地球科学进展 ›› 2017, Vol. 32 ›› Issue (10): 1072 -1083. doi: 10.11867/j.issn.1001-8166.2017.10.1072

上一篇    下一篇

岩石热物理性质的研究进展及发展趋势
程超( ), 于文刚, 贾婉婷, 林海宇, 李莲庆   
  1. 西南石油大学地球科学与技术学院,四川 成都 610500
  • 收稿日期:2017-04-26 修回日期:2017-07-26 出版日期:2017-12-20
  • 基金资助:
    西南石油大学大学生课外开放实验项目(编号:KSZ16040)资助.

Research Progress and Development Tendency About Thermal Physical Properties of Rocks

Chao Cheng( ), Wen’gang Yu, Wanting Jia, Haiyu Lin, Lianqing Li   

  1. School of Geoscience and Technology of Southwest Petroleum University, Chengdu 610500,China
  • Received:2017-04-26 Revised:2017-07-26 Online:2017-12-20 Published:2017-10-20
  • About author:

    First author: Cheng Chao(1979-),male, Zigong City, Sichuan Province,Associate professor. Researchs areas include well-log interpretation, 3D geological modeling and rock physics.E-mail:ylksh@163.com

  • Supported by:
    Project supported by the College Students’ Extracurricular Open Experiment of SWPU(No. KSZ16040).

岩石热物理性质的基础研究大致经历了4个阶段,已广泛应用于岩石圈热结构、沉积盆地热演化史、岩土工程、地热等领域,近年来在油气领域的科学问题上备受关注。在归纳总结岩石热物理性质当前研究进展的基础上,对未来的发展趋势进行了展望。热导率是表征岩石热物理性质最重要的参数,其获取方法以室内实验室测量为主,测量方法有稳态法和非稳态法两大类。此外还发展了一些基于圆柱形热源探管、圆盘形热源探管、球形热源探管的原位点测方法和基于数理统计的预测方法和模型。学者们通过大量实验探讨了岩石热导率参数与其他物理性质之间的内在关系,并以火山岩、碳酸盐岩、碎屑岩等常见岩石实验结果验证其存在的一般规律。研究表明岩石的热导率受多种因素影响,岩石学特征是其中最重要的因素,孔隙度、含流体性质、声学特性也与之密切相关,同时会受到温度、压力、各向异性的影响。纵观岩石热物理性质的研究现状,认为在油气领域有以下发展趋势:首先,页岩气作为目前油气勘探的热点,其形成机理和成藏过程受页岩热物理性质的控制,但页岩热导率与有机孔、有机碳含量、含气量、可压裂特征间的关系还未可知,因此探索含气页岩的热物理性质是一大研究方向。其次,大数据研究是大势所趋,尽管岩石热学参数的数据库在不断扩大,但要想得到准确的岩石原位热导率大数据库,在井中完成热导率原位连续测量则是最好的方法。因此发展基于岩石热物理性质的测井方法原理和仪器研究是另一大发展趋势。

The fundamental researches about thermal physical properties of rocks have much concern in oil and gas field. They go through four stages and are applied in thermal structure of lithosphere, thermal evolution of sedimentary basins, geotechnical engineering and geothermal area. This article summarized the current research progress on the basis of thermal physical properties of rocks and proposed the development of tendency for the future. Moreover, some cylindrical heat pipe, disc heat pipe, spherical heat pipe based on in-situ measurement method and prediction model based on mathematical statistics have been developed. The scholars discuss the internal relation between thermal conductivity parameter of rocks and other physical properties by a large number of experiments. The researches show that the thermal conductivity of rocks is affected by many factors, and the petrologic characteristic is the most important factor. The porosity of rocks, filled fluid properties, acoustic characteristics are also related to thermal conductivity, which is affected by temperature, pressure and anisotropy. In consideration of the study of thermal physical properties of rocks, we proposed the following tendency for the future. First of all, shale gas is regarded as a hot spot in oil-gas exploration and the formation mechanism and the formation of shale gas reservoir are under the control of thermal physical properties of shale gas, but the relationship among thermal conductivity and organic porous, organic carbon content, gas content, fractured characteristics remains unknown. Therefore, exploring the thermal physical properties of gas-bearing shale is an important research direction in oil and gas field. Secondly, the study of big data represents the general trend. Though the database of rocks thermal parameter is continually expanding, measuring in-situ thermal conductivity continuously in well is the best method to get the accurate in-situ thermal conductivity of rocks. Hence, the development of logging method principle and logging instruments based on thermal physical properties of rocks is a necessary trend for the future.

