地球科学进展 ›› 2005, Vol. 20 ›› Issue (12): 1314 -1320. doi: 10.11867/j.issn.1001-8166.2005.12.1314

综述与评述 上一篇    下一篇

以Al/Ti比值为地球化学示踪剂反演海洋古生产力的研究进展
任景玲 1,张经 1,2,刘素美 1   
  1. 1.中国海洋大学化学化工学院,山东 青岛 266003;2.华东师范大学河口海岸研究所国家重点实验室,上海 200062
  • 收稿日期:2005-04-06 修回日期:2005-07-18 出版日期:2005-12-25
  • 通讯作者: 任景玲
  • 基金资助:

    国家自然科学基金重点项目“胶州湾生源要素流失与海湾富营养化演变过程”(编号:40036010);国家自然科学青年基金项目“沉积物—水界面交换对胶州湾富营养化演变过程的影响”(编号:40206017);国家重点基础研究发展计划项目“东黄海生态系统动力学与生物资源可持续利用”(编号:G1999043705)资助.

A REVIEW ON ALUMINUM TO TITANIUM RATIO AS A GEOCHEMICAL PROXY TO RECONSTRUCT PALEOPRODUCTIVITY

REN Jingling 1, ZHANG Jing 1,2, LIU Sumei 1   

  1. 1.College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266003, China;2.State Key Laboratory of Estuary and Coastal Research,East China Normal University,Shanghai 200062,China
  • Received:2005-04-06 Revised:2005-07-18 Online:2005-12-25 Published:2005-12-25

地球化学家通常用Al对其它重金属进行归一化以校正沉积物来源、粒度、矿物组成等方面的影响,因此现代海洋沉积物样品中Al、Ti含量的结果主要用于定量描述陆源输送的贡献。近期研究结果发现,在受陆源物质输送影响较小,沉降颗粒主要以生源颗粒物为主的赤道大洋区,沉积物中出现明显的“过剩铝”信号,“过剩铝”约占沉积物中总铝含量的50%。因此,用沉积物中Al的含量来估算陆源碎屑的比例会导致过高的结果,建议用Ti、Sc作为参比元素校正陆源物质的影响。沉积物中的Al/Ti比值可用来示踪水体中颗粒物的沉降通量和初级生产的改变。综述了近期以Al/Ti比值这种新的地球化学示踪剂反演古生产力的最新研究进展,提出了在我国陆架边缘海开展此项工作可能存在的问题与挑战。

Accordingly, Aluminum is always used as the normalized element by geochemists to minimize the natural variability of heavy metals in the sediments, which includes the effect of sedimentary origin, grainsize and mineral composition. Thus, measurements of Al in marine sediments are always used to determine quantitatively the amount of terrestrial material in a given sample. However, this normalized method met problems in the open ocean. The results indicate that there exists significant non-detritus Al (excess Al) component in the sediments of open ocean near the equator, where the sediments were composed mainly by biogenic compositions other than terrestrial matter. Excess Al can account for nearly 50% of the total Al in the sediments. Therefore, using Al abundance to estimate the terrestrial matter abundance in marine sediments, which is generally used in the previous studies, may give over-estimated results. It is suggested that Ti and Sc be used as normalized elements to minimize the effects of terrestrial matter in the open oceans. The results show that Al/Ti ratio can be used to reconstruct the biogenic sediment accumulation and hence productivity through time in the biogenic regimes where terrestrial input is only slight. The newest progresses in the geochemical proxy of Al/Ti ratio to reconstruct the paleoproductivity are presented. Problems may appear when this geochemical proxy is applied in the coastal and shelf regions, which is also discussed in the paper.

中图分类号: 

