地球科学进展 ›› 2017, Vol. 32 ›› Issue (10): 1062 -1071. doi: 10.11867/j.issn.1001-8166.2017.10.1062

上一篇    下一篇

石英ESR法物源示踪:认识与进展
魏传义 1, 2( ), 刘春茹 1, *( ), 李长安 2, 3, 尹功明 1, 李文朋 1, 赵举兴 2, 张增杰 2, 张岱 2, 孙习林 2, 4, 李亚伟 2   
  1. 1. 中国地震局地质研究所,地震动力学国家重点实验室,北京 100029
    2.中国地质大学(武汉),地球科学学院,湖北 武汉 430074
    3.生物地质与环境地质国家重点实验室,湖北 武汉 430074
    4. Cluster Geology and Geochemistry, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
  • 收稿日期:2017-04-06 修回日期:2017-08-15 出版日期:2017-12-20
  • 通讯作者: 刘春茹 E-mail:weichuanyi@126.com;liuchunru0821@126.com
  • 基金资助:
    中国地震局地质研究所地震动力学国家重点实验室2016年度自主课题“石英ESR法物源示踪在河流沉积物源示踪中的探讨及应用”(编号:LED2016A08);国家自然科学基金项目“江汉盆地宜昌冲积扇物源解析与区域地貌演化”(编号:41671011)资助.

Research Advances in ESR Provenance Tracing Methods of Quartz in Sediments

Chuanyi Wei 1, 2( ), Chunru Liu 1, *( ), Chang’an Li 2, 3, Gongming Yin 1, Wenpeng Li 1, Juxing Zhao 2, Zengjie Zhang 2, Dai Zhang 2, Xilin Sun 2, 4, Yawei Li 2   

  1. 1.State Key Laboratory of Earthquake Dynamics, Institute of Geology, China Earthquake Administration, Beijing 100029, China
    2.School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
    3.State Key Laboratory of Biogeology and Environmental Geology, Wuhan 430074, China
    4.Cluster Geology and Geochemistry, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
  • Received:2017-04-06 Revised:2017-08-15 Online:2017-12-20 Published:2017-10-20
  • Contact: Chunru Liu E-mail:weichuanyi@126.com;liuchunru0821@126.com
  • About author:

    First author:Wei Chuanyi(1990-),male,Zibo City,Shandong Province,Ph.D student. Research areas include ESR dating method and sediment provenance tracing.E-mail:weichuanyi@126.com

  • Supported by:
    Project supported by the Basic Scientific Research Fund, Institute of Geology, China Earthquake Administration“Quartz ESR signals and its potential use in river sediments provenance tracing” (No. LED2016A08);The National Natural Science Foundation of China “Research on the formation of the Yangtze River Three Gorges through analysis of sediments provenance of Yichang Alluvial Fan” (No.41671011).

石英ESR法物源示踪是一种新发展的沉积物源示踪方法。目前,用于沉积物源示踪研究的石英ESR信号心主要有热处理Eș心,自然Eș心、Al心和Ti心。从研究实例来看,热处理Eș心、是物源示踪研究运用最广泛和最成熟的;自然Eș心具有很好的应用前景;Al心和Ti心的物源示踪指示意义还处于实验观察和理论探索阶段。从研究对象来看,该方法已成功应用于东亚粉尘主要源区、黄土高原物源时空变化特征、日本群岛风成沉积物源时空变化特征及日本海沉积物源示踪的研究当中。此外,石英ESR法物源示踪在定量或半定量分析河流沉积物源示踪中也表现出了较好的应用前景。随着石英ESR测年技术的不断提高,该方法将在恢复区域性构造运动、地貌演化以及重建区域性的气候演化历史等方面具有独特的优势。

