地球科学进展 ›› 2016, Vol. 31 ›› Issue (6): 603 -614. doi: 10.11867/j.issn.1001-8166.2016.06.0603.

上一篇    下一篇

基于三维地质—地球物理模型的三维成矿预测——以安徽铜陵矿集区为例
向杰( ), 陈建平 *( ), 胡彬, 胡桥, 杨伟   
  1. 1.中国地质大学(北京) 地球科学与资源学院,北京 100083
    2.中国地质大学(北京) 国土资源与高新技术研究中心,北京 100083
  • 收稿日期:2016-04-02 修回日期:2016-05-22 出版日期:2016-06-20
  • 通讯作者: 陈建平 E-mail:xiangjie@cugb.edu.cn;3s@cugb.edu.com
  • 基金资助:
    *中国地质调查局项目“老矿山技术创新与示范”(编号:1212011220737)资助

3D Metallogenic Prediction Based on 3D Geological-Geophysical Model: A Case Study in Tongling Mineral District of Anhui

Jie Xiang( ), Jianping Chen *( ), Bin Hu, Qiao Hu, Wei Yang   

  1. 1.School of Earth Sciences and Resources,China University of Geosciences,Beijing 100083,China
    2.Institute of Land Resources and High Techniques,China University of Geosciences,Beijing 100083,China
  • Received:2016-04-02 Revised:2016-05-22 Online:2016-06-20 Published:2016-06-10
  • Contact: Jianping Chen E-mail:xiangjie@cugb.edu.cn;3s@cugb.edu.com
  • About author:

    First author:Xiang Jie (1990- ),male, Lixian County, Hu’nan Province, Ph.D Stuent. Research areas include mineral resources quantitative prediction and evaluation research.E-mail:xiangjie@cugb.edu.cn

    Corresponding author:Chen Jianping(1959- ), male, Beijing City, Professor. Research areas include mineral resources quantitative prediction and evaluation research.E-mail:3s@cugb.edu.cn

  • Supported by:
    Project supported by the China Geological Survey Project “Science and technology innovation and demonstration of the old mine”(No.1212011220737)

三维成矿预测已经成为当前国内外矿产勘查与资源评价研究的重要途径和热点。以安徽铜陵矿集区为例,开展了基于三维地质—地球物理模型的三维成矿预测,研究内容为:①在25条综合剖面基础上建立了三维地质模型,并采用三维重磁反演获取深部的三维物性特征,进而建立了三维地质—地球物理模型;②结合前人的成矿理论研究,分别总结了层控矽卡岩型与接触交代矽卡岩型矿床的有利控矿要素,建立了综合信息定量预测模型;③采用“立方块预测模型”找矿方法,根据信息量值结合地质基本情况圈定了15个找矿远景区。该研究成功地构建了三维地质—地球物理模型,并在地质找矿理论指导下,基于不同矿床类型定量提取了找矿有利信息,将传统的二维综合信息找矿方法拓展到三维空间,对于老矿山找矿具有重要指导意义。

3D metallogenic prediction is an important method and frontier of mineral resources exploration in the world. This paper introduces a case study of 3D metallogenic prediction based on 3D geological-geophysical model in Tongling mineral district. The research contents,methods,and results are summarized as the following aspects: ①Based on 25 comprehensive interpretation profiles,established 3D geological model of the study area. Using 3D property inversion of gravity-magnetic data technology to obtain 3D physical characteristics,a 3D geological-geophysical model was established;②Combined with the previous research on the metallogenic theory,this paper summed up some favorable geological conditions for ore-controlling,and established the quantitative prediction model;③By using“cubic predicting model”prospecting method, delineated 15 predicted targets according to the value of information and geological condition. This research built the 3D geological-geophysical model successfully,and under the guidance of geological prospecting theory,quantitatively extract the favorable prospecting information based on different deposit types. This research extends the traditional regional metallogenic prediction method to 3D space,and it has important guiding significance for the old mine prospecting.