[1]Chen Jianfang. New geochemical proxies in paleoceanography studies [J]. Advances in Earth Science, 2002, 17(3): 402-409. [陈建芳. 古海洋学研究中的地球化学新指标 [J]. 地球科学进展, 2002, 17(3): 402-409.]
[2]Du Junmin, Zhu Laimin, Zhang Yuanhui. The environment significance of trace elements for the sediments from the southern Huanghai Sea [J]. Acta Oceanologica Sinica, 2004, 26(6): 49-57. [杜俊民, 朱赖民, 张远辉. 南黄海中部沉积物微量元素的环境记录研究 [J]. 海洋学报, 2004, 26(6): 49-57.]
[3]Henderson G M. New proxies for paleoclimate [J]. Earth and Planetary Science Letters, 2002, 203: 1-13.
[4]Lan Xianhong. Application of geochemical record in the quantitative reconstruction of paleotemeperature [J].Marine Geology Letters,2003, 19(2): 9-13. [蓝先洪. 地球化学记录在古温度定量恢复研究中的应用 [J]. 海洋地质动态, 2003, 19(2): 9-13.]
[5]Paul L. A multiproxy reconstruction of biological productivity and oceanography in the eastern equatorial pacific for the past 30,000 years [J]. Marine Micropaleontology, 1999, 37: 173-198.
[6]Liu Chuanlian, Cheng Xinrong. Exploring variations in upper ocean structure for the last 2Ma of the Nansha area by means of calcareous nannofossils [J]. Science in China(D), 2001, 31(10):834-839. [刘传联, 成鑫荣. 从超微化石看南沙海区近2 Ma 海水上层结构的变化 [J]. 中国科学D辑, 2001, 31(10): 834-839.]
[7]Jin Bingfu, Lin Zhenhong, Ji Fuwu. Interpretation of element geochemical records of marine sedimentary environment and provenance [J]. Advances in Marine Science, 2003, 21(1): 99-106. [金秉福, 林振宏, 季福武. 海洋沉积环境和物源的元素地球化学记录释读 [J]. 海洋科学进展, 2003, 21(1): 99-106.][8]Tian Zhenglong, Long Aimin, Chen Shaoyong. Review of paleoproductivity research in South Chian Sea [J]. Marine Sciences, 2004, 28(8): 65-71. [田正隆, 龙爱民, 陈绍勇. 南海古生产力研究进展 [J]. 海洋科学, 2004, 28(8): 65-71.]
[9]McCulloch M T, Tudhope A W, Esat T M, et al. Coral record of equatorial sea surface temperatures during the Penultimate deglaciation at Huon Peninsula [J]. Science, 1999, 283: 202-204.
[10]Stoll H M, Schrag D P. Effects of quaternary sea level cycles on strontium in seawater [J]. Geochimica et Cosmochimica Acta, 1998, 62: 1 107-1 118.
[11]Shen C C , Hastings D W, Lee T, et al. High precision glacial interglacial benthic foraminiferal Sr/Ca records from the eastern equatorial Atlantic Ocean and Caribbean [J]. Earth and Planetary Letters, 2001, 190: 197-209.
[12]Cohen A L, Owens K E, Layne G D, et al. The effect of algal symbionts on the accuracy of Sr/Ca paleotemperatures from coral [J]. Science, 2002, 296: 331-333.
[13]Lea D W, Pak D K, Spero H J. Climate impact of late quaternary equatorial Pacific sea surface temperature variations [J]. Science, 2000, 289: 1 719-1 724.
[14]Lear C H, Elderfield H, Wilson P A. Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite [J]. Science, 2000, 287: 269-272.
[15]Rickaby R E M, Elderfield H. Planktonic foraminiferal Cd/Ca: Paleonutrients or paleotemperature?[J]. Paleoceanography,1999, 14: 293-323.
[16]Elderfield H, Rickaby R E M. Oceanic Cd/P ratio and nutrient utilization in the glacial Southern Ocean [J]. Nature, 2000, 405: 305-310.
[17]Dehairs F, Goeyens L, Stroobants N, et al. On suspended barite and the oxygen minimum in the Southern Ocean [J]. Global Biogeochemical Cycles, 1990, 4: 85-102.
[18]Dehairs F, Baeyens W, Goeyens L. Accumulation of suspended barite at mesopelagic depths and export production in the Southern Ocean [J]. Science, 1992, 258: 1 332-1 335.
[19]Dymond J, Suess E, Lyle M, et al. Barium in the deep-sea sediment: A geochemical proxy for paleoproductivity [J]. Paleoceanography, 1992, 7(2): 163-181.
[20]Francois R, Honjo S, Manganini S J, et al. Biogenic barium fluxes to the deep sea: implications for paleoproductivity reconstruction [J]. Global Biogeochemical Cycles, 1995, 9(2): 289-303.
