地球科学进展 ›› 2016, Vol. 31 ›› Issue (6): 595 -602. doi: 10.11867/j.issn.1001-8166.2016.06.0595.

上一篇    下一篇

金属硫化物矿床的成矿热液硫同位素示踪
王云峰 1, 2, 3( ), 杨红梅 3,,A; *( )   
  1. 1.中国地质大学(北京),北京 100083
    2.中国地质科学院,北京 100037
    3.中国地质调查局武汉地质调查中心同位素地球化学实验室,湖北 武汉 430205
  • 收稿日期:2015-11-24 修回日期:2016-02-20 出版日期:2016-06-20
  • 通讯作者: 杨红梅 E-mail:wyf370826@126.com;ycyanghmei@163.com
  • 基金资助:
    *中国地质调查局科研项目“扬子周缘典型铅锌矿床同位素年代学研究”(编号:12120114005701);中国地质调查局地质调查二级项目“湘西—鄂西成矿带地质矿产调查”(编号:121201009000150010)资助

Sulfur Isotope Tracing of Ore-forming Hydrothermal Fluid for Metallic Sulfide Deposit

Yunfeng Wang 1, 2, 3( ), Hongmei Yang 3, *( )   

  1. 1.China University of Geosciences, Beijing 100083,China
    2.Chinese Academy of Geological Sciences, Beijing 100037, China
    3.Isotope Geochemistry Laboratory, Wuhan Center of Geological Survey, China Geological Survey, Wuhan 430205, China
  • Received:2015-11-24 Revised:2016-02-20 Online:2016-06-20 Published:2016-06-10
  • Contact: Hongmei Yang E-mail:wyf370826@126.com;ycyanghmei@163.com
  • About author:

    First author:Wang Yunfeng (1990-), male, Jining City, Shandong Province, Master student. Research areas include isotopic geochemistry and ore deposit geochemistry.E-mail:wyf370826@126.com

    Corresponding author:Yang Hongmei (1976-), female, Fangxian County, Hubei Province, Professor level senior engineer. Research areas include isotopic geochemistry.E-mail:ycyanghmei@163.com

  • Supported by:
    Project supported by the Scientific Research Project of China Geological Survey “Study on isotopic chronology of typical Pb-Zn deposits in peripheral of Yangtze Block”(No.12120114005701);Geological Survey Project of China Geological Survey “Geological and mineral resources survey in western Hunan Province-western Hubei Province”(No.121201009000150010)

国内外诸多学者对如何利用硫同位素来示踪金属硫化物矿床中硫的来源进行了不断的探索研究,并取得了丰硕成果。在总结金属硫化物矿床中含硫热液矿物的硫同位素组成(δ34S)特征基础上,阐述了准确确定成矿流体的总硫同位素组成(δ34S∑S值)是判别金属硫化物矿床中硫来源的关键,并总结和简要评述了获取成矿流体δ34S∑S的3种方法(物理—化学平衡分析法、矿物共生组合分析法和Pinckey-Rafter法)以及应用实例。据此指出3点:①在应用硫同位素示踪硫的来源时,须针对不同类型金属硫化物矿床的具体特征,选择合适的方法以便成功获取δ34S∑S;②目前δ34S∑S的获取方法和应用基础是硫同位素的分馏达到平衡状态,对于低温或快速侵位条件下可能形成的非平衡状态的含硫热液矿物的δ34S的特征仍待深入研究;③分别研究不同形态硫的δ34S,并讨论不同形态硫的来源、形成环境和过程是一个新的发展趋势,对示踪金属硫化物矿床的硫源可能更为有效和有意义。

