地球科学进展 ›› 2016, Vol. 31 ›› Issue (6): 595 -602. doi: 10.11867/j.issn.1001-8166.2016.06.0595.

综述评述 上一篇    下一篇

王云峰 1, 2, 3, 杨红梅 3*, *   
  1. 1.中国地质大学(北京),北京 100083;
    2.中国地质科学院,北京 100037;
    3.中国地质调查局武汉地质调查中心同位素地球化学实验室,湖北 武汉 430205
  • 收稿日期:2015-11-24 修回日期:2016-02-20 出版日期:2016-06-10
  • 通讯作者: 杨红梅(1976-),女,湖北房县人,教授级高级工程师,主要从事同位素地球化学研究.E-mail:ycyanghmei@163.com
  • 基金资助:
    中国地质调查局科研项目“扬子周缘典型铅锌矿床同位素年代学研究”(编号:12120114005701); 中国地质调查局地质调查二级项目“湘西—鄂西成矿带地质矿产调查”(编号:121201009000150010)资助

Sulfur Isotope Tracing of Ore-forming Hydrothermal Fluid for Metallic Sulfide Deposit

Wang Yunfeng 1, 2, 3, Yang Hongmei 3, *   

  1. 1.China University of Geosciences, Beijing 100083,China;
    2.Chinese Academy of Geological Sciences, Beijing 100037, China;
    3.Isotope Geochemistry Laboratory, Wuhan Center of Geological Survey, China Geological Survey, Wuhan 430205, China
  • Received:2015-11-24 Revised:2016-02-20 Online:2016-06-10 Published:2016-06-10
  • About author:Wang Yunfeng (1990-), male, Jining City, Shandong Province, Master student. Research areas include isotopic geochemistry and ore deposit geochemistry.E-mail:wyf370826@126.comCorresponding author:Yang Hongmei (1976-), female, Fangxian County, Hubei Province, Professor level senior engineer. Research areas include isotopic geochemistry.E-mail:ycyanghmei@163.com
  • Supported by:
    Project supported by the Scientific Research Project of China Geological Survey “Study on isotopic chronology of typical Pb-Zn deposits in peripheral of Yangtze Block”(No.12120114005701); Geological Survey Project of China Geological Survey “Geological and mineral resources survey in western Hunan Province-western Hubei Province”(No.121201009000150010)
国内外诸多学者对如何利用硫同位素来示踪金属硫化物矿床中硫的来源进行了不断的探索研究,并取得了丰硕成果。在总结金属硫化物矿床中含硫热液矿物的硫同位素组成(δ 34S)特征基础上,阐述了准确确定成矿流体的总硫同位素组成(δ 34S ∑S值)是判别金属硫化物矿床中硫来源的关键,并总结和简要评述了获取成矿流体δ 34S ∑S的3种方法(物理—化学平衡分析法、矿物共生组合分析法和Pinckey-Rafter法)以及应用实例。据此指出3点:①在应用硫同位素示踪硫的来源时,须针对不同类型金属硫化物矿床的具体特征,选择合适的方法以便成功获取δ 34S ∑S;②目前δ 34S ∑S的获取方法和应用基础是硫同位素的分馏达到平衡状态,对于低温或快速侵位条件下可能形成的非平衡状态的含硫热液矿物的δ 34S的特征仍待深入研究;③分别研究不同形态硫的δ 34S,并讨论不同形态硫的来源、形成环境和过程是一个新的发展趋势,对示踪金属硫化物矿床的硫源可能更为有效和有意义。
How to utilize sulfur isotope for many domestic and foreign researchers to trace the sulfur source of metallic sulfide deposit has been explored for many years. Fruitful results have been gained now. Based on summing up the characteristics of sulfur isotopic composition of hydrothermal mineral from metallic sulfide deposits, this paper illuminated the total sulfur isotopic composition of ore-forming fluids is the key factor in estimating the sulfur source. This paper also summarized three approaches about how to obtain the total sulfur isotopic composition (δ 34S ∑S) of ore-forming fluids. They are physical-chemical equilibrium analysis, mineral paragenetic association analysis and Pinckey-Rafter, respectively. We gave some applied examples and made a brief comment of them as well. There are three points worth noting. Firstly, choosing appropriate approach is a critical factor to acquire the δ 34S ∑S successfully according to the characteristics of different types of metallic sulfide deposit. Secondly, currently, these above mentioned approaches and applications are effective after the establishment of equilibrium state of sulfur isotope. As to the sulfur isotopic disequilibrium condition in metallic sulfide deposits probably resulted from lower temperature or rapid emplacement, there are quite some problems in theory and technique. Therefore, an in-depth study should also be continued. Thirdly, it is a new development trend to study isotope composition of different forms of sulfur and to discuss their source, forming environment and process respectively, which is probably more effective and significant for tracing sulfur sources of metallic sulfide deposits.