[21]Paytan A, Kastner M, Chavez F P. Glacial to interglacial fluctuations in productivity in Equatorial Pacific as indicated by marine barite [J].Science,1996, 274: 1 355-1 357.
[22]McManus J, Berelson W M, Klinkhammer G P, et al. Geochemistry of barium in marine sediments: Implications for its use as a paleoproxy [J]. Geochimica et Cosmochimica Acta, 1998, 62(21/22): 3 453-3 473.
[23]Fagel N, Dehairs F, Andre, et al. Ba distribution in surface Southern Ocean sediments and export production estimates[J]. Paleoceanography, 2002, 17(2): 1-21.
[24]Tian Zhenglong, Chen Shaoyong, Long Aimin. A review Barium as a geochemical proxy to reconstruct paleoproductivity [J]. Journal of Topical Oceanography, 2004, 23(3): 78-86. [田正隆, 陈绍勇, 龙爱民. 以Ba为指标反演海洋古生产力的研究进展 [J]. 热带海洋学报, 2004, 23(3): 78-86.]
[25]Walsh I, Dymond J, Collier R. Rates of recycling of biogenic components of setting particles in the ocean derived from sediment trap experiments [J]. Deep-sea Research, 1988, 35: 43-58.
[26]Murray R W, Buchholtz Ten Brink M R, Gerlach D C, et al. Interoceanic variation in the rare earth, major, and trace element depositional chemistry of chert, Perspectives gained from the DSDP and ODP record [J]. Geochimica et Cosmochimica Acta, 1992, 56: 1 897-1 913.
[27]Saito C, Noriki S, Tsunogai S. Particulate flux of Al, a component of land origin, in the western North Pacific [J].Deep-Sea Research,1992, 39: 1 315-1 327.
[28]Murray R W, Leinen M. Scanvenged excess aluminum and its relationship to bulk titanium in biogenic sediment from central equatorial Pacific Ocean [J].Geochimica et Cosmochimica Acta,1996, 60(20): 3 689-3 878.
[29]Taylor S R, McLennan S M. The Continental Crust: Its Composition and Evolution [M]. Blackwell: Oxford, 1985.
[30]Orians K J, Bruland K W. The biogeochemistry of aluminum in the Pacific Ocean [J]. Earth Planetary Science Letters,1986, 76: 397-410.
[31]Dymond J, Collier R, McManus J, et al. Can the aluminum and titanium contents of ocean sediments be used to determine the paleoproductivity of the oceans?[J].Paleoceanography, 1997, 12: 586-593.
[32]Banakar V K, Parthiban G, Pattan J N, et al. Chemistry of surface sediment along a north-south transect across the equator in the Central Indian Basin: An assessment of biogenic and detrital influences on elemental burial on the seafloor [J]. Chemical Geology, 1997, 147: 217-232.
[33]Balistrieri L, Brewer P G, Murray J W. Scanvenging residence times of trace metals and surface chemistry of sinking particles in the deep ocean [J]. Deep-Sea Research, 1981, 28A: 101-121.
[34]Messures C I, Grant B, Khadem M, et al. Distribution of Be, Al, Se and Bi in surface waters of the western north Atlantic and Caribbean [J]. Earth Planet Science Letters,1984, 71: 1-12.
[35]Messures C I, Edmond J M, Jickells T D. Aluminum in the northwest Atlantic [J]. Geochimica et Cosmochimica Acta, 1986, 50: 1 423-1 429.
[36]Orians K J, Boyle E A, Bruland K W. Dissolved titanium in the open ocean [J]. Nature,1990, 348: 322-325.
[37]Moran S B, Moore R M. Kinetics of the removal of dissolved aluminum by diatoms in seawater: A comparison with thorium [J].Geochimica et Cosmochimica Acta,1992, 56: 3 365-3 374.
[38]Pattan J N, Shane P. Excess aluminum in deep sea sediments of the Central Indian Basin [J].Marine Geology, 1999, 161: 247-255.
[39]Orians K J, Bruland K W. Dissolved aluminum in the central North Pacific [J]. Nature,1985, 316: 427-429.
[40]Messures C I, Edmond J M. Aluminum as a tracer of the deep outflow from the Mediterranean[J]. Journal of Geophysical Research, 1988, 95: 591-595.
[41]Li Y H. Distribution patterns of the elements in the ocean: A synthesis [J]. Geochimica et Cosmochimica Acta, 1991, 55: 3 223-3 240.