How to utilize sulfur isotope for many domestic and foreign researchers to trace the sulfur source of metallic sulfide deposit has been explored for many years. Fruitful results have been gained now. Based on summing up the characteristics of sulfur isotopic composition of hydrothermal mineral from metallic sulfide deposits, this paper illuminated the total sulfur isotopic composition of ore-forming fluids is the key factor in estimating the sulfur source. This paper also summarized three approaches about how to obtain the total sulfur isotopic composition (δ34S∑S) of ore-forming fluids. They are physical-chemical equilibrium analysis, mineral paragenetic association analysis and Pinckey-Rafter, respectively. We gave some applied examples and made a brief comment of them as well. There are three points worth noting. Firstly, choosing appropriate approach is a critical factor to acquire the δ34S∑S successfully according to the characteristics of different types of metallic sulfide deposit. Secondly, currently, these above mentioned approaches and applications are effective after the establishment of equilibrium state of sulfur isotope. As to the sulfur isotopic disequilibrium condition in metallic sulfide deposits probably resulted from lower temperature or rapid emplacement, there are quite some problems in theory and technique. Therefore, an in-depth study should also be continued. Thirdly, it is a new development trend to study isotope composition of different forms of sulfur and to discuss their source, forming environment and process respectively, which is probably more effective and significant for tracing sulfur sources of metallic sulfide deposits.

中图分类号: 

