地球科学进展 ›› 2021, Vol. 36 ›› Issue (6): 592 -603. doi: 10.11867/j.issn.1001-8166.2021.061

综述与评述 上一篇    下一篇

海洋铜锌同位素地球化学研究进展
陈璐( ),孙若愚,刘羿( ),徐海   
  1. 天津大学 地球系统科学学院,天津 300072
  • 收稿日期:2021-01-25 修回日期:2021-05-07 出版日期:2021-06-10
  • 通讯作者: 刘羿 E-mail:292957023@qq.com;liuyigeo@tju.edu.cn
  • 基金资助:
    国家自然科学基金优秀青年科学基金项目“珊瑚礁地球化学与全球变化”(4192200195)

Advances in the Isotope Geochemistry of Copper and Zinc in Oceans

Lu CHEN( ),Ruoyu SUN,Yi LIU( ),Hai XU   

  1. School of Earth System Science,Tianjin University,Tianjin 300072,China
  • Received:2021-01-25 Revised:2021-05-07 Online:2021-06-10 Published:2021-07-22
  • Contact: Yi LIU E-mail:292957023@qq.com;liuyigeo@tju.edu.cn
  • About author:CHEN Lu (1995-), female, Panjin City, Liaoning Province, Master student. Research areas include marine copper and zinc isotopic geochemistry. E-mail: 292957023@qq.com
  • Supported by:
    the National Natural Science Foundation of China "Coral reef geochemistry and global change"(4192200195)

铜锌是海洋浮游生物生命活动所必需的微量营养元素,其含量和同位素能够对相关海洋生物—物理—化学过程进行示踪和定量分析,是国际地学重大研究计划“GEOTRACES”的核心研究内容之一。总结和评述了近年来海洋铜锌同位素的最新研究成果和研究现状,归纳出以下认识: 生物吸收、颗粒物吸附和有机质络合等不同海洋过程会使海水溶解铜锌同位素产生分馏,从而对同位素组成的纵剖面分布特征造成影响; 现代海洋主要铜锌输入、输出端元同位素组成及通量的研究已日趋成熟,但仍存在潜在的铜锌源汇尚未被发现; 铜锌对海洋气候环境变化极为敏感,其同位素组成经常被广泛应用于古海洋气候环境变化等方面的示踪。未来还需在优化铜同位素组成的分析测试方法、探究海洋铜锌的潜在源汇以及生物碳酸盐等海洋载体铜锌同位素分馏机理等方面开展进一步工作,并有望在碳循环、地球气候重大演变和海洋环境污染的示踪应用等方向取得突破。

The research on marine biogeochemical cycles of copper (Cu) and zinc (Zn) and their isotopes is now active due to their roles as essential micronutrients for marine phytoplankton and their use as tracers of various physical, geological, and chemical processes in oceans. Notably, Cu and Zn are selected as key research elements in the international GEOTRACES program. Here, the research achievements and advances of marine Cu and Zn isotopes in recent years are reviewed. This includes: The vertical distribution characteristics of dissolved Cu and Zn isotopic compositions (δ65Cu and δ66Zn) in the marine water columns could be influenced by different ocean processes such as biological uptake, particle scavenging and complexation with organic ligands because these processes lead to the fractionation of Cu and Zn isotopes; The research on Cu and Zn isotopic compositions and their influxes and outfluxes of major marine sources and sinks has become more and more mature, but there are still potential sources and sinks of Cu and Zn that have not been found; Cu and Zn are extremely sensitive to changes in marine climate and environment, so Cu and Zn isotopes are often used to trace paleo-ocean climate and environment change. In the future, more studies are suggested to focus on optimizing the analysis methods of Cu isotopic compositions, exploring the potential sources and sinks of modern marine Cu and Zn cycles and Cu and Zn isotope fractionation mechanisms of marine biogenic carbonates. Breakthroughs are expected to be achieved in the applications of Cu and Zn isotopes to tracing carbon cycle, paleoclimate evolutions and marine environmental pollution.