中图分类号: 

图1 铜陵矿集区地质概况图
(a)铜陵矿集区大地构造位置 [ 38 ];(b)铜陵矿集区地质简图 [ 45 ]
Fig.1 Geology map of Tongling mineral district
(a)Tectonic position of Tongling mineral district [ 38 ] ;(b)Geological sketch map of Tongling mineral district [ 45 ]
图2 重力—磁法—AMT—地质联合剖面
Fig.2 Gravity-magnetism-AMT-geology combined profile
图3 研究区地层—重力—磁法模型
Fig.3 3D model of strata-gravity-magnetism in the study area
图4 研究区岩体—重力—磁法模型
Fig.4 3D model of rock-gravity-magnetism in the study area
图5 研究区断裂—重力—磁法模型
Fig.5 3D model of fracture-gravity-magnetism in the study area
图6 不同地层含矿立方体数目统计
Fig.6 Statistics of the amount of ore cubes in different strata
图7 不同岩体部位含矿单元体数目
Fig.7 Statistics of the amount of ore cubes in different rock mass parts
图8 重磁联合反演解释剖面图
Fig.8 Comprehensive interpretation profiles of gravity-magnetism
图9 重磁成矿有利区分布图
Fig.9 Distribution of favorable metallogenic information about gravity-magnetism
表1 铜陵矽卡岩型矿床定量预测模型
Table 1 Quantitative prediction model of skarn deposits in Tongling mineral district
图10 铜陵矿集区矽卡岩型找矿信息量统计
Fig.10 Statistics of skarn-type prospecting information in Tongling mineral district
图11 铜陵矿集区矽卡岩型靶区分布图
Fig.11 Distribution of the skarn-type targets in Tongling mineral district
[1] Zhang Jun.Methodological foundation and methodology for the location forecasting of concealed orebody[J]. Journal of Precious Metallic Geology,2000, 9(2): 100-104.
[张均. 隐伏矿体定位预测的方法学基础及方法论[J]. 贵金属地质, 2000,9(2): 100-104.]
[2] Keith T A.Challenges and trends for geological modelling and visualization[J]. Bulletin of Engineering Geology and the Environment,2006,65(2):109-127.
[3] Zhao Pengda.Quantitative mineral prediction and deep mineral exploration[J]. Earth Science Frontiers,2007,14(5):1-10.
[赵鹏大. 成矿定量预测与深部找矿[J]. 地学前缘, 2007, 14(5): 1-10.]
[4] Chen Jianping, Lü Peng, Wu Wen, et al.A 3D method for predicting blind orebodies, based on a 3D visualization model and its application[J]. Earth Science Frontiers, 2007, 14(5): 54-62.
[陈建平,吕鹏,吴文,等.基于三维可视化技术的隐伏矿体预测[J]. 地学前缘, 2007, 14(5):56-62.]
[5] Chen Jianping,Yu Pingping,Shi Rui,et al.Research on three-dimensional quantitative prediction and evaluation methods of regional concealed ore bodies[J].Earth Science Frontiers,2014,21(5):211-220.
[陈建平,于萍萍,史蕊,等.区域隐伏矿体三维定量预测评价方法研究[J]. 地学前缘,2014,21(5):211-220.]
[6] Wang Gongwen, Zhang Shouting, Yan Changhai, et al.3D geological modeling based on geological and gravity-magnetic data integration in the Luanchuan molybdenum polymetallic Deposit,China[J]. Earth Science—Journal of China University of Geosciences, 2011,36(2):360-366.
[王功文,张寿庭,燕长海,等. 基于地质与重磁数据集成的栾川钼多金属矿区三维地质建模[J]. 地球科学——中国地质大学学报,2011,36(2):360-366.]
[7] Moore R R, Johnson S E.Three-dimensional reconstruction and modeling of complexly folded surfaces using Mathematica[J]. Computers & Geosciences,2001, 27(4):401-418.
[8] Sirakova N M,Granado I,Muge F H.Interpolation approach for 3D smooth reconstruction of subsurface objects[J]. Computers & Geosciences,2002,28(8): 877-855.
