[1]Chen Jianfang. New geochemical proxies in paleoceanography studies [J]. Advances in Earth Science, 2002, 17(3): 402-409. [陈建芳. 古海洋学研究中的地球化学新指标 [J]. 地球科学进展, 2002, 17(3): 402-409.] [2]Du Junmin, Zhu Laimin, Zhang Yuanhui. The environment significance of trace elements for the sediments from the southern Huanghai Sea [J]. Acta Oceanologica Sinica, 2004, 26(6): 49-57. [杜俊民, 朱赖民, 张远辉. 南黄海中部沉积物微量元素的环境记录研究 [J]. 海洋学报, 2004, 26(6): 49-57.] [3]Henderson G M. New proxies for paleoclimate [J]. Earth and Planetary Science Letters, 2002, 203: 1-13. [4]Lan Xianhong. Application of geochemical record in the quantitative reconstruction of paleotemeperature [J].Marine Geology Letters,2003, 19(2): 9-13. [蓝先洪. 地球化学记录在古温度定量恢复研究中的应用 [J]. 海洋地质动态, 2003, 19(2): 9-13.] [5]Paul L. A multiproxy reconstruction of biological productivity and oceanography in the eastern equatorial pacific for the past 30,000 years [J]. Marine Micropaleontology, 1999, 37: 173-198. [6]Liu Chuanlian, Cheng Xinrong. Exploring variations in upper ocean structure for the last 2Ma of the Nansha area by means of calcareous nannofossils [J]. Science in China(D), 2001, 31(10):834-839. [刘传联, 成鑫荣. 从超微化石看南沙海区近2 Ma 海水上层结构的变化 [J]. 中国科学D辑, 2001, 31(10): 834-839.] [7]Jin Bingfu, Lin Zhenhong, Ji Fuwu. Interpretation of element geochemical records of marine sedimentary environment and provenance [J]. Advances in Marine Science, 2003, 21(1): 99-106. [金秉福, 林振宏, 季福武. 海洋沉积环境和物源的元素地球化学记录释读 [J]. 海洋科学进展, 2003, 21(1): 99-106.][8]Tian Zhenglong, Long Aimin, Chen Shaoyong. Review of paleoproductivity research in South Chian Sea [J]. Marine Sciences, 2004, 28(8): 65-71. [田正隆, 龙爱民, 陈绍勇. 南海古生产力研究进展 [J]. 海洋科学, 2004, 28(8): 65-71.] [9]McCulloch M T, Tudhope A W, Esat T M, et al. Coral record of equatorial sea surface temperatures during the Penultimate deglaciation at Huon Peninsula [J]. Science, 1999, 283: 202-204. [10]Stoll H M, Schrag D P. Effects of quaternary sea level cycles on strontium in seawater [J]. Geochimica et Cosmochimica Acta, 1998, 62: 1 107-1 118. [11]Shen C C , Hastings D W, Lee T, et al. High precision glacial interglacial benthic foraminiferal Sr/Ca records from the eastern equatorial Atlantic Ocean and Caribbean [J]. Earth and Planetary Letters, 2001, 190: 197-209. [12]Cohen A L, Owens K E, Layne G D, et al. The effect of algal symbionts on the accuracy of Sr/Ca paleotemperatures from coral [J]. Science, 2002, 296: 331-333. [13]Lea D W, Pak D K, Spero H J. Climate impact of late quaternary equatorial Pacific sea surface temperature variations [J]. Science, 2000, 289: 1 719-1 724. [14]Lear C H, Elderfield H, Wilson P A. Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite [J]. Science, 2000, 287: 269-272. [15]Rickaby R E M, Elderfield H. Planktonic foraminiferal Cd/Ca: Paleonutrients or paleotemperature?[J]. Paleoceanography,1999, 14: 293-323. [16]Elderfield H, Rickaby R E M. Oceanic Cd/P ratio and nutrient utilization in the glacial Southern Ocean [J]. Nature, 2000, 405: 305-310. [17]Dehairs F, Goeyens L, Stroobants N, et al. On suspended barite and the oxygen minimum in the Southern Ocean [J]. Global Biogeochemical Cycles, 1990, 4: 85-102. [18]Dehairs F, Baeyens W, Goeyens L. Accumulation of suspended barite at mesopelagic depths and export production in the Southern Ocean [J]. Science, 1992, 258: 1 332-1 335. [19]Dymond J, Suess E, Lyle M, et al. Barium in the deep-sea sediment: A geochemical proxy for paleoproductivity [J]. Paleoceanography, 1992, 7(2): 163-181. [20]Francois R, Honjo S, Manganini S J, et al. Biogenic barium fluxes to the deep sea: implications for paleoproductivity reconstruction [J]. Global Biogeochemical Cycles, 1995, 9(2): 289-303. [21]Paytan A, Kastner M, Chavez F P. Glacial