[1] Rye R O, Ohmoto H. Sulfur and carbon isotopes and ore genesis: A review[J]. Economic Geology ,1974,69(6):826-842.
[2] Fontbote L, Gorzawski H. Genesis of the mississippi valley-type Zn-Pb deposit of San Vicente, central Peru: Geologic and isotopic (Sr,O,C,S,Pb) evidence[J]. Economic Geology ,1990, 85(7):1 402-1 437.
[3] Seal R R. Sulfur isotope geochemistry of sulfide minerals[J]. Reviews in Mineralogy and Geochemistry ,2006,61(1): 633-677.
[4] Zhang Jinrang, Wen Hanjie. Sulfur and lead isotope compositions and tracing of copper deposits[J]. Geochemica ,2012,41(2):166-180.
[5] Zhou Jiaxi, Huang Zhilong, Lv Zhicheng, et al . Geology, isotope geochemistry and ore genesis of the Shanshulin carbonate-hosted Pb-Zn deposit, southwest China[J]. Ore Geology Reviews ,2014, 63: 209-225,doi: 10.1016/j.oregeorev.2014.05.012.
[6] Zhang Wenyuan, Wang Cuizhi, Wei Xiaocan, et al .The implications and typomorphic characteristics of pyrite chemical composition in Zijinshan gold-copper deposit[J]. Advances in Earth Science ,2014, 29(8): 974-984.
. 地球科学进展, 2014, 29(8): 974-984.]
[7] Fang Jie, Sun Jingwen, Xu Hongqing, et al . Prediction of seafloors polymetallic sulfides resources in the North Ridge area[J]. Advances in Earth Science ,2015, 30(1): 60-68.
. 地球科学进展, 2015, 30(1): 60-68.]
[8] Fu Xiaoming, Dai Tagen, Xi Chaozhuang, et al . Characteristics of ore-forming fluid and genesis of the Shuangpengxi gold-copper deposit in Qinghai Province[J]. Advances in Earth Science ,2009, 24(5): 531-537.
. 地球科学进展, 2009, 24(5): 531-537.]
[9] Ohmoto H, Rye R. Isotopes of sulfur and carbon[C]∥Bernes H L,ed.Geochemistry of Hydrothermal Ore Deposits.New York:John Wiley,1979:509-567.
[10] Ohmoto H. Stable isotope geochemistry of ore deposits[J]. Reviews in Mineralogy and Geochemistry ,1986, 16(1):491-559.
[11] Ohmoto H. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits[J]. Economic Geology ,1972, 67(5):551-578.
[12] Pinckney D M, Rafter T A. Fractionation of sulfur isotopes during ore deposition in the Upper Mississippi Valley zinc-lead district[J]. Economic Geology ,1972, 67(3): 315-328.
[13] Cai Yingxiong, Yang Hongmei, Duan Ruichun, et al . Fluid inclusions and S, Pb, C isotope geochemistry of Pb-Zn deposits hosted by Lower Cambrian in western Hunan-eastern Guizhou area[J]. Geoscience ,2014, 28(1):29-41.
. 现代地质, 2014, 28(1):29-41.]