[9] Wu Q,Xu H.An approach to computer modeling and visualization of geological faults in 3D[J]. Computers & Geosciences,2003,29(4):503-509.
[10] Wu Lixin, Zhang Ruixin, Qi Yixin, et al.3D geoscience modelling and virtual mine system[J]. Acta Geodaetica et Cartographica Sinica, 2002, 31(1):28-33.
[吴立新,张瑞新,戚宜欣,等. 3维地学模拟与虚拟矿山系统[J]. 测绘学报, 2002, 31(1):28-33.]
[11] Agterberg F P.Geomathematics:Mathematical Background and Geoscience Applications[M]. New York: Elsevier Scientific Publishing Company,1974.
[12] Zhao Pengda, Li Zijin, Hu Guangdao.Statistical Prediction of Three Dimensional Mineral Deposits in Key Metallogenic Areas—Anhui Mountain Area as an Example[M]. Wuhan: China University of Geosciences Press,1992.
[赵鹏大,李紫金,胡光道. 重点成矿区三维立体矿床统计预测——以安徽月山地区为例[M]. 武汉: 中国地质大学出版社,1992.]
[13] Zhao Pengda, Hu Wangliang, Li Zijin.Statistical Prediction of Mineral Deposits[M].Beijing: Geological Publishing House, 1994.
[赵鹏大,胡旺亮,李紫金. 矿床统计预测[M].北京:地质出版社,1994.]
[14] Singer D A.Basic concepts in three-part quantitative assessments of undiscovered mineral resources[J].Nonrenewable Resources,1993, 2(2):69-81.
[15] Zhao Pengda, Chi Shundou.A preliminery view on geological anomaly[J]. Earth Science—Journal of China University of Geosciences,1991, 16(3):241-248.
[赵鹏大,池顺都.初论地质异常[J]. 地球科学——中国地质大学学报,1991,16(3):241-248.]
[16] Wang Shichen, Chen Yongliang, Xia Lixian.Theory and Method of Comprehensive Information Mineral Resources Prediction[M]. Beijing: Science Press, 2000.
[王世称,陈永良, 夏立显. 综合信息矿产预测理论与方法[M]. 北京:科学出版社,2000.]
[17] Ye Tianzhu, Xiao Keyan, Yan Guangsheng.Methodology of deposit modeling and mineral resource potential assessment using integrated geological information[J].Earth Science Frontiers,2007, 14(5):11-19.
[叶天竺,肖克炎,严光生. 矿床模型综合地质信息预测技术研究[J]. 地学前缘,2007,14(5):11-19.]
[18] Bonham-Carter G F,Agterberg F P,Wright D. Weights of evidence modeling:A new approach to mapping mineral potential[J].Statistical Applications in Earth Sciences,1989,89(9):171-183.
[19] Cheng Q,Agterberg F P,Bonham-Carter G F. Fractal pattern integration for mineral potential mapping[J].Nonrenewable Resources,1996,5(2):117-130.
[20] Cheng Q,Agterberg F P.Fuzzy weights of evidence method and its application in mineral potential mapping[J].Natural Resources Research,1999,8(1):27-35.
[21] Xiao Keyan, Zhu Yusheng, Rong Guoyao.Mineral resource quantitative evaluation based on the GIS[J]. Chinese Geology, 2000,27(7):29-32.
[肖克炎,朱裕生,宋国耀. 矿产资源GIS定量评价[J]. 中国地质,2000,27(7):29-32.]
[22] Xiao Keyan.Research and ways on large scale integrated information metallogenic prediction[J]. Gold geological Science and Technology, 1993,(4):34-39.
[肖克炎. 大比例尺综合信息成矿预测的研究问题及途径[J]. 黄金地质科技,1993,(4):34-39.]
[23] Xiao Keyan, Li Nan, Sun Li, et al.Large scale 3D mineral prediction methods and channels based on 3D information technology[J].Journal of Geology,2012,36(3): 229-236.