图1 不同金属硫化物矿床硫化物、硫酸盐的δ 34S值和成矿流体的δ 34S ∑S(据参考文献[1]修改)
Fig.1 δ 34S values of sulfides and sulfates, and δ 34S ∑S of ore-forming fluid for various metallic sulfide deposits (modified after reference[1])
图2 爱尔兰Mogul铅锌矿床的成矿流体pH- f O 2 34S图解 [ 26 ]
阴影部分A和B分别代表初始和最终的成矿流体的状态
Fig.2 pH- f O 2 34S diagram for Mogul Pb-Zn deposit, Ireland [ 26 ]
The shaded areas show the initial and the final states of the ore-forming fluids
图3 胶东地区与硫化物有关的金矿床pH- f O 2 34S图解( T=250 ℃, I=1.0) [ 27 ]
Fig.3 pH- f O 2 34S diagram of golden deposit related to sulfide in eastern Shandong Province( T=250 ℃ and I=1.0) [ 27 ]
图4 δ 34S等值线与Fe-S-O矿物以及白(绢)云母稳定范围之间的pH- f O 2 图解( T=250 ℃, I=1.0)
①δ 34S ∑S = 0‰时,黄铁矿和重晶石的δ 34S等值线;②钾离子质量摩尔浓度 m K + =+0.001 mol/kg时白(绢)云母—钾长石的界限与 m K + =+0.1 mol/kg时高岭土—白(绢)云母的界限(据参考文献[11]修改)
Fig.4 pH- f O 2 diagram of δ 34S contours and stability fields of Fe-S-O minerals and muscovite (sericite) ( T=250 ℃ and I=1.0)
①δ 34S contours of pyrite and barite when δ 34S ∑S is 0‰;②Boundaries of muscovite (sericite) and potassium feldspar,and kaoline and muscovite (sericite) when potassium ion molarity m K + is +0.001 mol/kg and +0.1 mol/kg, respectively(modified after reference[11])
表1 含硫热液矿物组合与其δ 34S值的大小关系
Table 1 Relationships between sulfur-bearing hydrothermal mineral assemblage and their δ 34S values
图5 河南前范岭钼矿床Pinckey-Rafter图解 [ 45 ]
Fig.5 Pinckey-Rafter diagram of molybdenum deposit in Qianfanling, He’nan Province [ 45 ]
[1] Rye R O, Ohmoto H.Sulfur and carbon isotopes and ore genesis: A review[J].Economic Geology,1974,69(6):826-842.
[2] Fontbote L, Gorzawski H.Genesis of the mississippi valley-type Zn-Pb deposit of San Vicente, central Peru: Geologic and isotopic (Sr,O,C,S,Pb) evidence[J].Economic Geology,1990, 85(7):1 402-1 437.
[3] Seal R R.Sulfur isotope geochemistry of sulfide minerals[J].Reviews in Mineralogy and Geochemistry,2006,61(1): 633-677.
[4] Zhang Jinrang, Wen Hanjie.Sulfur and lead isotope compositions and tracing of copper deposits[J].Geochemica,2012,41(2):166-180.
[张锦让, 温汉捷. 云南兰坪盆地西缘脉状铜多金属矿床硫、铅同位素组成及成矿示踪[J].地球化学,2012,41(2):166-180.]
[5] Zhou Jiaxi, Huang Zhilong, Lv Zhicheng, et al.Geology, isotope geochemistry and ore genesis of the Shanshulin carbonate-hosted Pb-Zn deposit, southwest China[J].Ore Geology Reviews,2014, 63: 209-225,doi:10.1016/j.oregeorev.2014.05.012.
[6] Zhang Wenyuan, Wang Cuizhi, Wei Xiaocan, et al.The implications and typomorphic characteristics of pyrite chemical composition in Zijinshan gold-copper deposit[J]. Advances in Earth Science,2014, 29(8): 974-984.
[张文媛, 王翠芝, 魏晓灿, 等. 紫金山金铜矿黄铁矿化学成分标型特征及其意义[J]. 地球科学进展, 2014, 29(8): 974-984.]
[7] Fang Jie, Sun Jingwen, Xu Hongqing, et al.Prediction of seafloors polymetallic sulfides resources in the North Ridge area[J].Advances in Earth Science,2015, 30(1): 60-68.
[方捷, 孙静雯, 徐宏庆, 等. 北大西洋中脊海底多金属硫化物资源预测[J]. 地球科学进展, 2015, 30(1): 60-68.]
[8] Fu Xiaoming, Dai Tagen, Xi Chaozhuang, et al.Characteristics of ore-forming fluid and genesis of the Shuangpengxi gold-copper deposit in Qinghai Province[J].Advances in Earth Science,2009, 24(5): 531-537.