[42]Van den Berg C M G, Boussemart M, Yokoi K, et al. Speciation of aluminum, chromium and titanium in the NW Mediterranean [J]. Marine Chemistry,1994, 45: 267-282.
[43]Skrabal S A. Distributions of dissolved titanium in Chesapeake Bay and the Amazon River estuary [J]. Geochimica et Cosmochimica Acta, 1995, 59: 2 449-2 458.
[44]Maring H B, Duce R A. The impact of atmospheric aerosols on trace metal chemistry in open ocean surface seawater, 1, Aluminum [J]. Earth Planetary Science Letter, 1987, 84:381-392.
[45]Upadhyay S, Sen Gupta R. Aluminum in the northwestern Indian Ocean (Arabian Sea) [J].Marine Chemistry,1994, 47:203-214.
[46]Murray R W, Leinen M, Isern A R. Biogenic flux of Al to sediment in the central equatorial Pacific Ocean: Evidence for increased productivity during glacial periods [J].Paleoceanography,1993, 8(5): 661-669.
[47]Kryc K A, Murray R W, Murray D W. Al to oxide and Ti to organic linkages in biogenic sediment: Relationships to paleo-export production and bulk Al/Ti [J].Earth and Planetary Science Letters,2003, 211: 125-141.
[48]Kryc K A, Murray R W, Murray D W. Elemental fractionation of Si, Al, Ti, Fe, Ca, Mn, P and Ba in five marine sedimentary reference materials: Results from sequential extractions [J]. Analitica Chimica Acta,2003, 487: 117-128.
[49]Honeyman B D, Balistrieri L, Murray J W. Oceanic trace metal scanvenging, the importance of particle concentration [J].Deep-Sea Research,1988, 35: 227-246.
[50]Narvekar P V, Singbal S Y S. Dissolved aluminum in the surface microlayer of the eastern Arabian Sea [J]. Marine Chemistry,1993, 42: 85-94.
[51]Yarincik K M, Murray R W, Peterson L C. Climatically sensitive eolian and hemipelagic deposition in the Cariaco Basin, Venezuela, over the past 578000 years: Results from Al/Ti and K/Al [J]. Paleoceanography, 2000, 15: 210-228.
[52]Skrabal S A, Ullman W J, Luther III G W. Estuarine distributions of dissolved titanium [J]. Marine Chemistry, 1992, 37: 83-103.
[53]Orians K J, Boyle E A. Determination of picomolar concentrations of titanium, gallium, and indium in sea water by inductively coupled plasma mass spectrometry following an 8-hydroxyquinoline chelating resin preconcentration [J]. Analitica Chimica Acta, 1993, 282: 63-74.
[54]Bau M, Koschinsky A, Dulski P, et al. Comparison of the partitioning behaviors of yttium, rare earth elements, and titanium between hydrogenetic marine ferromanganese crusts and seawater [J]. Geochimica et Cosmochimica Acta,1996, 60: 1 709-1 725.
[55]Collier R, Edmond J. The trace element geochemistry of marine biogenic particulate matter [J]. Progress in Oceanography, 1984, 88: 113-199.
[56]Timothy D A, Calvert S E. Systematic of variations in excess Al and Al/Ti in sediments from the central equatorial Pacific [J]. Paleoceanography, 1998, 13: 127-130.
[57]Wei Gangjian, Li Xianhua, Chen Yuwei, et al. High resolution record of transitive elements of sediments from core NS93-5 and their paleoceanography implications [J]. Geochimica,2001, 30(5): 450-458. [韦刚健, 李献华, 陈毓蔚, 等. NS93-5钻孔沉积物高分辨率过渡金属元素变化及其古海洋记录 [J]. 地球化学, 2001, 30(5): 450-458.]
[58]Wei Gangjian, Li Xianhua, Sun Min, et al. Seasonal ventilation of the Ba/Ca of the porites corals from Northern South China Sea: Patterns and their environmental implication [J]. Geochimica, 2000, 29(1): 67-72. [韦刚健, 李献华, 孙敏, 等. 南海北部珊瑚Ba/ Ca比值的季节变化及其环境意义 [J]. 地球化学, 2000, 29(1): 67-72.]
[59]Wei Gangjian, Liu Ying, Li Xianhua, et al. Excess Al in the sediments from South China Sea [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2003, 22(1): 23-25. [韦刚健, 刘颖, 李献华, 等. 南海沉积物中过剩铝问题的探讨[J]. 矿物岩石地球化学通报, 2003, 22(1): 23-25.]
[60]Yang Shouye, Li Congxian. Characteristic element composition of the Yangtze and Yellow River sediments and their geological background [J]. Marine Geology & Quaternary Geology, 1999, 19(2): 19-26. [杨守业, 李从先. 长江与黄河沉积物元素组成及地质背景[J]. 海洋地质与第四纪地质, 1999, 19(2): 19-26.]