The ESR (Electron Spin Resonance) signals of quartz is a newly developed sediment provenance tracing method. In this paper, the various ESR signals in quartz, historical development of quartz ESR signals in sediment provenance tracing, thermal stability characteristics of heat treated Eș center, the potential use of quartz nature Eș center and the irradiated Al/Ti center, as well as successful applications in aeolian sediments, river sediments and marine sediments provenance tracing, were briefly reviewed.
The most useful ESR centers of quartz include the heat treated Eș center, the nature Eș center, the Al center and the Ti center. According to recent application researches, the heat-treated Eș center is the most commonly practiced among them while the significance of provenance tracing by Al and Ti centers are still in experimental and theoretical stage. Moreover, nature signal intensities of quartz Eș center not only show a significant dependence on lithology both in bedrocks and deposits, but also can reflect the mixture ratio of deposits with different types of sourced bedrocks.
As for the study objects, this method has been successfully used in the studies of provenance area of East Asian dust, the temporal and spatial changes of Loess Plateau provenance, the provenance change of aeolian sediment over time and space on Japanese Islands, as well as sediment provenance tracing of Japan Sea sediments. In addition, the ESR provenance tracing of quartz has promising application prospect in quantitative and semi-quantitative analysis of fluvial sediment provenance tracing. Along with the development of ESR dating, this method can significantly reflect and reconstruct the relationship among regional tectonic movements, geomorphic evolution, and climate evolution.
In future work, the combination of trace elements provenance tracing and ESR signals provenance tracing in quartz will help improve and promote the development of sediments provenance tracing methods.

中图分类号: 