[肖克炎,李楠,孙莉,等.基于三维信息技术大比例尺三维立体矿产预测方法及途径[J]. 地质学刊,2012,36(3): 229-236.]
[24] Chen Jianping, Shang Beichuan, Lü Peng, et al.Large-scale 3D metailogenic prediction of concealed orebody in Gejiu, Yunnan Province[J]. Chinese Journal of Geology, 2009,44(1):324-337.
[陈建平,尚北川,吕鹏,等. 云南个旧矿区某隐伏矿床大比例尺三维预测[J]. 地质科学,2009,44(1):324-337.]
[25] Chen Jianping, Lü Peng, Wu Wen, et al.A 3D method for predicting blind orebodies, based on a 3D visualization model and its application[J]. Earth Science Frontiers, 2007, 14(5):54-62.
[陈建平,吕鹏,吴文,等. 基于三维可视化技术的隐伏矿体预测[J]. 地学前缘,2007,14(5):56-64.]
[26] Chen Jianping, Chen Yong,Zeng Min, et al.3D positioning and quantitative prediction of the Koktokay No.3 pegmatite dike, Xinjiang, China, based on the digital mineral deposit model[J].Geological Bulletin of China,2008, 27(4):552-559.
[陈建平,陈勇,曾敏,等. 基于数字矿床模型的新疆可可托海3号脉三维定位定量研究[J]. 地质通报,2008,27(4):552-559.]
[27] Mao Xiancheng, Dai Tagen, Wu Xiangbin, et al.The stereoscopic quantitative prediction of concealed ore bodies in the deep and marginal parts of crisis mines:A case study of the Dachang tin polymetallic ore deposit in Guangxi[J]. Geology in China,2009,36(2):424-435.
[毛先成,戴塔根,吴湘滨,等.危机矿山深边部隐伏矿体立体定量预测研究——以广西大厂锡多金属矿床为例[J]. 中国地质,2009, 36(2):424-435.]
[28] Mao Xiancheng, Zou Hongyan, Chen Jin, et al.Three Dimensional Visualization Prediction of Concealed Ore Bodies[M]. Changsha: Central South University Press, 2011.
[毛先成,邹艳红,陈进,等. 隐伏矿体三维可视化预测[M]. 长沙: 中南大学出版社,2011.]
[29] Mao Xiancheng, Tang Yanhua,Deng Hao.Three-dimensional morphological analysis method for geologic bodies and its application[J].Journal of Central South University (Science and Technology),2012,43(2):588-595.
[毛先成,唐艳华,邓浩. 地质体的三维形态分析方法与应用[J]. 中南大学学报:自然科学版,2012,43(2):588-595.]
[30] Fallara F,Legault M,Rabeau O.3-D integrated geological modeling in the Abitibi Subprovince (Québec,Canada):Techniques and applications[J].Exploration and Mining Geology,2006,15(1/2):27-43.
[31] Wang G,Zhang S,Yan C,et al.Mineral potential targeting and resource assessment based on 3D geological modeling in Luanchuan region,China[J]. Computers & Geosciences,2011,37(12):1 976-1 988.
[32] Li Y, Oldenburg D W.3D inversion of gravity data[J]. Geophysics,1998,63(1):109-119.
[33] Portniaguine O, Zhdanov M S.3-D magnetic inversion with data compression and image focusing[J]. Geophysics,2002, 67(5):1 532-1 541.
[34] Chen Zhaoxi, Meng Xiaohong, Guo Lianghui.Review of 3D property inversion of gravity and magnetic data[J]. Progress in Geophysics,2012,27(2):503-511.
[陈召曦,孟小红,郭良辉.重磁数据三维物性反演方法进展[J]. 地球物理学进展,2012, 27(2):503-511.]
[35] Guo Dong, Yan Jiayong, Lü Qingtian, et al.3D density mapping constrained by geological information model study and application[J]. Acta Geologica Sinica,2014,88(4):763-776.
[郭冬,严加永,吕庆田,等. 地质信息约束下的三维密度填图技术研究及应用[J]. 地质学报,2014,88(4):763-776.]