[61]Yang Shouye, Jung H S, Li Congxian, et al. Major element geochemistry of sediments from Chinese and Korean rivers [J]. Geochimica, 2004, 33(1): 99-105. [杨守业, Jung H S, 李从先, 等. 黄河、长江与韩国Keum, Yeongsan江沉积物常量元素地球化学特征[J]. 地球化学, 2004, 33(1): 99-105.]
[62]Zhang Chaosheng, Zhang Shen, Wang Lijun. Geochemistry of metals in sediments from Changjiang River and Huanghe River and their comparison [J]. Acta Geographica Sinica, 1998, 53(4): 314-322. [张朝生, 章申, 王立军. 长江与黄河沉积物重金属元素地球化学特征及其比较[J]. 地理学报, 1998, 53(4): 314-322.]
[63]Wang Zhongbo, Yang Shouye, Li Congxian. Major element compositions and paleoenvironmental changes of core sediments in the southern Yellow Sea [J]. Geochimica, 2004, 33(5): 483-490. [王中波,杨守业, 李从先. 南黄海中部沉积物岩心常量元素组成与古环境[J]. 地球化学,2004, 33(5): 483-490.]
[64]Wang Lijun, Zhang Chaosheng. Concentration and speciation of 27 elements in sediments and suspended matter from Guangzhou section of Pearl River [J]. Journal of Basic Science and Engineering, 1999, 7(1): 12-20. [王立军, 张朝生. 珠江广州江段水体沉积物和悬浮颗粒物中27种元素的含量与形成分布特征[J]. 应用基础与工程科学学报, 1999, 7(1): 12-20.]
[65]Li Shuanglin, Li Shaoquan, Meng Xiangjun. Chemical composition and source tracing of late quaternary sediments in the East China Sea Shelf [J]. Marine Geology & Quaternary Geology, 2002, 22(4): 21-28. [李双林, 李绍全, 孟祥君. 东海陆架晚第四纪沉积物化学成分及物源示踪[J]. 海洋地质与第四纪地质, 2002, 22(4): 21-28.]
[66]Zhao Qiyuan. Marine Geology [M]. Beijing: Geological Press, 1988. 130-165. [赵其渊. 海洋地球化学 [M]. 北京: 地质出版社, 1988. 130-165.]
[67]Gu Senchang, Chen Zhong, Yan Wen, et al. Geochemical characteristic and sedimentary environment of surface sediments of south Nansha Trough and adjacent sea areas [J]. Marine Geology & Quaternary Geology, 2001, 21(2): 43-47. [古森昌, 陈忠, 颜文, 等. 南沙海槽区表层沉积物的地球化学特征[J]. 海洋地质与第四纪地质, 2001, 21(2): 43-47.]
[68]South China Sea Institute of Oceanology, CAS. Integrated Survey Report of the South China Sea Area (No. 2) [C]. Beijing: Science Press, 1985. 101-114. [中国科学院南海海洋研究所.南海海区综合调查报告(二)[C]. 北京: 科学出版社, 1985. 101-114.]
[69]State Oceanic Administration People's Republic of China.  Integrated Survey Report on Environmental Resources of the Central South China Sea [C]. Beijing: Ocean Press, 1988. 326-338.[国家海洋局.南海中部海域环境资源综合调查报告[C]. 北京: 海洋出版社, 1988. 326-338.]
[70]Qiao Peijun, Shao Lei. Characteristics of sediments in the southern South China Sea since the last glaciation and their paleoenvironmental significance [J]. Marine Geology & Quaternary Geology,2003, 23(2): 73-78. [乔培军, 邵磊. 南海南部末次冰期以来的沉积特点及其古环境意义[J]. 海洋地质与第四纪地质, 2003, 23(2): 73-78.]
[71]Yao Bochu, Lan Xianhong, Qiu Yan. Geochemical characteristics of surface sediments from southwestern Xisha Region [J]. Marine Geology & Quaternary Geology, 1998, 18(1): 23-35. [姚伯初, 蓝先洪, 邱燕. 西沙西南海域表层沉积物的地球化学特征[J]. 海洋地质第四纪地质, 1998, 18(1): 23-35.]
[72]Yang Huihui, Chen Lan. Geochemistry of some major chemical composition in marine sediments of Haitan Island [J]. Acta Oceanologica Sinica, 1998, 20(3): 48-55. [杨慧辉, 陈岚. 海坛岛海域表层沉积物中主要成分的地球化学[J]. 海洋学报, 1998, 20(3): 48-55.]
[73]Abe K, Ishibi Y, Watanabe Y. Dissolved copper in the Yellow Sea and East China Sea   Cu as a tracer of the Changjiang discharge [J]. Deep-Sea Research II, 2003, 50: 327-337.
[74]Wu Y, Zhang J, Li D J, et al. Isotope variability of particulate organic matter at the PN section in the East China Sea [J]. Biogeochemistry, 2003, 65: 31-49.
[75]Zhang Chaosheng, Wang Lijun, Zhang Shen. Metal speciation in sediments and suspended matter in middle-lower reaches of the Changjiang River [J]. China Environmental Science,1995, 15(5): 342-347. [张朝生, 王立军, 章申. 长江中下游河流沉积物和悬浮物中金属元素的形态特征[J]. 中国环境科学, 1995, 15(5): 342-347.]