to interglacial fluctuations in productivity in Equatorial Pacific as indicated by marine barite [J].Science,1996, 274: 1 355-1 357. [22]McManus J, Berelson W M, Klinkhammer G P, et al. Geochemistry of barium in marine sediments: Implications for its use as a paleoproxy [J]. Geochimica et Cosmochimica Acta, 1998, 62(21/22): 3 453-3 473. [23]Fagel N, Dehairs F, Andre, et al. Ba distribution in surface Southern Ocean sediments and export production estimates[J]. Paleoceanography, 2002, 17(2): 1-21. [24]Tian Zhenglong, Chen Shaoyong, Long Aimin. A review Barium as a geochemical proxy to reconstruct paleoproductivity [J]. Journal of Topical Oceanography, 2004, 23(3): 78-86. [田正隆, 陈绍勇, 龙爱民. 以Ba为指标反演海洋古生产力的研究进展 [J]. 热带海洋学报, 2004, 23(3): 78-86.] [25]Walsh I, Dymond J, Collier R. Rates of recycling of biogenic components of setting particles in the ocean derived from sediment trap experiments [J]. Deep-sea Research, 1988, 35: 43-58. [26]Murray R W, Buchholtz Ten Brink M R, Gerlach D C, et al. Interoceanic variation in the rare earth, major, and trace element depositional chemistry of chert, Perspectives gained from the DSDP and ODP record [J]. Geochimica et Cosmochimica Acta, 1992, 56: 1 897-1 913. [27]Saito C, Noriki S, Tsunogai S. Particulate flux of Al, a component of land origin, in the western North Pacific [J].Deep-Sea Research,1992, 39: 1 315-1 327. [28]Murray R W, Leinen M. Scanvenged excess aluminum and its relationship to bulk titanium in biogenic sediment from central equatorial Pacific Ocean [J].Geochimica et Cosmochimica Acta,1996, 60(20): 3 689-3 878. [29]Taylor S R, McLennan S M. The Continental Crust: Its Composition and Evolution [M]. Blackwell: Oxford, 1985. [30]Orians K J, Bruland K W. The biogeochemistry of aluminum in the Pacific Ocean [J]. Earth Planetary Science Letters,1986, 76: 397-410. [31]Dymond J, Collier R, McManus J, et al. Can the aluminum and titanium contents of ocean sediments be used to determine the paleoproductivity of the oceans?[J].Paleoceanography, 1997, 12: 586-593. [32]Banakar V K, Parthiban G, Pattan J N, et al. Chemistry of surface sediment along a north-south transect across the equator in the Central Indian Basin: An assessment of biogenic and detrital influences on elemental burial on the seafloor [J]. Chemical Geology, 1997, 147: 217-232. [33]Balistrieri L, Brewer P G, Murray J W. Scanvenging residence times of trace metals and surface chemistry of sinking particles in the deep ocean [J]. Deep-Sea Research, 1981, 28A: 101-121. [34]Messures C I, Grant B, Khadem M, et al. Distribution of Be, Al, Se and Bi in surface waters of the western north Atlantic and Caribbean [J]. Earth Planet Science Letters,1984, 71: 1-12. [35]Messures C I, Edmond J M, Jickells T D. Aluminum in the northwest Atlantic [J]. Geochimica et Cosmochimica Acta, 1986, 50: 1 423-1 429. [36]Orians K J, Boyle E A, Bruland K W. Dissolved titanium in the open ocean [J]. Nature,1990, 348: 322-325. [37]Moran S B, Moore R M. Kinetics of the removal of dissolved aluminum by diatoms in seawater: A comparison with thorium [J].Geochimica et Cosmochimica Acta,1992, 56: 3 365-3 374. [38]Pattan J N, Shane P. Excess aluminum in deep sea sediments of the Central Indian Basin [J].Marine Geology, 1999, 161: 247-255. [39]Orians K J, Bruland K W. Dissolved aluminum in the central North Pacific [J]. Nature,1985, 316: 427-429. [40]Messures C I, Edmond J M. Aluminum as a tracer of the deep outflow from the Mediterranean[J]. Journal of Geophysical Research, 1988, 95: 591-595. [41]Li Y H. Distribution patterns of the elements in the ocean: A synthesis [J]. Geochimica et Cosmochimica Acta, 1991, 55: 3 223-3 240. [42]Van den Berg C M G, Boussemart M, Yokoi K, et