中图分类号: 

图1 现代海洋纵剖面溶解态铜浓度及同位素组成变化
数据引自参考文献[ 30 ~ 32 36 37 ],误差线表示±2SD
Fig. 1 Dissolved Cu concentration and stable isotope ratio δ65Cu profiles in the modern ocean
Data from references [30~32,36,37], error bars indicate ±2SD
图2 现代海洋纵剖面溶解态锌浓度及同位素组成变化
数据引自参考文献[ 45 46 48 54 58 ],误差线表示±2SD
Fig. 2 Dissolved Zn concentration and stable isotope ratio δ66Zn profiles in the modern ocean
Data from references [45,46,48,54,58], error bars indicate ±2SD
表1 现代海洋溶解态铜源汇通量及同位素组成
Table 1 Fluxes and isotopic compositions ( δ 65Cu) of dissolved Cu into and out of the modern oceans
图3 现代海洋铜锌源汇及其同位素相关分馏过程示意图(据参考文献[ 3 74 75 ]修改)
现代海洋铜锌的输入与输出分别在左右以箭头为显示,铜锌的输入分为:配体结合的CuL或ZnL(大量)和自由金属离子Cu 2+或Zn 2+(少量),均以虚线表示其大致同位素组成;其中配体结合的铜锌同位素均重于自由离子 34 35 51
Fig. 3 Schematic cartoon illustrating the sources and sinks of Cu and Zn in the modern ocean and relevant fractionation processes of their isotopes modified after references 37475])
The inputs and outputs are shown as arrows on the left and right respectively, within the oceans this input is split into two pools: a dominant ligand-bound pool (CuL or ZnL)and a minor free metal ion pool (Cu 2+ or Zn 2+),isotopic compositions shown as the horizontal dashed lines. The ligand-bound pool is shown as heavy relative to the free metal ion 34 ,34, 51
表2 现代海洋溶解态锌源汇通量及同位素组成
Table 2 Fluxes and isotopic compositions ( δ 66Zn) of dissolved Zn into and out of the modern oceans
1 LODDERS K.Solar system abundances and condensation temperatures of the elements[J]. The Astrophysical Journal,2003,591(2):1 220-1 247.
2 SIEBERT J,CORGNE A,RYERSON F J. Systematics of metal-silicate partitioning for many siderophile elements applied to Earth's core formation[J]. Geochimica et Cosmochimica Acta,2011,75(6):1 451-1 489.
3 MOYNIER F,VANCE D,FUJII T,et al. The isotope geochemistry of zinc and copper[J]. Reviews in Mineralogy and Geochemistry,2017,82(1):543-600.
4 MOREL F M M,REINFELDER J R,ROBERTS S B,et al.zinc and carbon co-limitation of marine phytoplankton[J]. Nature,1994,369(6 483):740-742.
5 MOREL F M M,PRICE N M. The biogeochemical cycles of trace metals in the oceans[J]. Science,2003,300(5 621):944-947.
6 PEERS G,QUESNEL S A,PRICE N M. Copper requirements for iron acquisition and growth of coastal and oceanic diatoms[J]. Limnology and Oceanography,2005,50(4):1 149-1 158.
7 BRULAND K W,FRANKS R P,KNAUER G A,et al. Sampling and analytical methods for the determination of copper,cadmium,zinc,and nickel at the nanogram per liter level in sea water[J]. Analytica Chimica Acta,1979,105:233-245.
8 BRULAND K W. Oceanographic distributions of cadmium,zinc,nickel,and copper in the North Pacific[J]. Earth and Planetary Science Letters,1980,47(2):176-198.
9 MARéCHAL C N,TELOUK P,ALBARèDE F. Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry[J]. Chemical Geology,1999,156(1):251-273.