[1] 许丽晓, 刘秦玉. 海洋涡旋在模态水形成与输运中的作用[J]. 地球科学进展, 2021, 36(9): 883-898.
[2] 王丹,姜亦飞,王先桥,王素芬,何恩业,张蕴斐. 我国马尾藻金潮生态动力学研究进展[J]. 地球科学进展, 2021, 36(7): 753-762.
[3] 吴晓川,欧阳黎明,郭晓中,黄焱羚,黄振华,李伟. 海域沉积物蠕动地貌的研究现状与展望[J]. 地球科学进展, 2021, 36(7): 763-772.
[4] 陈璐,孙若愚,刘羿,徐海. 海洋铜锌同位素地球化学研究进展[J]. 地球科学进展, 2021, 36(6): 592-603.
[5] 刘雷钧, 何建刚, 涂海波, 郎骏健, 柳林涛. 载体垂向扰动对轴对称型金属弹簧海洋重力仪的影响[J]. 地球科学进展, 2021, 36(5): 520-527.
[6] 范成新, 刘敏, 王圣瑞, 方红卫, 夏星辉, 曹文志, 丁士明, 侯立军, 王沛芳, 陈敬安, 游静, 王菊英, 盛彦清, 朱伟. 20年来我国沉积物环境与污染控制研究进展与展望[J]. 地球科学进展, 2021, 36(4): 346-374.
[7] 吴园涛, 段晓男, 沈刚, 殷建平, 张偲. 强化我国海洋领域国家战略科技力量的思考与建议[J]. 地球科学进展, 2021, 36(4): 413-420.
[8] 董治宝,吕萍,李超,胡光印. 火星风条痕特征及其形成机制[J]. 地球科学进展, 2020, 35(9): 902-911.
[9] 赵仁杰,鄢全树,张海桃,关义立,葛振敏,袁龙,闫施帅. 全球俯冲沉积物组分及其地质意义[J]. 地球科学进展, 2020, 35(8): 789-803.
[10] 刘秦玉,张苏平,贾英来. 冬季黑潮延伸体海域海洋涡旋影响局地大气强对流的研究[J]. 地球科学进展, 2020, 35(5): 441-451.
[11] 傅焓埔, 刘群, 胡修棉. 水下沉积物重力流与海底扇相模式研究进展[J]. 地球科学进展, 2020, 35(2): 124-136.
[12] 朱艳宸,李丽,王鹏,贺娟,贾国东. 海洋氮循环中稳定氮同位素变化与地质记录研究进展[J]. 地球科学进展, 2020, 35(2): 167-179.
[13] 刘柏妤, 张虎才, 常凤琴, 张扬, 张晓楠, 冯仡哲, 李华勇. 茈碧湖现代沉积特征及其环境指示意义[J]. 地球科学进展, 2020, 35(2): 198-208.
[14] 冷疏影,汪建君,张亮,连展,王清. 2020年度海洋科学与极地科学基金项目评审与资助成果分析[J]. 地球科学进展, 2020, 35(11): 1189-1200.
[15] 张晓栋,刘志飞,张艳伟,赵玉龙. 海洋微塑料源汇搬运过程的研究进展[J]. 地球科学进展, 2019, 34(9): 936-949.
阅读次数
全文


摘要