[傅晓明,戴塔根,息朝庄,等.青海双朋西金铜矿床的成矿流体特征及流体来源[J]. 地球科学进展, 2009, 24(5): 531-537.]
[9] Ohmoto H, Rye R.Isotopes of sulfur and carbon[C]∥Bernes H L,ed.Geochemistry of Hydrothermal Ore Deposits.New York:John Wiley,1979:509-567.
[10] Ohmoto H.Stable isotope geochemistry of ore deposits[J].Reviews in Mineralogy and Geochemistry,1986, 16(1):491-559.
[11] Ohmoto H.Systematics of sulfur and carbon isotopes in hydrothermal ore deposits[J].Economic Geology,1972, 67(5):551-578.
[12] Pinckney D M, Rafter T A.Fractionation of sulfur isotopes during ore deposition in the Upper Mississippi Valley zinc-lead district[J]. Economic Geology,1972, 67(3): 315-328.
[13] Cai Yingxiong, Yang Hongmei, Duan Ruichun, et al.Fluid inclusions and S, Pb, C isotope geochemistry of Pb-Zn deposits hosted by Lower Cambrian in western Hunan-eastern Guizhou area[J].Geoscience,2014, 28(1):29-41.
[蔡应雄, 杨红梅, 段瑞春,等. 湘西—黔东下寒武统铅锌矿床流体包裹体和硫、铅、碳同位素地球化学特征[J]. 现代地质, 2014, 28(1):29-41.]
[14] Lapponi F, Boni M, Schneider J, et al.Genesis of Cambrian-hosted MVT Deposits of Hunan (South China): Geological and Geochemical constraints[C].Geological Society of America, 2001.
[15] Li Bo, Zhou Jiaxi, Huang Zhiong, et al.Geological, rare earth elemental and isotopic constraints on the origin of the Banbanqiao Zn-Pb deposit, southwest China[J].Journal of Asian Earth Sciences,2015,111:100-112.
[16] Zhou Jiaxi, Huang Zhilong, Lv Zhicheng.Geology, isotope geochemistry and ore genesis of the Shanshulin carbonate-hosted Pb-Zn deposit, southwest China[J].Ore Geology Reviews,2014,63:209-225,doi:10.1016/j.oregeorev.2014.05.012.
[17] Zhou Jiaxi, Huang Zhilong, Zhou Meifu, et al.Constraints of C-O-S-Pb isotope compositions and Rb-Sr isotopic age on the origin of the Tianqiao carbonate-hosted Pb-Zn deposit, SW China[J].Ore Geology Reviews,2013,55(7):77-92.
[18] Nie Fei, Dong Guochen, Mo Xuanxue, et al.The characteristics of sulfur and lead isotopic compositions of the Xiyi Pb-Zn deposit in Baoshan Block,western Yunnan[J].Acta Petrologica Sinica,2015,31(5):1 327-1 334.
[聂飞, 董国臣, 莫宣学, 等. 云南保山西邑铅锌矿床硫铅同位素地球化学特征研究[J]. 岩石学报,2015,31(5):1 327-1 334.]
[19] Sakai H.Isotopic properties of sulfur compounds in hydrothermal processes[J].Geochemical Journal,1968,2(1):29-49.
[20] Chu Xuelei, Chen Jinshi, Wang Shouxin.Several diagrams of sulfur isotope evolution in equilibrium with hydrothermal system[J].Scientic Geologica Sinica,1984,2:186-200.
[储雪蕾, 陈锦石, 王守信.平衡热液体系中硫同位素演化的几个图解[J]. 地质科学,1984,2:186-200.]
[21] Ohmoto H.Fluid inclusions and isotope study of the lead-zinc deposits at the Bluebell mine, British Columbia, Canada[J].Society of Mining Geology of Japan (Special Issue),1971,2:93-99.
[22] Helgeson H C.Thermodynamics of hydrothermal systems at elevated temperatures and pressures[J].American Journal of Science,1969, 267(7): 729-804.
[23] Chu Xuelei.Equilibrium fractionation of sulfur isotope of paragenetic mineral in hydrothermal deposit[J].Chinese Science Bulletin,1984,(15): 923-927.
[储雪蕾. 热液矿床共生矿物的硫同位素平衡分馏模式[J].科学通报,1984,(15):923-927.]
[24] Zhi Xiachen, Cheng Weiji.Low temperature lgf (O2)-pH diagrams of sulfur isotope evolution in equilibrium with hydrothermal syste[J].Geochemica,1982,3:226-236.