10 BERMIN J,VANCE D,ARCHER C,et al. The determination of the isotopic composition of Cu and Zn in seawater[J]. Chemical Geology,2006,226(3/4):280-297.
11 TAKANO S,TANIMIZU M,HIRATA T,et al. Determination of isotopic composition of dissolved copper in seawater by multi-collector inductively coupled plasma mass spectrometry after pre-concentration using an ethylenediaminetriacetic acid chelating resin[J]. Analytica Chimica Acta,2013,784:33-41.
12 THOMPSON C M,ELLWOOD M J,WILLE M. A solvent extraction technique for the isotopic measurement of dissolved copper in seawater[J]. Analytica Chimica Acta,2013,775:106-113.
13 ARCHER C,VANCE D. Mass discrimination correction in multiple-collector plasma source mass spectrometry: an example using Cu and Zn isotopes[J]. Journal of Analytical Atomic Spectrometry,2004,19(5):656-665.
14 HOU Q H,ZHOU L,GAO S,et al. Use of Ga for mass bias correction for the accurate determination of copper isotope ratio in the NIST SRM 3114 Cu standard and geological samples by MC-ICPMS[J]. Journal of Analytical Atomic Spectrometry,2016,31(1):280-287.
15 MOELLER K,SCHOENBERG R,R-B PEDERSEN,et al. Calibration of the new certified reference materials ERM-AE633 and ERM-AE647 for copper and IRMM-3702 for zinc isotope amount ratio determinations[J]. Geostandards and Geoanalytical Research,2012,36(2):177-199.
16 CHEN S,LIU Y,HU J,et al. Zinc isotopic compositions of NIST SRM 683 and whole-rock reference materials[J]. Geostandards and Geoanalytical Research,2016,40(3):417-432.
17 WANG Z Z,LIU S A,LIU J G,et al. Zinc isotope fractionation during mantle melting and constraints on the Zn isotope composition of Earth's upper mantle[J]. Geochimica et Cosmochimica Acta,2017,198:151-167.
18 ANDERSON R F. GEOTRACES:accelerating research on the marine biogeochemical cycles of trace elements and their isotopes[J]. Annual Review of Marine Science,2020,12:49-85.
19 KUNZMANN M,HALVERSON G P,SOSSI P A,et al. Zn isotope evidence for immediate resumption of primary productivity after snowball Earth[J]. Geology,2013,41(1):27-30.
20 FRU E C,RODRIGUEZ N P,PARTIN C A,et al.Cu isotopes in marine black shales record the Great Oxidation Event[J]. Proceedings of the National Academy of Sciences,2016,113(18):4 941-4 946.
21 ISSON T T,LOVE G D,DUPONT C L,et al. Tracking the rise of eukaryotes to ecological dominance with zinc isotopes[J].Geobiology,2018,16(4):341-352.
22 WANG X,LIU S A,WANG Z R,et al. Zinc and strontium isotope evidence for climate cooling and constraints on the Frasnian-Famennian (~372 Ma) mass extinction[J]. Palaeogeography,Palaeoclimatology, Palaeoecology,2018,498:68-82.
23 LIU S A,LI S G. Tracing the deep carbon cycle using metal stable isotopes:opportunities and challenges[J]. Engineering,2019,5(3):448-457.
24 MOFFETT J W,DUPONT C. Cu complexation by organic ligands in the sub-arctic NW Pacific and Bering Sea[J]. Deep Sea Research Part:Oceanographic Research Papers,2007,54(4):586-595.
25 BRULAND K W,MIDDAG R,LOHAN M C. Controls of trace metals in seawater[J]. Treatise on Geochemistry,2014,8:19-51.
26 COALE K H,BRULAND K W. Copper complexation in the Northeast Pacific[J]. Limnology and Oceanography,1988,33(5):1 084-1 101.
27 MOFFETT J W,BRAND L E. Production of strong, extracellular Cu chelators by marine cyanobacteria in response to Cu stress[J]. Limnology and Oceanography,1996,41(3):388-395.