图1 电子自旋共振顺磁中心
(a)常温测试 OH心、 Eș心、Ge 心;(b)低温测试 Al 心和 Ti 心(据参考文献[32,35,36]修改)
Fig.1 Electron spin resonance signal observed in the quartz sample
(a)Observed at room temperature; (b)Observed at low temperature (modified after references[32,35,36])
图2 石英 Eș心形成过程示意图(据参考文献[37~40]修改)
(a)正常石英晶体格架;(b)氧离子离开格点位置,形成氧空位;(c)氧空位捕获一个游离电子形成 Eș心;大圆表示硅离子,小圆表示氧离子,直线箭头表示电子
Fig.2 A model of formation of Eș center in quartz (modified after references[37~40])
(a)Normal lattice site;(b)Oxygen displaced leaving bare oxygen vacancy; (c) Eș centerformed by hole trapping of two electrons at bare oxygen vacancy;Large circles is silicon;Small circles is oxygen; The straight arrow represents the electron
图3 不同温度下花岗岩石英矿物ESR信号强度变化曲线(据参考文献[41]修改)
0~500 ℃范围内,Al心和Ti心的信号强度与温度成反比例关系;0~300 ℃范围内, Eș心信号强度与温度成正比;300~500 ℃范围内, Eș心信号强度与温度成反比
Fig.3 The intensity change on heating of ESR signals in granitic quartz (modified after reference[41])
The intensities of the Al and Ti centers decreases with temperature while that of the Eș center increases up to 300 ℃ due to transfer of electronic holes from hole centers to neutral oxygen vacancies with two electrons(Si-Si bond)
图4 不同辐射剂量下热处理 Eș心与Al心信号强度变化曲线(据参考文献[43]修改)
当辐射剂量超过200 Gy时,热处理 Eș心信号强度趋于饱和,而Al心信号强度则成线性增长,揭示出 Eș的饱和度受控于氧空穴的数量
Fig.4 The intensities of the heat treated Eș center and of Al center for given gamma ray dose (modified after reference[43])
The intensity of the heat treated Eșcenter saturates above 200 Gy while that of the Al center increases with dose, indicating that the Eș center intensity saturates due to the amount limitation of oxygen vacancies
图5 花岗岩石英矿物的形成年龄与其热处理 Eș心信号强度之间的关系示意图(据参考文献[43]修改)
图中所示花岗岩石英矿物的热处理 Eș心信号强度正比于其形成年龄
Fig.5 The correlation between the ages of the granites and the ESR signal intensity of the heat treated Eș center in quartz (modified after reference[43])
There is a positive correlation with a slope unity, indicating that the ESR intensity corresponds to the age of the original rocks
图6 低温测试条件下自然石英样品中Ti-Li 心和 Ti-H心ESR信号位置示意图(据参考文献[46,47]修改)
图中未出现Ti-Na心,Ti-H心主要有2个测量位置,Ti-Li 心有5个测量位置
Fig.6 Ti-Li and Ti-H center example of ESR signals obtained at low temperature (about 90 K) from natural quartz samples(modified after references[46,47])
In that case, the Ti-Na center is not observed. The various options for the evaluation of the Ti-H (1and 2) and Ti-Li center ESR intensity (1 to 5) are indicated, respectively
图7 东亚地区各沙漠表层沉积物ESR信号强度与CI值图(据参考文献[21,22,56]修改)
Fig.7 Distribution of the comparison values of the ESR signal intensity with the CI of fine-grained quartz contained in desert surface in East Asian (modified after references[21,22,56])
[1] Basu A, Young S W, Suttner L J,et al. Re-evaluation of the use of undulatory extinction and polycrystallinity in detrital Quartz for provenance interpretation[J]. Journal of Sedimentary Research, 1975, 45(4):873-882.
[2] Jackson M L.Oxygenisotopic ratios in Quartz as an indicator of provenance of dust[J]. Geological Society of America Special Papers, 1981, 186: 27-36.
[3] Suczek C A, Ingersoll R V.Petrology and provenance of Cenozoic sand from the indus cone and the Arabian Basin, DSDP sites 221, 222, and 224[J]. Journal of Sedimentary Research, 1985, 55(3):340-346.
[4] Wronkiewicz D J, Condie K C.Geochemistry of archean shales from the witwatersrand supergroup, south Africa: Source-area weathering and provenance[J]. Geochimica et Cosmochimica Acta, 1987, 51(9): 2 401-2 416.
[5] Vennemann T W, Kesler S E, O’Neil J R. Stable isotope compositions of Quartz pebbles and their fluid inclusions as tracers of sediment provenance: Implications for gold-and uranium-bearing Quartz pebble conglomerates[J]. Geology, 1992, 20(9): 837-840.
[6] McLennan S M, Hemming S, McDaniel D K,et al. Geochemical approaches to sedimentation, provenance, and tectonics[J]. Geological Society of America Special Papers, 1993, 284: 21-40.