[14] Lapponi F, Boni M, Schneider J, et al . Genesis of Cambrian-hosted MVT Deposits of Hunan (South China): Geological and Geochemical constraints[C].Geological Society of America, 2001.
[15] Li Bo, Zhou Jiaxi, Huang Zhiong, et al . Geological, rare earth elemental and isotopic constraints on the origin of the Banbanqiao Zn-Pb deposit, southwest China[J]. Journal of Asian Earth Sciences ,2015,111:100-112.
[16] Zhou Jiaxi, Huang Zhilong, Lv Zhicheng. Geology, isotope geochemistry and ore genesis of the Shanshulin carbonate-hosted Pb-Zn deposit, southwest China[J]. Ore Geology Reviews ,2014,63:209-225,doi: 10.1016/j.oregeorev.2014.05.012.
[17] Zhou Jiaxi, Huang Zhilong, Zhou Meifu, et al . Constraints of C-O-S-Pb isotope compositions and Rb-Sr isotopic age on the origin of the Tianqiao carbonate-hosted Pb-Zn deposit, SW China[J]. Ore Geology Reviews ,2013,55(7):77-92.
[18] Nie Fei, Dong Guochen, Mo Xuanxue, et al . The characteristics of sulfur and lead isotopic compositions of the Xiyi Pb-Zn deposit in Baoshan Block,western Yunnan[J]. Acta Petrologica Sinica ,2015,31(5):1 327-1 334.
. 岩石学报,2015,31(5):1 327-1 334.]
[19] Sakai H. Isotopic properties of sulfur compounds in hydrothermal processes[J]. Geochemical Journal ,1968,2(1):29-49.
[20] Chu Xuelei, Chen Jinshi, Wang Shouxin. Several diagrams of sulfur isotope evolution in equilibrium with hydrothermal system[J]. Scientic Geologica Sinica ,1984,2:186-200.
. 地质科学,1984,2:186-200.]
[21] Ohmoto H. Fluid inclusions and isotope study of the lead-zinc deposits at the Bluebell mine, British Columbia, Canada[J]. Society of Mining Geology of Japan ( Special Issue ),1971,2:93-99.
[22] Helgeson H C. Thermodynamics of hydrothermal systems at elevated temperatures and pressures[J]. American Journal of Science ,1969, 267(7): 729-804.
[23] Chu Xuelei. Equilibrium fractionation of sulfur isotope of paragenetic mineral in hydrothermal deposit[J]. Chinese Science Bulletin ,1984,(15): 923-927.
[24] Zhi Xiachen, Cheng Weiji. Low temperature lg f (O 2 )-pH diagrams of sulfur isotope evolution in equilibrium with hydrothermal syste[J]. Geochemica ,1982,3:226-236.
. 地球化学, 1982,3:226-236.]
[25] Cheng Weiji, Zhi Xiachen. Physicochemical property of hydrothermal system and evolution of sulfur isotope- principle, application, method of the diagram of lg f (O 2 )-pH-δ 34 S i [J]. Geology and Prospecting ,1983, 9: 21-29.
. 地质与勘探,1983,9:21-29.]
[26] Greig J, Baadsgaard H, Cumming G, et al. Lead and sulphur isotopes of the Irish base metal mines in Carboniferous carbonate host rocks[C]∥Proceedings of the IMA-IAGOD Meeting 1970. Joint Symposiu Volume(Tokyo). Society of Mining Geology of Japan,1971,(2): 84-92.
[27] Wang Yiwen, Zhu Fengsan, Gong Runtan. Tectonic isotope geochemistry—Further study on sulphur isotope of Jiaodong gold concentration area[J]. Gold ,2002,23(4):1-16.
. 黄金, 2002, 23(4): 1-16.]
[28] Zhang Yunxin, Wu Yue, Tian Guang, et al . Mineralization age and the source of ore-forming material at Lehong Pb-Zn deposit, Yunnan Province: Constraints from Rb-Sr and S isotopes system[J]. Acta Mineralogica Sinica ,2014,34(3): 305-311.
