-26.
[1] Duan Jinjun.Expounding strategy of resources after the cold war from the angle of the geopolitics[J].Progress in Geography, 2000, 19(2): 181-186.
[段进军. 从地缘政治角度论冷战后资源的战略地位——以石油和水资源为例[J]. 地理科学进展, 2000, 19(2):181-186.]
[2] Hou Qinlei, Bai Hongying, Ren Yuanyuan, et al.Analysis of variation in runoff of the main stream of the Weihe River and related driving forces over the last 50 years[J]. Resources Science, 2011, 33(8): 1 505-1 512.
[侯钦磊, 白红英, 任园园,等. 50年来渭河干流径流变化及其驱动力分析[J]. 资源科学, 2011, 33(8): 1 505-1 512.]
[3] Wang Hao, Jia Yangwen, Wang Jianhua, et al.Evolutionary laws of the Yellow River Basin’s water resources under the impact of human activities[J]. Journal of Natural Resources, 2005, 20(2): 157-162.
[王浩,贾仰文,王建华,等. 人类活动影响下的黄河流域水资源演化规律初探[J]. 自然资源学报, 2005, 20(2): 157-162.]
[4] Wu Wei, Xu Zongxue, Li Fapeng.Hydrologic alteration analysis in the Guanzhong reach of the Weihe River[J]. Journal of Natural Resources, 2012, 27(7): 1 124-1 137.
[武玮, 徐宗学, 李发鹏. 渭河关中段水文情势改变程度分析[J]. 自然资源学报, 2012, 27(7):1 124-1 137.]
[5] Chen Liqun, Liu Changming, Li Fadong.Reviews on base flow researches[J]. Progress in Geography, 2006, 25(1):1-15.
[陈立群, 刘昌明, 李发东. 基流研究综述[J]. 地理科学进展, 2006, 25(1):1-15.]
[6] Hall F R.Baseflow recessions—A review[J]. Water Resource Research, 1968,4(5): 973-983.
[7] Dai Mingying.Base flow separation and characteristic analyses of tributaries in the middle reach of Yellow River[J]. Yellow River, 1996, 10: 40-43.
[戴明英. 黄河中游支流基流的分割及特性分析[J]. 人民黄河, 1996, 10: 40-43.]
[8] Liu Yuwei, Jin Dongliang.Reviews on hilly region of ground water resources[J]. Journal of Water Resources Research, 2004, 25(1): 6-11.
[刘予伟, 金栋梁. 山丘区地下水资源评价方法综述[J]. 水资源研究, 2004, 25(1):6-11.]
[9] Lu Chuiyu, Sun Qingyan, Li Hui, et al.Estimation of groundwater recharge in arid and semi-arid areas based on water cycle simulation[J]. Journal of Hydraulic Engineering, 2014, 45(6): 701-711.
[陆垂裕, 孙青言, 李慧, 等. 基于水循环模拟的干旱半干旱地区地下水补给评价[J]. 水利学报, 2014, 45(6): 701-711.]
[10] Miao Jinxiang.Formation of the shallow groundwater in the Northern He’nan Plain based on isotope analyses[J]. Hydrogeology and Engineering Geology, 2010, 37(4):5-11.
[苗晋祥. 基于同位素的豫北平原浅层地下水形成的认识[J]. 水文地质工程地质, 2010, 37(4): 5-11.]
[11] Zhou Xudong, Yang Tao.Applications of three base flow separation methods in source region of Yellow River[J]. Water Resources and Power, 2014, 32(10): 18-21.
[周旭东, 杨涛. 三种基流分割方法在黄河源区应用中的对比分析[J].水电能源科学, 2014, 32(10):18-21.]
[12] Lin Kairong, Chen Xiaohong, Jiang Tao, et al.Application and study on base flow separation using digital filters[J]. Water Power, 2008, 34(6): 28-30.
[林凯荣, 陈晓宏, 江涛, 等. 数字滤波进行基流分割的应用研究[J].水力发电, 2008, 34(6): 28-30.]
[13] Yang Rui, Wang Long, Han Chunling.Nine kinds of baseflow separation methods apply and comparative in the upper reach of Nanpan River[J]. Journal of Yunnan Agricultural University, 2013, 28(5): 707-712.
[杨蕊, 王龙, 韩春玲. 9种基流分割方法在南盘江上游的应用对比[J].云南农业大学学报, 2013, 28(5): 707-712.]
[14] Dou Lin, Huang Mingbin.Applied study of baseflow separation methods in watersheds of Loess Plateau[J]. Bulletin of Soil and Water Conservation, 2010, 30(3):107-111.
[豆林, 黄明斌. 自动基流分割方法在黄土区流域的应用研究[J]. 水土保持通报, 2010, 30(3): 107-111.]
[15] Xu Zongxue, Zhang Nan.Long term trend of precipitation in the Yellow River Basin during the past 50 years[J]. Geographical Research, 2006, 25(1): 27-34.
[徐宗学, 张楠. 黄河流域近50年降水变化趋势分析[J]. 地理研究, 2006, 25(1): 27-34.]
[16] Zhang Danwu, Cong Zhentao, Ni Guangheng.Comparison of three Mann-kendall methods based on the China’s meteorological data[J]. Advanced in Water Science,2013, 24(4): 490-496.
[26] [张晓萍, 张橹, 王勇, 等. 黄河中游地区年径流对土地利用变化时空响应分析[J]. 中国水土保持科学, 2009, 7(1): 19-26.]