[7] Smith M A, Pell S.Oxygen-isotope ratios in Quartz as indicators of the provenance of archaeological ochres[J]. Journal of Archaeological Science, 1997, 24(9): 773-778.
[8] Cullers R L.The geochemistry of shales, siltstones and sandstones of pennsylvanian-Permian age, Colorado, USA: Implications for provenance and metamorphic studies[J]. Lithos, 2000, 51(3): 181-203.
[9] Middleton F A, Strick P L.Basal-ganglia ‘projections’ to the prefrontal cortex of the primate[J]. Cerebral Cortex, 2002, 12(9): 926-935.
[10] Aléon J, Chaussidon M, Marty B,et al. Oxygen isotopes in single micrometer-sized Quartz grains: Tracing the source of Saharan dust over long-distance atmospheric transport[J]. Geochimica et Cosmochimica Acta, 2002, 66(19): 3 351-3 365.
[11] Bernet M, Bassett K.Provenanceanalysis by single-quartz-grain SEM-CL/optical microscopy[J]. Journal of Sedimentary Research, 2005, 75(3): 492-500.
[12] Ackerson M R, Tailby N D, Watson E B.Traceelements in quartz shed light on sediment provenance[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(6): 1 894-1 904.
[13] Toyoda S, Goff F.Quartz inpost-caldera rhyolites of valles caldera, New Mexico: ESR finger printing and discussion of ESR ages[J]. Jemez Mountains Region: New Mexico Geological Society, Guidebook, 1996, 47: 303-309.
[14] Ono Y, Naruse T, Ikeya M,et al. Origin and derived courses of eolian dust quartz deposited during marine isotope stage 2 in East Asia, suggested by ESR signal intensity[J]. Global and Planetary Change, 1998, 18(3): 129-135.
[15] Attanasio D, Armiento G, Brilli M,et al. Multi-method marble provenance determinations: The carrara marbles as a case study for the combined use of isotopic, electron spin resonance and petrographic data[J]. Archaeometry, 2000, 42(2): 257-272.
[16] Duttine M, Villeneuve G, Bechtel F,et al. Electron paramagnetic resonance characterization of natural Quartz from different sources[J]. Comptes Rendus Geoscience, 2002, 334(13): 949-955.
[17] Toyoda S, Naruse T.Eoliandust from the Asian deserts to the Japanese islands since the last glacial maximum: The basis for the ESR method[J]. Transactions, Japanese Geomorphological Union, 2002, 23: 811-820.
[18] Crook N P, Hoon S R, Taylor K G,et al. Electron spin resonance as a high sensitivity technique for environmental magnetism: Determination of contamination in carbonate sediments[J]. Geophysical Journal International, 2002, 149(2): 328-337.
[19] Nagashima K, Tada R, Tani A,et al. Contribution of aeolian dust in Japan Sea sediments estimated from ESR signal intensity and crystallinity of quartz[J]. Geochemistry, Geophysics, Geosystems, 2007, 8(2),doi: 10.1029/2006GC001364.
[20] Nagashima K, Tada R, Tani A,et al. Millennial-scale oscillations of the westerly Jet Path during the last glacial period[J]. Journal of Asian Earth Sciences, 2011, 40(6): 1 214-1 220.
[21] Sun Youbin, Tada R, Chen Jun, et al. Distinguishing the sources of Asian dust based on electron spin resonance signal intensity and crystallinity of Quartz[J]. Atmospheric Environment, 2007, 41(38): 8 537-8 548.
[22] Sun Youbin, Tada R, Chen Jun, et al. Tracing the provenance of fine-grained dust deposited on the central Chinese Loess Plateau[J]. Geophysical Research Letters, 2008, 35(1), doi: 10.1029/2007GL031672.
[23] Sun Youbin, Chen Hongyun, Tada R, et al. ESR signal intensity and crystallinity of Quartz from gobi and sandy deserts in East Asia and implication for tracing Asian dust provenance[J]. Geochemistry, Geophysics, Geosystems, 2013, 14(8): 2 615-2 627.
[24] Toyoda S.The E’ center in natural quartz: Its formation and applications to dating and provenance researches[J]. Geochronometria, 2011, 38(3): 242-248.
[25] Yamamoto Y, Toyoda S, Nagasima K,et al. Investigation of the temporal change of the sources of Aeolian dust delivered to East Asia using electron spin resonance signals in Quartz[J]. Geochronometria, 2013, 40(4): 355-359.