. 矿物学报,2014, 34(3): 305-311.]
[29] Jiang Shaoyong, Yang Tao, Li Liang, et al . Lead and sulfur isotopic compositions of sulfides from the TAG hydrothermal field, Mid-Atlantic Ridge[J]. Acta Petrologica Sinica ,2006, 22(10):2 597-2 602.
. 岩石学报, 2006,22(10):2 597-2 602.]
[30] Jemmali N, Souissi F, Carranza E J M, et al . Lead and sulfur isotope constraints on the genesis of the polymetallic mineralization at Oued Maden, Jebel Hallouf and Fedj Hassene carbonate-hosted Pb-Zn (As-Cu-Hg-Sb) deposits, Northern Tunisia[J]. Journal of Geochemical Exploration ,2013, 132: 6-14.
[31] Zhou Jiaxi, Huang Zhilong, Bao Guangping. Geological and sulfur-lead-strontium isotopic studies of the Shaojiwan Pb-Zn deposit, southwest China: Implications for the origin of hydrothermal fluids[J]. Journal of Geochemical Exploration ,2013, 128: 51-61.
[32] Tang Yanwen, Li Xiaofeng, Zhang Xiaoqi, et al . Some new data on the genesis of the Linghou Cu-Pb-Zn polymetallic deposit—Based on the study of fluid inclusions and C-H-O-S-Pb isotopes[J]. Ore Geology Reviews ,2015, 71: 248-262.
[33] Liu Changzheng, Li Shijin, Gao Yongwang, et al . Isotopic geochemistry and origin of the Duocaima lead-zinc deposit in the northern Sanjing area[J]. Acta Scientiarum Naturalium University Sunyatseni ,2015, 54(1): 136-144.
. 中山大学学报: 自然科学版, 2015, 54(1): 136-144.]
[34] Field C, Gustafson L. Sulfur isotopes in the porphyry copper deposit at El Salvador, Chile[J]. Economic Geology ,1976,71(8): 1 533-1 548.
[35] Shelton K L, Rye D M. Sulfur isotopic compositions of ores from Mines Gaspe, Quebec: An example of sulfate-sulfide isotopic disequilibria in ore-forming fluids with applications to other porphyry-type deposits[J]. Economic Geology ,1982, 77(7):1 688-1 709.
[36] Sakai H. Isotopic properties of sulfur compounds in hydrothermal processes[J]. Geochemical Journal ,1968,2:29-49.
[37] Grootenboer J, Schwarcz H P. Experimentally determined sulfur isotope fractionations between sulfide minerals[J]. Earth and Planetary Science Letters ,1969, 7(2):162-166.
[38] Kajiwara Y, Krouse H, Sasaki A. Experimental study of sulfur isotope fractionation between coexistent sulfide minerals[J]. Earth and Planetary Science Letters ,1969, 7(3): 271-277.
[39] Groves D, Solomon M, Rafter T. Sulfur isotope fractionation and fluid inclusion studies at the Rex Hill Mine, Tasmania[J]. Economic Geology ,1970, 65(4): 459-469.
[40] Robinson B, Ohmoto H. Mineralogy, fluid inclusions, and stable isotopes of the Echo Bay U-Ni-Ag-Cu deposits, Northwest Territories, Canada[J]. Economic Geology ,1973,68(5):635-656.
[41] Ding Tiping, Zhang Chengxin, Wan Defang, et al . Calibration experiment of sulfur isotopic geothermometer of sphalerite-galena[J]. Chinese Science Bulletin ,1992,15:1 392-1 395.
. 科学通报,1992,15:1 392-1 395.]
[42] Hoefs J. Stable Isotope Geochemistry (3rd Edition)[M].Berlin:Springer Verlag, 1997:1.
[43] Chu Xuelei, Chen Jinshi, Wang Shouxin. Study on fractionation mechanism of sulfur isotope and physicochemical conditions of alteration and ore formation in Louhe iron deposit, Anhui Province[J]. Scientia Geologica Sinca ,1986, 3:276-289.