28 CROOT P L,MOFFETT J W,BRAND L E. Production of extracellular Cu complexing ligands by eucaryotic phytoplankton in response to Cu stress[J]. Limnology and Oceanography,2000,45(3):619-627.
29 PAN Fengmin,YUAN Huamao,SONG Jinming,et al. The distribution of trace elements-organic ligands in seawater and factors influencing their complexation[J]. Advances in Earth Science,2019,34(5):499-512.
泮枫敏,袁华茂,宋金明,等. 海水痕量元素—有机配体的配分特征与影响因素研究进展[J].地球科学进展,2019,34(5):499-512.
30 VANCE D,ARCHER C,BERMIN J,et al. The copper isotope geochemistry of rivers and the oceans[J]. Earth and Planetary Science Letters,2008,274(1/2):204-213.
31 TAKANO S,TANIMIZU M,HIRATA T,et al. Isotopic constraints on biogeochemical cycling of copper in the ocean[J]. Nature Communications,2014,5. DOI:10.1038/ncomms6663.
doi: 10.1038/ncomms6663.    
32 ROSHAN S,WU J F. The distribution of dissolved copper in the tropical-subtropical north Atlantic across the GEOTRACES GA03 transect[J]. Marine Chemistry,2015,176:189-198.
33 RUAN Yaqing,ZHANG Ruifeng. Review of the copper biogeochemistry in seawater[J]. Advances in Earth Science,2020,35(12):1 243-1 255.
阮雅青,张瑞峰.海水中铜的生物地球化学研究进展[J].地球科学进展,2020,35(12):1 243-1 255.
34 BIGALKE M,WEYER S,WILCKE W. Copper isotope fractionation during complexation with insolubilized humic acid[J]. Environmental Science & Technology,2010,44(14):5 496-5 502.
35 RYAN B M,KIRBY J K,DEGRYSE F,et al. Copper isotope fractionation during equilibration with natural and synthetic ligands[J]. Environmental Science & Technology,2014,48(15):8 620-8 626.
36 BACONNAIS I,ROUXEL O,DULAQUAIS G,et al. Determination of the copper isotope composition of seawater revisited:a case study from the Mediterranean Sea[J]. Chemical Geology,2019,511:465-480.
37 THOMPSON C M,ELLWOOD M J. Dissolved copper isotope biogeochemistry in the Tasman Sea,SW Pacific Ocean[J]. Marine Chemistry,2014,165:1-9.
38 NAVARRETE J U,BORROK D M,VIVEROS M,et al. Copper isotope fractionation during surface adsorption and intracellular incorporation by bacteria[J]. Geochimica et Cosmochimica Acta,2011,75(3):784-799.
39 ZHU X K,GUO Y,WILLIAMS R J P,et al. Mass fractionation processes of transition metal isotopes[J]. Earth and Planetary Science Letters,2002,200(1):47-62.
40 LITTLE S H,ARCHER C,MILNE A,et al. Paired dissolved and particulate phase Cu isotope distributions in the South Atlantic[J]. Chemical Geology,2018,502:29-43.
41 LITTLE S H,VANCE D,MCMANUS J,et al. Copper isotope signatures in modern marine sediments[J]. Geochimica et Cosmochimica Acta,2017,212:253-273.
42 LITTLE S H,VANCE D,SIDDALL M,et al. A modeling assessment of the role of reversible scavenging in controlling oceanic dissolved Cu and Zn distributions[J]. Global Biogeochemical Cycles,2013,27(3):780-791.
43 TAKANO S,LIAO W H,TIAN H A,et al. Sources of particulate Ni and Cu in the water column of the northern South China Sea: evidence from elemental and isotope ratios in aerosols and sinking particles[J]. Marine Chemistry,2020,219. DOI:10.1016/j.marchem.2020.103751.
doi: 10.1016/j.marchem.2020.103751.    