[26] Shimada A, Takada M, Toyoda S.Characteristics of ESR signals and tlcls of Quartz included in various source rocks and sediments in Japan: A clue to sediment provenance[J]. Geochronometria, 2013, 40(4): 334-340.
[27] Tissoux H, Voinchet P, Lacquement F,et al. ESR as a method for the characterization of alluvial sediments[J]. Radiation Measurements, 2015, 81: 2-8.
[28] Shimada A, Takada M, Toyoda S.Electron spin resonance signals of quartz in present-day river bed sediments and possible source rocks in the Kizu River Basin, Western Japan[J].Geochronometria, 2016, 43(1): 155-161.
[29] Toyoda S, Nagashima K, Yamamoto Y.ESR signals in Quartz: Applications to provenance research—A review[J]. Quaternary International, 2016, 397: 258-266.
[30] Zeller E J, Levy P W, Mattern P L.Geologic Dating by Electron Spin Resonance. Radioactive Dating and Methods of Low-Level Counting[C].Vienna: International Atomic Energy Agency, 1967: 531-540.
[31] Odom A L, Rink W J.Natural accumulation of schottky-frenkel defects: Implications for a Quartz geochronometer[J]. Geology, 1989, 17(1): 55-58.
[32] Liu Chunru, Yin Gongming, Gao Lu,et al. Research advances in ESR geochronology of quaternary deposits[J]. Seismology and Geology, 2011, 33(2): 490-498.
[刘春茹, 尹功明, 高璐, 等. 第四纪沉积物 ESR 年代学研究进展[J]. 地震地质, 2011, 33(2): 490-498.]
[33] Liu Chunru, Yin Gongming, Rainer G.Research progress of the resetting features of Quartz ESR signal[J]. Advances in Earth Science, 2013, 28(1): 24-30.
[刘春茹, 尹功明, Rainer G.石英 ESR 测年信号衰退特征研究进展[J]. 地球科学进展, 2013, 28(1): 24-30.]
[34] Liu Chunru, Yin Gongming, Han Fei,et al. ESR dating methodology and its application in dating quaternary terrestrial sediments[J]. Quaternary Sciences, 2016, 36(5): 1 236-1 245.
[刘春茹, 尹功明, 韩非, 等. 石英ESR 测年法在第四纪陆相沉积物测年中的应用[J]. 第四纪研究, 2016, 36(5): 1 236-1 245.]
[35] Toyoda S, Voinchet P, Falguères C,et al. Bleaching of ESR signals by the sunlight: A laboratory experiment for establishing the ESR dating of sediments[J]. Applied Radiation and Isotopes, 2000, 52(5): 1 357-1 362.
[36] Tissoux H, Toyoda S, Falguères C,et al. ESR dating of sedimentary Quartz from two pleistocene deposits using Al and Ti-centers[J]. Geochronometria, 2008, 30(1): 23-31.
[37] Diao Shaobo.The Study and Application on Dating of Oxygen Vacancies in Quartz from Sediments[D]. Jilin: Jilin University, 2003.
[刁少波. 沉积物中石英氧空位测年及其应用[D]. 吉林:吉林大学, 2003.]
[38] Griscom D L, Friebele E J.Fundamental defect centers in Glass: 29Si hyperfine structure of the nonbridging oxygen hole center and the peroxy radical in a SiO2[J]. Physical Review B, 1981, 24(8): 4 896.
[39] Griscom D L.Defect structure of glasses: Some outstanding questions in regard to vitreous silica[J].Journal of Non-Crystalline Solids, 1985, 73(1): 51-77.
[40] Rink W J.Natural alpha recoil particle radiation and ionizing radiation sensitivities in Quartz detected with EPR: Implications for Geochronometry[J].International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements, 1991, 18(1): 163-173.
[41] Toyoda S, Ikeya M.Thermal stabilities of paramagnetic defect and impurity centers in Quartz: Basis for ESR dating of thermal history[J]. Geochemical Journal, 1991, 25(6): 437-445.
[42] Jani M G, Bossoli R B, Halliburton L E.Further characterization of the Eș center in crystalline SiO2[J]. Physical Review B, 1983, 27(4): 2 285-2 293.
[43] Toyoda S, Hattori W.Formation and decay of the Eș center and of its precursor[J]. Applied Radiation and Isotopes, 2000, 52(5): 1 351-1 356.
[44] Toyoda S, Ikeya M, Morikawa J,et al. Enhancement of oxygen vacancies in Quartz by natural external beta and Gamma ray Dose: A possible ESR geochronometer of Ma-Ga range[J]. Geochemical Journal, 1992, 26(3): 111-115.
[45] Usami T, Toyoda S, Bahadur H,et al. Characterization of the Eș center in Quartz: Role of aluminum hole centers and oxygen vacancies[J]. Physica B: Condensed Matter, 2009, 404(20): 3 819-3 823.
[46] Liu Chunru, Yin Gongming, Gao Lu,et al. ESR dating of pleistocene archaeological localities of the Nihewan Basin, North China-preliminary results[J]. Quaternary Geochronology, 2010, 5(2): 385-390.