[支霞臣, 程伟基. 低温平衡热液系统中硫同位素演化的 lgf (O2)-pH图解[J]. 地球化学, 1982,3:226-236.]
[25] Cheng Weiji, Zhi Xiachen.Physicochemical property of hydrothermal system and evolution of sulfur isotope- principle, application, method of the diagram of lgf (O2)-pH-δ34Si[J].Geology and Prospecting,1983, 9: 21-29.
[程伟基, 支霞臣.热液系统的物理化学性质和硫同位素演化—lgf(O2)-pH -δ34Si图解的原理, 用途与使用方法[J]. 地质与勘探,1983,9:21-29.]
[26] Greig J, Baadsgaard H, Cumming G, et al.Lead and sulphur isotopes of the Irish base metal mines in Carboniferous carbonate host rocks[C]∥Proceedings of the IMA-IAGOD Meeting 1970. Joint Symposiu Volume(Tokyo). Society of Mining Geology of Japan,1971,(2): 84-92.
[27] Wang Yiwen, Zhu Fengsan, Gong Runtan.Tectonic isotope geochemistry—Further study on sulphur isotope of Jiaodong gold concentration area[J].Gold,2002,23(4):1-16.
[王义文, 朱奉三, 宫润潭. 构造同位素地球化学——胶东金矿集中区硫同位素再研究[J]. 黄金, 2002, 23(4): 1-16.]
[28] Zhang Yunxin, Wu Yue, Tian Guang, et al.Mineralization age and the source of ore-forming material at Lehong Pb-Zn deposit, Yunnan Province: Constraints from Rb-Sr and S isotopes system[J].Acta Mineralogica Sinica,2014,34(3): 305-311.
[张云新, 吴越, 田广, 等. 云南乐红铅锌矿床成矿时代与成矿物质来源: Rb-Sr 和 S 同位素制约[J]. 矿物学报,2014, 34(3): 305-311.]
[29] Jiang Shaoyong, Yang Tao, Li Liang, et al.Lead and sulfur isotopic compositions of sulfides from the TAG hydrothermal field, Mid-Atlantic Ridge[J].Acta Petrologica Sinica,2006, 22(10):2 597-2 602.
[蒋少涌, 杨涛, 李亮, 等.大西洋洋中脊TAG热液区硫化物铅和硫同位素研究[J]. 岩石学报, 2006,22(10):2 597-2 602.]
[30] Jemmali N, Souissi F, Carranza E J M, et al. Lead and sulfur isotope constraints on the genesis of the polymetallic mineralization at Oued Maden, Jebel Hallouf and Fedj Hassene carbonate-hosted Pb-Zn (As-Cu-Hg-Sb) deposits, Northern Tunisia[J].Journal of Geochemical Exploration,2013, 132: 6-14.
[31] Zhou Jiaxi, Huang Zhilong, Bao Guangping.Geological and sulfur-lead-strontium isotopic studies of the Shaojiwan Pb-Zn deposit, southwest China: Implications for the origin of hydrothermal fluids[J].Journal of Geochemical Exploration,2013, 128: 51-61.
[32] Tang Yanwen, Li Xiaofeng, Zhang Xiaoqi, et al.Some new data on the genesis of the Linghou Cu-Pb-Zn polymetallic deposit—Based on the study of fluid inclusions and C-H-O-S-Pb isotopes[J].Ore Geology Reviews,2015, 71: 248-262.
[33] Liu Changzheng, Li Shijin, Gao Yongwang, et al.Isotopic geochemistry and origin of the Duocaima lead-zinc deposit in the northern Sanjing area[J].Acta Scientiarum Naturalium University Sunyatseni,2015, 54(1): 136-144.
[刘长征, 李世金, 高永旺, 等. 三江多才玛超大型铅锌矿床同位素地球化学及矿源研究[J]. 中山大学学报: 自然科学版, 2015, 54(1): 136-144.]
[34] Field C, Gustafson L.Sulfur isotopes in the porphyry copper deposit at El Salvador, Chile[J].Economic Geology,1976,71(8): 1 533-1 548.
[35] Shelton K L, Rye D M.Sulfur isotopic compositions of ores from Mines Gaspe, Quebec: An example of sulfate-sulfide isotopic disequilibria in ore-forming fluids with applications to other porphyry-type deposits[J].Economic Geology,1982, 77(7):1 688-1 709.