44 SINOIR M,BUTLER E C V,BOWIE A R,et al. Zinc marine biogeochemistry in seawater:a review[J]. Marine and Freshwater Research,2012,63(7):644-657.
45 CONWAY T M,JOHN S G. The biogeochemical cycling of zinc and zinc isotopes in the North Atlantic Ocean[J]. Global Biogeochemical Cycles,2014,28(10):1 111-1 128.
46 ZHAO Y,VANCE D,ABOUCHAMI W,et al. Biogeochemical cycling of zinc and its isotopes in the Southern Ocean[J]. Geochimica et Cosmochimica Acta,2014,125:653-672.
47 JOHN S G,CONWAY T M. A role for scavenging in the marine biogeochemical cycling of zinc and zinc isotopes[J]. Earth and Planetary Science Letters,2014,394:159-167.
48 SAMANTA M,ELLWOOD M J,SINOIR M,et al. Dissolved zinc isotope cycling in the Tasman Sea,SW Pacific Ocean[J].Marine Chemistry,2017,192:1-12.
49 GéLABERT A,POKROVSKY O S,VIERS J,et al. Interaction between zinc and freshwater and marine diatom species:surface complexation and Zn isotope fractionation[J]. Geochimica et Cosmochimica Acta,2006,70(4):839-857.
50 BRULAND K W. Complexation of zinc by natural organic ligands in the central North Pacific[J]. Limnology and Oceanography,1989,34(2):269-285.
51 JOUVIN D,LOUVAT P,JUILLOT F,et al. Zinc isotopic fractionation:why organic matters[J]. Environmental Science & Technology,2009,43(15):5 747-5 754.
52 SCHAUBLE E A. Applying stable isotope fractionation theory to new systems[J]. Reviews in Mineralogy and Geochemistry,2004,55(1):65-111.
53 JOHN S G,GEIS R W,SAITO M A,et al. Zinc isotope fractionation during high-affinity and low-affinity zinc transport by the marine diatom thalassiosira oceanica[J]. Limnology and Oceanography,2007,52(6):2 710-2 714.
54 CONWAY T M,JOHN S G. The cycling of iron, zinc and cadmium in the North East Pacific Ocean-Insights from stable isotopes[J]. Geochimica et Cosmochimica Acta,2015,164:262-283.
55 JOHN S G,HELGOE J,TOWNSEND E. Biogeochemical cycling of Zn and Cd and their stable isotopes in the Eastern Tropical South Pacific[J]. Marine Chemistry,2018,201:256-262.
56 LIAO W H,TAKANO S,YANG S C,et al. Zn isotope composition in the water column of the Northwestern Pacific Ocean: the importance of external sources[J]. Global Biogeochemical Cycles,2020,34(1). DOI:10.1029/2019GB006379.
doi: 10.1029/2019GB006379.    
57 K?BBERICH M,VANCE D. Zn isotope fractionation during uptake into marine phytoplankton: implications for oceanic zinc isotopes[J]. Chemical Geology,2019,523:154-161.
58 VANCE D,DE SOUZA G F,ZHAO Y,et al.The relationship between zinc, its isotopes, and the major nutrients in the North-East Pacific[J]. Earth and Planetary Science Letters,2019,525. DOI:10.1016/j.epsl.2019.115748.
doi: 10.1016/j.epsl.2019.115748.    
59 SIEBER M,CONWAY T M,DE SOUZA G F,et al. Cycling of zinc and its isotopes across multiple zones of the Southern Ocean:insights from the Antarctic Circumnavigation Expedition[J]. Geochimica et Cosmochimica Acta,2020,268:310-324.
60 WEBER T,JOHN S,TAGLIABUE A,et al.Biological uptake and reversible scavenging of zinc in the global ocean[J]. Science,2018,361(6 397):72-76.
61 LITTLE S H,VANCE D,WALKER-BROWN C,et al. The oceanic mass balance of copper and zinc isotopes, investigated by analysis of their inputs, and outputs to ferromanganese oxide sediments[J]. Geochimica et Cosmochimica Acta,2014,125:673-693.