al. Speciation of aluminum, chromium and titanium in the NW Mediterranean [J]. Marine Chemistry,1994, 45: 267-282. [43]Skrabal S A. Distributions of dissolved titanium in Chesapeake Bay and the Amazon River estuary [J]. Geochimica et Cosmochimica Acta, 1995, 59: 2 449-2 458. [44]Maring H B, Duce R A. The impact of atmospheric aerosols on trace metal chemistry in open ocean surface seawater, 1, Aluminum [J]. Earth Planetary Science Letter, 1987, 84:381-392. [45]Upadhyay S, Sen Gupta R. Aluminum in the northwestern Indian Ocean (Arabian Sea) [J].Marine Chemistry,1994, 47:203-214. [46]Murray R W, Leinen M, Isern A R. Biogenic flux of Al to sediment in the central equatorial Pacific Ocean: Evidence for increased productivity during glacial periods [J].Paleoceanography,1993, 8(5): 661-669. [47]Kryc K A, Murray R W, Murray D W. Al to oxide and Ti to organic linkages in biogenic sediment: Relationships to paleo-export production and bulk Al/Ti [J].Earth and Planetary Science Letters,2003, 211: 125-141. [48]Kryc K A, Murray R W, Murray D W. Elemental fractionation of Si, Al, Ti, Fe, Ca, Mn, P and Ba in five marine sedimentary reference materials: Results from sequential extractions [J]. Analitica Chimica Acta,2003, 487: 117-128. [49]Honeyman B D, Balistrieri L, Murray J W. Oceanic trace metal scanvenging, the importance of particle concentration [J].Deep-Sea Research,1988, 35: 227-246. [50]Narvekar P V, Singbal S Y S. Dissolved aluminum in the surface microlayer of the eastern Arabian Sea [J]. Marine Chemistry,1993, 42: 85-94. [51]Yarincik K M, Murray R W, Peterson L C. Climatically sensitive eolian and hemipelagic deposition in the Cariaco Basin, Venezuela, over the past 578000 years: Results from Al/Ti and K/Al [J]. Paleoceanography, 2000, 15: 210-228. [52]Skrabal S A, Ullman W J, Luther III G W. Estuarine distributions of dissolved titanium [J]. Marine Chemistry, 1992, 37: 83-103. [53]Orians K J, Boyle E A. Determination of picomolar concentrations of titanium, gallium, and indium in sea water by inductively coupled plasma mass spectrometry following an 8-hydroxyquinoline chelating resin preconcentration [J]. Analitica Chimica Acta, 1993, 282: 63-74. [54]Bau M, Koschinsky A, Dulski P, et al. Comparison of the partitioning behaviors of yttium, rare earth elements, and titanium between hydrogenetic marine ferromanganese crusts and seawater [J]. Geochimica et Cosmochimica Acta,1996, 60: 1 709-1 725. [55]Collier R, Edmond J. The trace element geochemistry of marine biogenic particulate matter [J]. Progress in Oceanography, 1984, 88: 113-199. [56]Timothy D A, Calvert S E. Systematic of variations in excess Al and Al/Ti in sediments from the central equatorial Pacific [J]. Paleoceanography, 1998, 13: 127-130. [57]Wei Gangjian, Li Xianhua, Chen Yuwei, et al. High resolution record of transitive elements of sediments from core NS93-5 and their paleoceanography implications [J]. Geochimica,2001, 30(5): 450-458. [韦刚健, 李献华, 陈毓蔚, 等. NS93-5钻孔沉积物高分辨率过渡金属元素变化及其古海洋记录 [J]. 地球化学, 2001, 30(5): 450-458.] [58]Wei Gangjian, Li Xianhua, Sun Min, et al. Seasonal ventilation of the Ba/Ca of the porites corals from Northern South China Sea: Patterns and their environmental implication [J]. Geochimica, 2000, 29(1): 67-72. [韦刚健, 李献华, 孙敏, 等. 南海北部珊瑚Ba/ Ca比值的季节变化及其环境意义 [J]. 地球化学, 2000, 29(1): 67-72.] [59]Wei Gangjian, Liu Ying, Li Xianhua, et al. Excess Al in the sediments from South China Sea [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2003, 22(1): 23-25. [韦刚健, 刘颖, 李献华, 等. 南海沉积物中过剩铝问题的探讨[J]. 矿物岩石地球化学通报, 2003, 22(1): 23-25.] [60]Yang Shouye, Li Congxian. Characteristic element composition of the Yangtze and Yellow River sediments and their geological background [J]. Marine Geology & Quaternary Geology, 1999, 19(2): 19-26. [杨守业, 李从先. 