[47] Duval M, Guilarte V.ESR dosimetry of optically bleached quartz grains extracted from plio-Quaternary sediment: Evaluating some key aspects of the ESR signals associated to the Ti-Centers[J].Radiation Measurements, 2015, 78: 28-41.
[48] Dennen W H, Blackburn W H, Quesada A.Aluminum in Quartz as age other mometer[J]. Contributions to Mineralogy and Petrology, 1970, 27(4): 332-342.
[49] Wark D A, Watson E B.Titaniq:A titanium-in-Quartz geothermometer[J]. Contributions to Mineralogy and Petrology, 2006, 152(6): 743-754.
[50] Nuttall R H D, Weil J A. The magnetic properties of the oxygen-hole aluminum centers in crystalline SiO2.I.
[AlO4][J]. Canadian Journal of Physics, 1981, 59(11): 1 696-1 708.
[51] Larsen R B, Henderson I, Ihlen P M,et al. Distribution and petrogenetic behaviour of trace elements in granitic pegmatite Quartz from South Norway[J]. Contributions to Mineralogy and Petrology, 2004, 147(5): 615-628.
[52] Jacamon F, Larsen R B.Traceelement evolution of Quartz in the charnockitic kleivan granite, SW-Norway: The Ge/Ti ratio of Quartz as an index of igneous differentiation[J]. Lithos, 2009, 107(3): 281-291.
[53] Chen Xiaodan, Chen Zhenyu, Cheng Yanbo,et al. Distribution and application of trace elements in hydrothermal Quartz: Understanding and prospecting[J]. Geological Review, 2011, 57(5): 707-717.
[陈小丹, 陈振宇, 程彦博, 等. 热液石英中微量元素特征及应用: 认识与进展[J]. 地质论评, 2011, 57(5): 707-717.]
[54] Chen Jianfeng, Zhang Hui.Trace elements in Quartz lattice and their implications for petrogenesis and mineralization[J]. Geological Journal of China Universities, 2011, 17(1): 125-135.
[陈剑锋, 张辉. 石英晶格中微量元素组成对成岩成矿作用的示踪意义[J]. 高校地质学报, 2011, 17(1): 125-135.]
[55] Preusser F, Chithambo M L, Götte T,et al. Quartz as a natural luminescence dosimeter[J]. Earth-Science Reviews, 2009, 97(1): 184-214.
[56] Chen Hongyun.ESR Signal Intensity and Crystallinity of Quartz in Desert Surface Sediments and Eolian Deposits on the Chinese Loess Plateau[D]. Beijing: Graduate University of Chinese Academy of Sciences, 2011.
[陈洪云. 沙漠表土和黄土高原风尘沉积中石英颗粒的ESR信号强度和结晶度指数研究[D].北京:中国科学院研究生院, 2011.]
[57] Li Chang’an, Yu Lizhong.Conceptmodel on the fluvial environmental system: Mountain-river-lake-sea interaction and sensitive responding to global change[J]. Resources and Environment in the Yangtze Basin, 2000, 9(3): 358-363.
[李长安, 俞立中. 山—河—湖—海互动及对全球变化的敏感响应: 以长江为例[J]. 长江流域资源与环境, 2000, 9(3): 358-363.]
[58] Li Chang’an.The relationship among human, water and land: Optimizing function of the embankment in the Yangtze River[J]. Earth Science, 2015, 40(2): 261-267.
[李长安. 基于“人—水—地和谐” 的长江堤防功能[J]. 地球科学, 2015, 40(2): 261-267.]
[59] Wei Chuanyi, Liu Chunru, Li Chang’an,et al. A study on ESR signal intensity and CI provenance—Tracing of Quartz and its potential application to river system sediments[J]. Earth and Environment, 2017, 45(2): 157-163.
[魏传义, 刘春茹, 李长安, 等. 石英ESR法在河流沉积物源示踪中的探讨及应用[J]. 地球与环境, 2017, 45(2): 157-163.]
[60] Wei Chuanyi, Li Chang’an, Liu Chunru,et al. Nature ESR signals of quartz Eș center shed new light on river sediments provenance: A case study in southeast margin of the Tibet Plateau[J]. Quaternary International,2017, 454(10): 38-44.
[1] 许苗苗, 魏晓椿, 杨蓉, 王平, 程晓敢. 重矿物分析物源示踪方法研究进展[J]. 地球科学进展, 2021, 36(2): 154-171.
[2] 王蕾彬, 魏海涛, 贾佳, 李国强, 陈发虎. 亚洲中部干旱区黄土释光测年研究进展及其问题[J]. 地球科学进展, 2018, 33(1): 93-102.
[3] 张创, 罗然昊, 张恒昌, 周雪, 王成龙, 邢华, 钱成. 中等地温场、长深埋期石英砂岩类储层成岩作用与孔隙度演化模式——以鄂尔多斯盆地延安地区下石盒子组为例[J]. 地球科学进展, 2017, 32(7): 744-756.
[4] 杨宏宇, 赵晖, 王兴繁, 耿建伟. 光释光测年中石英颗粒全球标准曲线法(gSGC)与单片再生法(SAR)等效剂量(D e)的比对[J]. 地球科学进展, 2017, 32(10): 1111-1118.
[5] 刘春茹,尹功明,Rainer Grün. 石英ESR测年信号衰退特征研究进展[J]. 地球科学进展, 2013, 28(1): 24-30.
[6] 李艳青,佘振兵,马昌前. 石英SEM-CL微结构及其在岩石学中的应用[J]. 地球科学进展, 2011, 26(3): 325-331.
[7] 李国强,赵晖,范育新,彭海梅,陈发虎. 光释光测年中石英样品提纯方法的改进[J]. 地球科学进展, 2008, 23(3): 284-289.
[8] 杨坤光,梁兴中,谢建磊,杨奎锋. ESR定年:一种确定脆性断层活动年龄的方法原理与应用[J]. 地球科学进展, 2006, 21(4): 430-435.
阅读次数
全文


摘要