62 ELDERFIELD H,SCHULTZ A. Mid-Ocean ridge hydrothermal fluxes and the chemical composition of the ocean[J]. Annual Review of Earth and Planetary Sciences,1996,24(1):191-224.
63 ROSHAN S,WU J F,JENKINS W J. Long-range transport of hydrothermal dissolved Zn in the tropical South Pacific[J]. Marine Chemistry,2016,183:25-32.
64 JOHN S G,ROUXEL O J,CRADDOCK P R,et al. Zinc stable isotopes in seafloor hydrothermal vent fluids and chimneys[J].Earth and Planetary Science Letters,2008,269(1/2):17-28.
65 LEMAITRE N,DE SOUZA G F,ARCHER C,et al. Pervasive sources of isotopically light zinc in the North Atlantic Ocean[J]. Earth and Planetary Science Letters,2020,539. DOI:10.1016/j.epsl.2020.116216.
doi: 10.1016/j.epsl.2020.116216.    
66 LITTLE S H,SHERMAN D M,VANCE D,et al. Molecular controls on Cu and Zn isotopic fractionation in Fe-Mn crusts[J]. Earth and Planetary Science Letters,2014,396:213-222.
67 MARéCHAL C N,NICOLAS E,DOUCHET C,et al. Abundance of zinc isotopes as a marine biogeochemical tracer[J]. Geochemistry,Geophysics,Geosystems,2000,1(5). DOI:10.1029/1999GC000029.
doi: 10.1029/1999GC000029.    
68 ALBARèDE F. The stable isotope geochemistry of copper and zinc[J]. Reviews in Mineralogy & Geochemistry,2004,55(1):409-427.
69 PICHAT S,DOUCHET C,ALBARèDE F. Zinc isotope variations in deep-sea carbonates from the Eastern Equatorial Pacific over the last 175 ka[J]. Earth and Planetary Science Letters,2003,210(1/2):167-178.
70 POKROVSKY O S,POKROVSKI G S,GéLABERT A,et al. Speciation of Zn associated with diatoms using X-ray absorption spectroscopy[J]. Environmental Science & Technology,2005,39(12):4 490-4 498.
71 ANDERSEN M B,VANCE D,ARCHER C,et al. The Zn abundance and isotopic composition of diatom frustules,a proxy for Zn availability in ocean surface seawater[J]. Earth and Planetary Science Letters,2011,301(1/2):137-145.
72 LITTLE S H,VANCE D,MCMANUS J,et al. Key role of continental margin sediments in the oceanic mass balance of Zn and Zn isotopes[J]. Geology,2016,44(3):207-210.
73 LITTLE S H,VANCE D,LYONS T W,et al. Controls on trace metal authigenic enrichment in reducing sediments:insights from modern oxygen-deficient settings[J]. American Journal of Science,2015,315(2):77-119.
74 VANCE D,LITTLE S H,ARCHER C,et al. The oceanic budgets of nickel and zinc isotopes:the importance of sulfidic environments as illustrated by the Black Sea[J]. Philosophical Transactions of the Royal Society A,2016,374(2 081):1-26.
75 LIU S A,LIU P P,LV Y W,et al. Cu and Zn isotope fractionation during oceanic alteration:implications for oceanic Cu and Zn cycles[J]. Geochimica et Cosmochimica Acta,2019,257:191-205.
76 YAN B,ZHU X K,HE X X,et al. Zn isotopic evolution in Early Ediacaran ocean:a global signature[J]. Precambrian Research,2019,320:472-483.
77 LIU S A,WU H C,SHEN S Z,et al. Zinc isotope evidence for intensive magmatism immediately before the end-Permian mass extinction[J]. Geology,2017,45(4):343-346.