中图分类号: 

表1 室内实验室热导率测试方法及仪器列表
Table 1 The list of thermal conductivity test methods and tools in laboratory
分类 测试方法 代表性仪器 优点 缺点 适用性 误差范围/% 参考
文献


纵向热流法 DRX-I-JH型直流通电纵向热流法导热仪 使用广泛 接触热阻和热量损失可能导致误差较大 适用于中低导
热系数材料
5 [26]
径向热流法 地热-I型稳定平板式岩石导热仪 存在热线电阻随温度升高而变,温度对导热系数变化的影响难以确定 4 [27]
保护热板法
(GHP)
德国耐驰公司GHP 456 双试件平板法导热仪(Guarded Hot Plate thermal conductivity measuring method) 测量精度高 测试用时较长 <2 [28]
分棒法 地热-II型稳定分棒式岩石热导仪 耗时,要求岩心规则,不能同时确定热导率和热扩散率 不适合裂缝性或胶结
较差的岩石
<2 [29]



差示扫描
量热法
美国Du Pont-9900型差示扫描量热仪;Perkin Elmer公司的差示扫描量热仪, DSC 自动化程度高、
分析速度快
样品用量较少,均匀性较差的岩样取样代表性风险高 适用于经烘干后的粉
末状样品
<5 [30]
光学扫描 Burkhardt H等开发的一种光学装置(TCS) 无接触、无损坏、
高精确度
光学扫描深度较浅,一般限于岩样表层,最大3 cm左右 岩样要求不高,可测量
完整岩心、岩心碎块
1.5 [31]
瞬态平面
热源技术
(TPS)
法瑞典凯公司TPS2500S型导热仪和赛塔拉姆公司Mathis TCiTM导热仪;德国NETZSCH公司LFA-447 Nanoflash导热仪(Transient Plane Source method) 用时短,测量范围广;不受接触热阻影响 要求样品表面平整,会因表面接触不良而降低精度 适用于各类材料 <5 [32,33]
热线法 美国Prics公司生产的TC Probetm热导仪 测量液体效果好 温度的影响难以确定;测试固体时保持良好接触难 适用于液体材料 4~5 [34,35]
热丝法 DRX-Ⅰ/Ⅱ导热系数测定仪HA-Ⅱ比热测定仪 应用广泛 端部效应会降低测量精度 适用于各类材料 <2 [36]
激光脉冲法 SX-10-12G型箱式电阻炉及德国耐驰FA427激光导热仪 快速、测试范围宽 只能得出热扩散系数,导热系数需要通过计算获取 不适用于聚合物等热扩散系数较小的材料 2 [37,38]
热探针法 HY-1型非稳态环形热源—微型探针岩石热导仪 用时短 相对误差较大 适合工程快速测量松散粉末、颗粒材料等 2~3 [39]
闪光法 FLASHLINE5000型激光热扩散系数仪 用时短,精度高 温升—时间关系图上会出现脉冲尖峰 适用于高导热材料与小体积样品 2 [40]
图1 基本造岩矿物的热导率和岩石类型的关系(据参考文献[50]修改)
(a)变质岩和侵入岩;(b)火山岩和沉积岩
Fig.1 Thermal conductivity of basic rock-forming minerals and compositional relation with rock type (modified after reference[50])
(a) Metamorphic and plutonic rocks;(b) Volcanic and sedimentary rocks
图2 实测岩石干密度与热导率关系图
Fig.2 Thermal conductivity versus density
图3 实测岩石孔隙度与热导率关系图
Fig.3 Thermal conductivity versus porosity
图4 饱和油和气状态下的热导率关系图
Fig.4 Thermal conductivity on the condition of saturated oil and gas
图5 风干和饱和水状态下的热导率关系图
Fig.5 Thermal conductivity on the condition of dry and saturated water
图6 岩石热导率随温度的变化规律
Fig.6 Thermal conductivity versus temperature
图7 岩石热导率随压力的变化规律
Fig.7 Thermal conductivity versus pressure
图8 纵波与热导率的关系(据参考文献[61]修改)
Fig.8 Thermal conductivity versus P-wave velocity (modified after reference[61])
表2 热导率计算模型
Table 2 Models for calculating the thermal conductivity
[1] Qian Binjiang, Wu Yiwen, Chang Jiafang, et al.Concise Handbook of Heat Transfer[M]. Beijing:Higher Education Press,1983: 376-407.
[钱滨江,伍贻文,常家芳,等.简明传热手册[M].北京:高等教育出版社,1983:376-407.]
[2] Chen Moxiang, Wang Jiyang.Review and prospect on geothermal studies in China[J]. Chinese Journal of Geophysics,1994,37(1):320-323.
[陈墨香,汪集旸.中国地热研究的回顾和展望[J].地球物理学报,1994,37(1):320-323.]
[3] Wu Yao, Jin Zhenmin, Ou Xingong, et al.Lithospheric thermal structure beneath the area of the Chinese Continental Scientific Drilling Site (CCSD)[J]. Acta Petrologica Sinica,1994,21(2):439-441.
[吴耀,金振民,欧新功,等.中国大陆科学钻探(CCSD)主孔地区岩石圈热结构[J].岩石学报,1994,21(2):439-441.]
[4] Ou Xingong, Jin Zhenmin, Wang Lu, et al.Thermal conductivity and its anisotropy of rocks from the depth of 100~2 000 m mainhole of Chinese Continental Scientific Drilling: Revelations to the study on thermal structure of subduction zone[J]. Acta Petrologica Sinica,2004,20(1):109-118.
[欧新功,金振民,王璐,等.中国大陆科学钻探主孔100~2 000 m岩石热导率及其各向异性:对研究俯冲带热结构的启示[J].岩石学报,2004,20(1):109-118.]