[27] Lei Yongnan, Zhang Xiaoping, Zhang Jianjun, et al.Change trends and driving factors of base flow in Kuye River Catchment[J]. Acta Ecologica Sinica, 2013, 33(5): 1 559-1 568.
[雷泳南, 张晓萍, 张建军, 等. 窟野河流域河川基流量变化趋势及其驱动因素[J]. 生态学报, 2013, 33(5): 1 559-1 568.]
[28] Wang Hongrui, Ye Letian, Liu Changming, et al.Problems and improved methods on the wavelet analyses of hydrological series[J]. Progress in Natural Science, 2006, 16(8): 1 002-1 008.
[王红瑞, 叶乐天, 刘昌明, 等. 水文序列小波周期分析中存在的问题及改进方式[J]. 自然科学进展, 2006, 16(8): 1 002-1 008.][FL)]
[16] [章诞武, 丛振涛, 倪广恒. 基于中国气象资料的趋势检验方法对比分析[J]. 水科学进展, 2013, 24(4): 490-496.]
[17] Yue S, Wang C Y. Applicability of prewhitening to eliminate the influence of serial correlation on the Mann-Kendall test[J]. Water Resources Research, 2002, 38(6):4-1-4-7.
[18] Zhang Hongbo, Gu Lei.Hydrological variation analysis in Wei River Basin[J]. Journal of Water Resources Research, 2014, 3(1): 1-8.
[张洪波, 顾磊. 渭河流域水文变异识别与初步解析[J]. 水资源研究, 2014, 3(1): 1-8.]
[19] Wang Wensheng, Ding Jing, Li Yueqing.Wavelet Analysis in Hydrology[M]. Beijing: Chemical Industry Press, 2005: 1-10, 115-200.
[王文圣, 丁晶, 李跃清. 水文小波分析[M]. 北京: 化学工业出版社, 2005: 1-10, 115-200.]
[20] Hu Changhua, Zhang Junbo, Xia Jun, et al.System Analysis and Design Based on MATLAB—Wavelet Analysis[M]. Xi’an: Xidian University Press, 2001.
[胡昌华, 张军波, 夏军, 等. 基于MATLAB的系统分析与设计——小波分析[M]. 西安: 西安电子科技大学出版社, 2001.]
[1] 夏军, 陈进, 王纲胜, 程丹东. 2020年长江上游洪水看流域防洪对策[J]. 地球科学进展, 2021, 36(1): 1-8.
[2] 刘鸣彦,孙凤华,侯依玲,赵春雨,周晓宇. 基于 HBV模型的太子河流域径流变化情景预估[J]. 地球科学进展, 2019, 34(6): 650-659.
[3] 王雪梅,尉永平,马明国,张志强. 基于文献计量学的黑河流域研究进展分析[J]. 地球科学进展, 2019, 34(3): 316-323.
[4] 孟宪萌,张鹏举,周宏,刘登峰. 水系结构分形特征的研究进展[J]. 地球科学进展, 2019, 34(1): 48-56.
[5] 李天生, 夏军. 基于Budyko理论分析珠江流域中上游地区气候与植被变化对径流的影响 *[J]. 地球科学进展, 2018, 33(12): 1248-1258.
[6] 范小杉, 何萍. 河流生态系统服务研究进展[J]. 地球科学进展, 2018, 33(8): 852-864.
[7] 丁永建, 张世强. 西北内陆河山区流域内循环过程与机理研究: 现状与挑战[J]. 地球科学进展, 2018, 33(7): 719-728.
[8] 李哲, 陈永柏, 李翀, 郭劲松, 肖艳, 鲁伦慧. 河流梯级开发生态环境效应与适应性管理进展[J]. 地球科学进展, 2018, 33(7): 675-686.
[9] 程国栋, 肖洪浪, 傅伯杰, 肖笃宁, 郑春苗, 康绍忠, 延晓冬, 王毅, 安黎哲, 李秀彬, 陈宜瑜, 冷疏影, 王彦辉, 杨大文, 李小雁, 张甘霖, 郑元润, 柳钦火, 邹松兵. 黑河流域生态—水文过程集成研究进展[J]. 地球科学进展, 2014, 29(4): 431-437.
[10] 盖迎春, 李新, 田伟, 张艳林, 王维真, 胡晓利. 黑河流域中游人工水循环系统在分水前后的变化[J]. 地球科学进展, 2014, 29(2): 285-294.
[11] 戴海伦, 代加兵, 舒安平, 张科利. 河岸侵蚀研究进展综述[J]. 地球科学进展, 2013, 28(9): 988-996.
[12] 李锁锁,吕世华,高艳红,奥银焕,柳媛普. 黄河上游玛曲草原湍流统计特征分析[J]. 地球科学进展, 2012, 27(8): 901-907.
[13] 贺缠生. 流域科学与水资源管理[J]. 地球科学进展, 2012, 27(7): 705-711.
[14] 邓铭江,龙爱华,李湘权,章毅,雷雨. 中亚五国跨界水资源开发利用与合作及其问题分析  [J]. 地球科学进展, 2010, 25(12): 1337-1346.
[15] 张运林;黄群芳;马荣华;陈伟民. 基于反射率的太湖典型湖区溶解性有机碳的反演[J]. 地球科学进展, 2005, 20(7): 772-777.
阅读次数
全文


摘要