78 SWEERE T C,DICKSON A J,JENKYNS H C,et al. Isotopic evidence for changes in the zinc cycle during Oceanic Anoxic Event 2 (Late Cretaceous)[J]. Geology,2018,46(5):463-466.
79 LV Y W,LIU S A,WU H C,et al. Zn-Sr isotope records of the Ediacaran Doushantuo Formation in South China: diagenesis assessment and implications[J]. Geochimica et Cosmochimica Acta,2018,239:330-345.
80 DONG S F,WASYLENKI L E. Zinc isotope fractionation during adsorption to calcite at high and low ionic strength[J]. Chemical Geology,2016,447:70-78.
81 MAVROMATIS V,GONZáLEZ A G,DIETZEL M,et al. Zinc isotope fractionation during the inorganic precipitation of calcite—Towards a new pH proxy[J]. Geochimica et Cosmochimica Acta,2019,244:99-112.
82 PONS M L,FUJII T,ROSING M,et al. A Zn isotope perspective on the rise of continents[J]. Geobiology,2013,11(3):201-214.
83 CONWAY T M,ROSENBERG A D,ADKINS J F,et al. A new method for precise determination of iron, zinc and cadmium stable isotope ratios in seawater by double-spike mass spectrometry[J]. Analytica Chimica Acta,2013,793:44-52.
84 WANG Zhaoxue,LIU Sheng'ao,LI Menglun,et al. Advances on application of zinc isotope as a tracer for deep carbon cycles[J]. Earth Science,2020,45(6):1 967-1 976.
王照雪,刘盛遨,李孟伦,等. 深部碳循环的锌同位素示踪研究进展[J].地球科学,2020,45(6):1 967-1 976.
85 BEUNON H,MATTIELLI N,DOUCET L S,et al. Mantle heterogeneity through Zn systematics in oceanic basalts: evidence for a deep carbon cycling[J]. Earth-Science Reviews,2020,205. DOI:10.1016/j.earscirev.2020.103174.
doi: 10.1016/j.earscirev.2020.103174.    
86 YANG C,LIU S A. Zinc isotope constraints on recycled oceanic crust in the mantle sources of the Emeishan large Igneous Province[J]. Journal of Geophysical Research:Solid Earth,2019,124(12):12 537-12 555.
87 Li M L,Liu S A,LEE H Y,et al. Magnesium and zinc isotopic anomaly of Cenozoic lavas in central Myanmar: origins and implications for deep carbon recycling[J]. Lithos,2021,386-387.
88 WIEDERHOLD J G. Metal stable isotope signatures as tracers in environmental geochemistry[J]. Environmental Science & Technology,2015,49(5):2 606-2 624.
89 ARAúJO D F,BOAVENTURA G R,MACHADO W,et al. Tracing of anthropogenic zinc sources in coastal environments using stable isotope composition[J]. Chemical Geology,2017,449:226-235.
90 ARAúJO D F,PONZEVERA E,BRIANT N,et al. Copper, zinc and lead isotope signatures of sediments from a mediterranean coastal bay impacted by naval activities and urban sources[J]. Applied Geochemistry,2019,111. DOI:10.1016/j.apgeochem.2019.104440.
doi: 10.1016/j.apgeochem.2019.104440.    
91 CHEN J B,GAILLARDET J,LOUVAT P,et al. Zn isotopes in the suspended load of the Seine River, France: isotopic variations and source determination[J]. Geochimica et Cosmochimica Acta,2009,73(14):4 060-4 076.
92 ZHU X K,O'NIONS R K,GUO Y,et al. Determination of natural Cu-isotope variation by plasma-source mass spectrometry:implications for use as geochemical tracers[J]. Chemical Geology,2000,163(1/4):139-149.
93 ZHANG X,ZHAI S,YU Z,et al. Zinc and lead isotope variation in hydrothermal deposits from the Okinawa Trough[J].Ore Geology Reviews,2019,111. DOI:10.1016/j.oregeorev.2019.102944.
doi: 10.1016/j.oregeorev.2019.102944.    