[36] Sakai H.Isotopic properties of sulfur compounds in hydrothermal processes[J].Geochemical Journal,1968,2:29-49.
[37] Grootenboer J, Schwarcz H P.Experimentally determined sulfur isotope fractionations between sulfide minerals[J]. Earth and Planetary Science Letters,1969, 7(2):162-166.
[38] Kajiwara Y, Krouse H, Sasaki A.Experimental study of sulfur isotope fractionation between coexistent sulfide minerals[J].Earth and Planetary Science Letters,1969, 7(3): 271-277.
[39] Groves D, Solomon M, Rafter T.Sulfur isotope fractionation and fluid inclusion studies at the Rex Hill Mine, Tasmania[J].Economic Geology,1970, 65(4): 459-469.
[40] Robinson B, Ohmoto H.Mineralogy, fluid inclusions, and stable isotopes of the Echo Bay U-Ni-Ag-Cu deposits, Northwest Territories, Canada[J].Economic Geology,1973,68(5):635-656.
[41] Ding Tiping, Zhang Chengxin, Wan Defang, et al.Calibration experiment of sulfur isotopic geothermometer of sphalerite-galena[J].Chinese Science Bulletin,1992,15:1 392-1 395.
[丁悌平, 张承信, 万德芳, 等. 闪锌矿—方铅矿硫同位素地质温度计的实验标定[J]. 科学通报,1992,15:1 392-1 395.]
[42] Hoefs J. Stable Isotope Geochemistry (3rd Edition)[M].Berlin:Springer Verlag, 1997:1.
[43] Chu Xuelei, Chen Jinshi, Wang Shouxin.Study on fractionation mechanism of sulfur isotope and physicochemical conditions of alteration and ore formation in Louhe iron deposit, Anhui Province[J].Scientia Geologica Sinca,1986, 3:276-289.
[储雪蕾, 陈锦石, 王守信. 罗河铁矿的硫同位素分馏机制和矿床形成的物理化学条件的研究[J]. 地质科学,1986, 3:276-289.]
[44] Zheng Yongfei.Sulphur isotopic fractionation between sulphate and sulphide in hydrothermal ore deposits: Disequilibrium Vs equilibrium processes[J].Terra Nova,1991,3(5):510-516.
[45] Gao Yang, Ye Huishou, Mao Jingwen, et al.Geology, geochemistry and genesis of the Qianfanling quartz-vein Mo deposit in Songxian County, Western Henan Province, China[J].Ore Geology Reviews,2013,55:13-28.
[1] 陈璐,孙若愚,刘羿,徐海. 海洋铜锌同位素地球化学研究进展[J]. 地球科学进展, 2021, 36(6): 592-603.
[2] 许苗苗, 魏晓椿, 杨蓉, 王平, 程晓敢. 重矿物分析物源示踪方法研究进展[J]. 地球科学进展, 2021, 36(2): 154-171.
[3] 赖正,苏妮,吴舟扬,连尔刚,杨承帆,李芳亮,杨守业. 流域风化过程稳定锶同位素的分馏与示踪[J]. 地球科学进展, 2020, 35(7): 691-703.
[4] 刘许柯,付云翀,周卫健,张丽,赵国庆. 宇宙成因核素 7Be10Be示踪大气垂直传输交换研究进展[J]. 地球科学进展, 2020, 35(10): 1016-1028.
[5] 高兴军, 徐薇薇, 余义常, 李艳然, 李蕾. 智能化学示踪剂技术及其在油藏监测中的应用[J]. 地球科学进展, 2018, 33(5): 532-544.
[6] 魏传义, 刘春茹, 李长安, 尹功明, 李文朋, 赵举兴, 张增杰, 张岱, 孙习林, 李亚伟. 石英ESR法物源示踪:认识与进展[J]. 地球科学进展, 2017, 32(10): 1062-1071.
[7] 邵珂, 陈建平, 任梦依. 西南印度洋中脊多金属硫化物矿产资源评价方法与指标体系[J]. 地球科学进展, 2015, 30(7): 812-822.
[8] 随伟伟,杨桂朋,丁琼瑶,陆小兰. 海洋中氟氯烃的研究进展[J]. 地球科学进展, 2013, 28(3): 366-373.
[9] 赵国庆,周卫健,武振坤,鲜锋,孔祥辉,张丽. 黄土中宇宙成因核素 10Be示踪古地磁场变化研究进展[J]. 地球科学进展, 2010, 25(9): 927-933.
[10] 门武,刘广山,陈志刚,何建华,尹明端,余雯. 镭同位素在海洋学研究中的应用及进展[J]. 地球科学进展, 2010, 25(1): 33-42.
[11] 邓英尔,贾疏源,黄润秋,李扬红. 岩溶缝洞系统地下水系研究[J]. 地球科学进展, 2008, 23(5): 489-494.
[12] 余金杰,王登红,王平安,徐珏,李晓峰,陈毓川,陈振宇. 俯冲—碰撞和高压、超高压变质带中的金红石研究进展[J]. 地球科学进展, 2006, 21(1): 47-52.
[13] 张风宝;杨明义;赵晓光;刘普灵. 磁性示踪在土壤侵蚀研究中的应用进展[J]. 地球科学进展, 2005, 20(7): 751-756.
[14] 任景玲;张经;刘素美. 以Al/Ti比值为地球化学示踪剂反演海洋古生产力的研究进展[J]. 地球科学进展, 2005, 20(12): 1314-1320.
[15] 王登红;邹天人;徐志刚;余金杰;付小方. 伟晶岩矿床示踪造山过程的研究进展[J]. 地球科学进展, 2004, 19(4): 614-620.
阅读次数
全文


摘要