长江与黄河沉积物元素组成及地质背景[J]. 海洋地质与第四纪地质, 1999, 19(2): 19-26.] [61]Yang Shouye, Jung H S, Li Congxian, et al. Major element geochemistry of sediments from Chinese and Korean rivers [J]. Geochimica, 2004, 33(1): 99-105. [杨守业, Jung H S, 李从先, 等. 黄河、长江与韩国Keum, Yeongsan江沉积物常量元素地球化学特征[J]. 地球化学, 2004, 33(1): 99-105.] [62]Zhang Chaosheng, Zhang Shen, Wang Lijun. Geochemistry of metals in sediments from Changjiang River and Huanghe River and their comparison [J]. Acta Geographica Sinica, 1998, 53(4): 314-322. [张朝生, 章申, 王立军. 长江与黄河沉积物重金属元素地球化学特征及其比较[J]. 地理学报, 1998, 53(4): 314-322.] [63]Wang Zhongbo, Yang Shouye, Li Congxian. Major element compositions and paleoenvironmental changes of core sediments in the southern Yellow Sea [J]. Geochimica, 2004, 33(5): 483-490. [王中波,杨守业, 李从先. 南黄海中部沉积物岩心常量元素组成与古环境[J]. 地球化学,2004, 33(5): 483-490.] [64]Wang Lijun, Zhang Chaosheng. Concentration and speciation of 27 elements in sediments and suspended matter from Guangzhou section of Pearl River [J]. Journal of Basic Science and Engineering, 1999, 7(1): 12-20. [王立军, 张朝生. 珠江广州江段水体沉积物和悬浮颗粒物中27种元素的含量与形成分布特征[J]. 应用基础与工程科学学报, 1999, 7(1): 12-20.] [65]Li Shuanglin, Li Shaoquan, Meng Xiangjun. Chemical composition and source tracing of late quaternary sediments in the East China Sea Shelf [J]. Marine Geology & Quaternary Geology, 2002, 22(4): 21-28. [李双林, 李绍全, 孟祥君. 东海陆架晚第四纪沉积物化学成分及物源示踪[J]. 海洋地质与第四纪地质, 2002, 22(4): 21-28.] [66]Zhao Qiyuan. Marine Geology [M]. Beijing: Geological Press, 1988. 130-165. [赵其渊. 海洋地球化学 [M]. 北京: 地质出版社, 1988. 130-165.] [67]Gu Senchang, Chen Zhong, Yan Wen, et al. Geochemical characteristic and sedimentary environment of surface sediments of south Nansha Trough and adjacent sea areas [J]. Marine Geology & Quaternary Geology, 2001, 21(2): 43-47. [古森昌, 陈忠, 颜文, 等. 南沙海槽区表层沉积物的地球化学特征[J]. 海洋地质与第四纪地质, 2001, 21(2): 43-47.] [68]South China Sea Institute of Oceanology, CAS. Integrated Survey Report of the South China Sea Area (No. 2) [C]. Beijing: Science Press, 1985. 101-114. [中国科学院南海海洋研究所.南海海区综合调查报告(二)[C]. 北京: 科学出版社, 1985. 101-114.] [69]State Oceanic Administration People's Republic of China. Integrated Survey Report on Environmental Resources of the Central South China Sea [C]. Beijing: Ocean Press, 1988. 326-338.[国家海洋局.南海中部海域环境资源综合调查报告[C]. 北京: 海洋出版社, 1988. 326-338.] [70]Qiao Peijun, Shao Lei. Characteristics of sediments in the southern South China Sea since the last glaciation and their paleoenvironmental significance [J]. Marine Geology & Quaternary Geology,2003, 23(2): 73-78. [乔培军, 邵磊. 南海南部末次冰期以来的沉积特点及其古环境意义[J]. 海洋地质与第四纪地质, 2003, 23(2): 73-78.] [71]Yao Bochu, Lan Xianhong, Qiu Yan. Geochemical characteristics of surface sediments from southwestern Xisha Region [J]. Marine Geology & Quaternary Geology, 1998, 18(1): 23-35. [姚伯初, 蓝先洪, 邱燕. 西沙西南海域表层沉积物的地球化学特征[J]. 海洋地质第四纪地质, 1998, 18(1): 23-35.] [72]Yang Huihui, Chen Lan. Geochemistry of some major chemical composition in marine sediments of Haitan Island [J]. Acta Oceanologica Sinica, 1998, 20(3): 48-55. [杨慧辉, 陈岚. 海坛岛海域表层沉积物中主要成分的地球化学[J]. 海洋学报, 1998, 20(3): 48-55.] [73]Abe K, Ishibi Y, Watanabe Y. Dissolved copper in the Yellow Sea and East China Sea Cu as a tracer of the Changjiang discharge [J]. Deep-Sea Research II, 2003, 50: 327-337. [74]Wu Y, Zhang J, Li D J, et al. Isotope variability of particulate organic matter at the PN section in the East China Sea [J]. Biogeochemistry, 2003, 65: 31-49. [75]Zhang Chaosheng, Wang Lijun, Zhang Shen. Metal speciation in sediments and suspended matter in middle-lower reaches of the Changjiang River [J]. China Environmental Science,1995, 15(5): 342-347. [张朝生, 王立军, 章申. 长江中下游河流沉积物和悬浮物中金属元素的形态特征[J]. 中国环境科学, 1995, 15(5): 342-347.] |