94 GORDON R B,GRAEDEL T E,BERTRAM M,et al. The characterization of technological zinc cycles[J]. Resources, Conservation and Recycling,2003,39(2):107-135.
95 HIGGINS J A,BL?TTLER C L,LUNDSTROM E A,et al.Mineralogy,early marine diagenesis,and the chemistry of shallow-water carbonate sediments[J]. Geochimica et Cosmochimica Acta,2018,220:512-534.
96 CHEN X M,ROMANIELLO S J,HERRMANN A D,et al. Diagenetic effects on uranium isotope fractionation in carbonate sediments from the Bahamas[J]. Geochimica et Cosmochimica Acta,2018,237:294-311.
[1] 许苗苗, 魏晓椿, 杨蓉, 王平, 程晓敢. 重矿物分析物源示踪方法研究进展[J]. 地球科学进展, 2021, 36(2): 154-171.
[2] 赖正,苏妮,吴舟扬,连尔刚,杨承帆,李芳亮,杨守业. 流域风化过程稳定锶同位素的分馏与示踪[J]. 地球科学进展, 2020, 35(7): 691-703.
[3] 刘许柯,付云翀,周卫健,张丽,赵国庆. 宇宙成因核素 7Be10Be示踪大气垂直传输交换研究进展[J]. 地球科学进展, 2020, 35(10): 1016-1028.
[4] 高兴军, 徐薇薇, 余义常, 李艳然, 李蕾. 智能化学示踪剂技术及其在油藏监测中的应用[J]. 地球科学进展, 2018, 33(5): 532-544.
[5] 魏传义, 刘春茹, 李长安, 尹功明, 李文朋, 赵举兴, 张增杰, 张岱, 孙习林, 李亚伟. 石英ESR法物源示踪:认识与进展[J]. 地球科学进展, 2017, 32(10): 1062-1071.
[6] 王云峰, 杨红梅. 金属硫化物矿床的成矿热液硫同位素示踪[J]. 地球科学进展, 2016, 31(6): 595-602.
[7] 高会旺, 姚小红, 郭志刚, 韩志伟, 高树基. 大气沉降对海洋初级生产过程与氮循环的影响研究进展[J]. 地球科学进展, 2014, 29(12): 1325-1332.
[8] 随伟伟,杨桂朋,丁琼瑶,陆小兰. 海洋中氟氯烃的研究进展[J]. 地球科学进展, 2013, 28(3): 366-373.
[9] 赵国庆,周卫健,武振坤,鲜锋,孔祥辉,张丽. 黄土中宇宙成因核素 10Be示踪古地磁场变化研究进展[J]. 地球科学进展, 2010, 25(9): 927-933.
[10] 门武,刘广山,陈志刚,何建华,尹明端,余雯. 镭同位素在海洋学研究中的应用及进展[J]. 地球科学进展, 2010, 25(1): 33-42.
[11] 邓英尔,贾疏源,黄润秋,李扬红. 岩溶缝洞系统地下水系研究[J]. 地球科学进展, 2008, 23(5): 489-494.
[12] 余金杰,王登红,王平安,徐珏,李晓峰,陈毓川,陈振宇. 俯冲—碰撞和高压、超高压变质带中的金红石研究进展[J]. 地球科学进展, 2006, 21(1): 47-52.
[13] 张风宝;杨明义;赵晓光;刘普灵. 磁性示踪在土壤侵蚀研究中的应用进展[J]. 地球科学进展, 2005, 20(7): 751-756.
[14] 任景玲;张经;刘素美. 以Al/Ti比值为地球化学示踪剂反演海洋古生产力的研究进展[J]. 地球科学进展, 2005, 20(12): 1314-1320.
[15] 王登红;邹天人;徐志刚;余金杰;付小方. 伟晶岩矿床示踪造山过程的研究进展[J]. 地球科学进展, 2004, 19(4): 614-620.
阅读次数
全文


摘要