[36] Yan Jiayong, Lü Qingtian, Wu Ming’an, et al.Prospecting indicator of Anhui Shaxi porphyry copper deposit based on regional gravity and magnetic 3D inversion[J]. Acta Geologica Sinica,2014,88(4):507-518.
[严加永,吕庆田,吴明安,等. 安徽沙溪铜矿区域重磁三维反演与找矿启示[J]. 地质学报,2014,88(4):507-518.]
[37] Qi Guang,Lü Qingtian,Yan Jiayong, et al.3D geological modeling of Luzong ore district based on priori information constrained[J]. Acta Geologica Sinica,2014,88(4):466-477.
[祁光,吕庆田,严加永,等.基于先验信息约束的三维地质建模:以庐纵矿集区为例[J]. 地质学报,2014,88(4):466-477.]
[38] Li Wenda.On the Yangze type copper ore deposits and its origin[J].Bulletin of the Nanjing Institute of Geology and Mineral Resources,Chinese Academy of Geological Sciences,1989,10(2):1-14.
[李文达. 论扬子型铜矿床及其成因[J]. 中国地质科学院南京地质矿产研究所所刊,1989,10(2):1-14.]
[39] Chang Yinfu, Liu Xiangpei, Wu Yanchang.Copper and Iron Metallogenic Belt in the Middle and Lower Yangtze[M]. Beijing: Geological Publishing House, 1991.
[常印佛,刘湘培,吴言昌.长江中下游铜铁成矿带[M]. 北京:地质出版社,1991.]
[40] Mao Jingwen,Shao Yongjun,Xie Guiqing, et al.Mineral deposit model for porephy-skarn polymetallic copper deposits in Tongling ore dense district of Middle-Lower Yangtze Valley metallogenic belt[J].Mineral Deposits,2009,28(2):109-119.
[毛景文,邵拥军,谢桂青,等. 长江中下游成矿带铜陵矿集区铜多金属矿床模型[J].矿床地质,2009,28(2):109-119.]
[41] Ma X Y, He G Q.Precambrian crustal evolution of eastern Asia[J]. Journal of Southeast Asian Earth Sciences,1989,3(1/4):9-15.
[42] Wang H Z, Mo X X.An outline of the tectonic evolution of China[J]. Episodes,1995, 18(1/2): 6-16.
[43] Liu Wencan, Li Dongxu, Gao Dezhen.Analysis of the time sequence of compounding of structural deformation systems and the resulting effects in Tongling area[J]. Journal of Geomechanics, 1996,2(1):42-48.
[刘文灿,李东旭,高德臻. 铜陵地区构造变形系统复合时序及复合效应分析[J]. 地质力学学报,1996,2(1):42-48.]
[44] Fan Ziliang, Xu Xiaochun, Chen Linjie, et al.The geological features and metallogenic setting of the porphyry copper-molybdenum-old deposits in Tongling ore district Anhui Province[J]. Acta Petrologica Sinica,2016, 32(2):351-368.
[范子良,徐晓春,陈林杰,等. 安徽铜陵矿集区斑岩型铜钼金矿床地质特征及成矿背景[J]. 岩石学报,2016,32(2):351-368.]
[45] Yao Xiaode, Du Jianguo, Xu Wei, et al.Regional metallogenic model in Tongling ore cluster area,Anhui Province[J]. Journal of Hefei University of Technology(Natural Science),2012,35(7):965-976.
[姚孝德,杜建国,许卫,等. 安徽省铜陵矿集区区域成矿模式[J]. 合肥工业大学学报:自然科学版,2012,35(7):965-976.]
[46] Xu Xiaochun, Bai Ruyu,Xie Qiaoqin, et al.Re-understanding of the geological and geochemical characteristics of the Mesozoic intrusive rocks from Tongling area of Anhui Province,and discussions on their genesis[J]. Acta Petrologica Sinica,2012, 28(10):3 139-3 169.
[徐晓春,白茹玉,谢巧勤,等.安徽铜陵中生代侵入岩地质地球化学特征再认识及成因讨论[J].岩石学报, 2012, 28(10): 3 139-3 169.]
[47] Xie Jiancheng, Yang Xiaoyong, Xiao Yilin, et al.Petrogenesis of the mesozoic intrusive rocks from the Tongling ore cluster region:The metallogenic significance[J]. Acta Geologica Sinica,2012,86(3):423-459.