. 地质科学,1986, 3:276-289.]
[44] Zheng Yongfei. Sulphur isotopic fractionation between sulphate and sulphide in hydrothermal ore deposits: Disequilibrium Vs equilibrium processes[J]. Terra Nova ,1991,3(5):510-516.
[45] Gao Yang, Ye Huishou, Mao Jingwen, et al . Geology, geochemistry and genesis of the Qianfanling quartz-vein Mo deposit in Songxian County, Western Henan Province, China[J]. Ore Geology Reviews ,2013,55:13-28.
[1] 陈璐,孙若愚,刘羿,徐海. 海洋铜锌同位素地球化学研究进展[J]. 地球科学进展, 2021, 36(6): 592-603.
[2] 许苗苗, 魏晓椿, 杨蓉, 王平, 程晓敢. 重矿物分析物源示踪方法研究进展[J]. 地球科学进展, 2021, 36(2): 154-171.
[3] 赖正,苏妮,吴舟扬,连尔刚,杨承帆,李芳亮,杨守业. 流域风化过程稳定锶同位素的分馏与示踪[J]. 地球科学进展, 2020, 35(7): 691-703.
[4] 刘许柯,付云翀,周卫健,张丽,赵国庆. 宇宙成因核素 7Be10Be示踪大气垂直传输交换研究进展[J]. 地球科学进展, 2020, 35(10): 1016-1028.
[5] 高兴军, 徐薇薇, 余义常, 李艳然, 李蕾. 智能化学示踪剂技术及其在油藏监测中的应用[J]. 地球科学进展, 2018, 33(5): 532-544.
[6] 李江峰, 蔡晓军, 王文, 李倩文, 雷彦森. 偏最小二乘回归在水汽和地面气温多模式集成预报中的应用研究[J]. 地球科学进展, 2018, 33(4): 404-415.
[7] 魏传义, 刘春茹, 李长安, 尹功明, 李文朋, 赵举兴, 张增杰, 张岱, 孙习林, 李亚伟. 石英ESR法物源示踪:认识与进展[J]. 地球科学进展, 2017, 32(10): 1062-1071.
[8] 邵珂, 陈建平, 任梦依. 西南印度洋中脊多金属硫化物矿产资源评价方法与指标体系[J]. 地球科学进展, 2015, 30(7): 812-822.
[9] 张学珍, 于志博, 郑景云, 郝志新. 植物挥发性有机物的气候与环境效应研究进展[J]. 地球科学进展, 2015, 30(11): 1198-1209.
[10] 刘春颖, 刘欢欢, 杨桂朋, 王莉莉, 张升辉. 夏季黄海冷水团海域的丙烯酸分布与海洋环境因子和叶绿素a变化之间的关系[J]. 地球科学进展, 2014, 29(3): 361-368.
[11] 随伟伟,杨桂朋,丁琼瑶,陆小兰. 海洋中氟氯烃的研究进展[J]. 地球科学进展, 2013, 28(3): 366-373.
[12] 赵国庆,周卫健,武振坤,鲜锋,孔祥辉,张丽. 黄土中宇宙成因核素 10Be示踪古地磁场变化研究进展[J]. 地球科学进展, 2010, 25(9): 927-933.
[13] 郄秀书,王俊芳. 地球γ射线闪(TGFs)及其物理机制研究进展[J]. 地球科学进展, 2010, 25(9): 893-906.
[14] 郑宁,张劲松,孟平,黄辉,高峻,贾长荣,任迎丰. 基于闪烁仪观测低丘山地人工混交林通量印痕与源区分布[J]. 地球科学进展, 2010, 25(11): 1175-1186.
[15] 朱治林, 孙晓敏, 贾媛媛, 温学发, 张仁华, 袁国富, 唐新斋. 基于大孔径闪烁仪(LAS)测定农田显热通量的不确定性分析[J]. 地球科学进展, 2010, 25(11): 1199-1207.