[谢建成,杨晓勇,肖益林,等. 铜陵矿集区中生代侵入岩成因及成矿意义[J]. 地质学报,2012,86(3):423-459.]
[48] Chang Yinfo, Liu Xuegui.On strata-bound skarn deposits[J]. Mineral Deposits,1983,2(1):11-20.
[常印佛,刘学圭. 关于层控式矽卡岩型矿床——以安徽省内下扬子坳陷中的一些矿床为例[J]. 矿床地质,1983,2(1):11-20.]
[49] Chu Guozheng, Li Dongxu.Bedding slipping structures control on the “Multistorey” ore deposits in the Shizishan orefield of Anhui[J]. Geoscience,1992,6(4):504-513.
[储国正,李东旭. 顺层滑动构造对于安徽狮子山矿田“多层楼”矿床的控制[J]. 现代地质,1992,6(4):504-513.]
[50] Guo Wenkui.On the origin of Tongguanshan copper mine in Anhui[J]. Acta Geological Sinica,1957,37(3):317-332.
[郭文魁. 论安徽铜官山铜矿成因[J]. 地质学报,1957,37(3):317-322.]
[51] Gu Lianxing, Xu Keqin.On the carboniferous submarine massive sulfide deposits in the lower reaches of Changjiang (Yangtze) River[J]. Acta Geological Sinica,1986, (2): 176-188.
[顾连兴,徐克勤. 论长江中、下游中石炭世海底块状硫化物矿床[J]. 地质学报,1986,(2):176-188.]
[52] Tang Yongcheng, Wu Yanchang, Chu Guozheng, et al.Polymetallic Copper and Gold Deposits along the Yangtze River in Anhui[M]. Beijing: Geological Publishing House, 1998.
[唐永成,吴言昌,储国正,等. 安徽沿江地区铜金多金属矿床地质[M]. 北京:地质出版社,1998.]
[53] Mao Jingwen, Hu Ruizhong,Chen Yuchuan, et al.The Large-scale Mineralization and Ore Districts[M]. Beijing: Geological Publishing House, 2006.
[毛景文,胡瑞忠,陈毓川,等. 大规模成矿作用与大型矿集区[M]. 北京:地质出版社,2006.]
[54] Shi Rui, Chen Jianping,Liu Handong, et al.The 3D prediction model and division of targets in Jiaojia gold ore belt, Shandong Province[J].Geoscience,2014,28(4):743-750.
[史蕊,陈建平,刘汉栋,等. 山东焦家成矿带三维预测模型及靶区优选[J]. 现代地质,2014,28(4):743-750.]
[55] Xiang Jie, Chen Jianping, Hu Qiao, et al.3D metallogenic prediction based on minerogenetic series:A case study in Tongling mineral district of Anhui[J].Geoscience,2016,30(1):230-238.
[向杰,陈建平,胡桥,等. 基于矿床成矿系列的三维成矿预测——以安徽铜陵矿集区为例[J]. 现代地质,2016,30(1):230-238.]
[56] Shao Ke, Chen Jianping, Ren Mengyi.Evaluation methodology and indicator system of poly-metallic sulfide mineral resources in the Indian Ocean[J]. Advances in Earth Science,2015, 30(7): 812-822.
[邵珂, 陈建平,任梦依. 西南印度洋中脊多金属硫化物矿产资源评价方法与指标体系[J]. 地球科学进展, 2015, 30(7): 812-822.]
[57] Meng Guixiang.The Reaearch on the Location Prediction of the Reserve Resource of the Large-Scale Ore Concentration Area[D]. Beijing: Chinese Academy of Geological Sciences, 2006.
[孟贵祥. 大型矿集区接替资源定位预测研究[D]. 北京: 中国地质科学院, 2006.]
[58] Yan Qiong, Chen Jianping, Shang Beichuan.The 3D prediction model and division of targets in Lutangba study area of Gaosong ore field in Gejiu, Yunnan Province[J].Geoscience,2012,26(2):286-293.
[严琼,陈建平,尚北川. 云南个旧高松矿田芦塘坝研究区三维预测模型及靶区优选[J]. 现代地质,2012,26(2):286-293.]
[1] 王春连,刘成林,王立成,张林兵. 钾盐矿床成矿条件研究若干进展[J]. 地球科学进展, 2013, 28(9): 976-987.
[2] 华仁民,李晓峰,陆建军,陈培荣,邱德同,王 果. 德兴大型铜金矿集区构造环境和成矿流体研究进展[J]. 地球科学进展, 2000, 15(5): 525-533.
[3] 徐兴旺,蔡新平. 隐伏矿床预测理论与方法的研究进展[J]. 地球科学进展, 2000, 15(1): 76-83.
[4] 张均. 矿体定位预测的研究现状与趋向[J]. 地球科学进展, 1997, 12(3): 242-246.
阅读次数
全文


摘要