[5] Qiu Nansheng.Thermal evaluation and hydrocarbon generation history of the sedimentary basins in western China[J]. Petroleum Exploration and Development,2002,29(1):6-9.
[邱楠生. 中国西部地区沉积盆地热演化和成烃史分析[J].石油勘探与开发,2002,29(1):6-9.]
[6] Ren Zhanli, Tian Tao, Li Jinbu, et al.Review on methods of thermal evolution history in sedimentary basins and thermal evolution history reconstruction of superimposed basins[J]. Journal of Earth Sciences and Environment,2014,36(3):1-4.
[任战利,田涛,李进步,等.沉积盆地热演化史研究方法与叠合盆地热演化史恢复研究进展[J].地球科学与环境学报,2014,36(3):1-4.]
[7] Zhang Huifen, Jiang Zechun.The research on thermophysical properties of minerals[J]. Geology Geochemistry, 1984,10:60-67.
[张惠芬,姜泽春.矿物的热物理性质研究[J].地质地球化学,1984,10:60-67.]
[8] Xu Mo, Wang Di, Jiang Liangwen, et al.Review on thermal conductivity coefficient of rock and soil mass[J].Journal of Earth Sciences and Environment,2011,33(4):421-424.
[许模,王迪,蒋良文,等.岩土体导热系数研究进展[J].地球科学与环境学报,2011,33(4):421-424.]
[9] Kwon S, Kim J S, Lee C S, et al. The thermal and mechanical properties rock mass around an underground research tunnel in granite body[C]∥12th ISRM Congress. International Society for Rock Mechanics, 2011.
[10] Zeng Zhaofa, Chen Xiong, Li Jing, et al.Advancement of geothermal geophysics exploration[J]. Progress in Geophysics,2012,27(1):168-178.
[曾昭发,陈雄,李静,等.地热地球物理勘探新进展[J].地球物理学进展,2012,27(1):168-178.]
[11] Gao Jiangbo, Wu Shaohong, Dai Erfu, et al.The progresses and prospects of research on water and heat balance at land surface in the Karst region of Southwest China[J]. Advances in Earth Science, 2015,30(6): 647-653.
[高江波,吴绍洪,戴尔阜,等.西南喀斯特地区地表水热过程研究进展与展望[J].地球科学进展, 2015,30(6): 647-653.]
[12] Qiu Nansheng.Characters of thermal conductivity and radiogenic heat production rate in basins of northeast China[J]. Scientia Geologica Sinica,2002,37(2):196-206.
[邱楠生. 中国西北部盆地岩石热导率和生热率特征[J].地质科学,2002,37(2):196-206.]
[13] Zou Caineng, Dong Dazhong, Wang Shejiao, et al.Geological characteristics, formation mechanism and resource potential of shale gas in China[J]. Petroleum Exploration and Development,2010,37(6):641-647.
[邹才能,董大忠,王社教,等.中国页岩气形成机理、地质特征及资源潜力[J].石油勘探与开发,2010,37(6):641-647.]
[14] Wang Shejiao, Wang Lansheng, Huang Jinliang, et al.Accumulation conditions of shale gas reservoirs in Silurian of the Upper Yangtze region[J]. Natural Gas Industry,2009,2(5):45-50.
[王社教,王兰生,黄金亮,等.上扬子区志留系页岩气成藏条件[J].天然气工业,2009,2(5):45-50.]
[15] Ren Ying, Liang Jinguo.Theory and Practice of Thermal Recovery of Heavy Oil and High Pour Point Oil[M]. Beijing:Petroleum Industry Press,2001:73-80.
[任瑛,梁金国.稠油与高凝油热力开采问题的理论与实践[M].北京:石油工业出版,2001:73-80.]
[16] Gao Xueshi, Zhang Lixin, Pan Dichao.Numerical simulation of temperature field in steam injection well with analysis software[J]. Journal of the University of Petroleum,2001,25(2):67-69.
[高学仕,张立新,潘迪超.热采井筒瞬态温度场的数值模拟分析[J].石油大学学报,2001,25(2):67-69.]
[17] Liu Dexun, Wang Hongyan, Zheng Dewen,et al. World progress of oil shale in-situ exploitation methods[J].Natural Gas Industry,2009,29(5):128-132.
[刘德勋,王红岩,郑德温,等.世界油页岩原位开采技术进展[J].天然气工业,2009,29(5):128-132.]
[18] Zhang Linye,Li Juyuan,Li Zheng,et al.Advances in shale oil/gas research in North America and considerations on exploration for continental shale oil/gas in China[J]. Advances in Earth Science,2014,29(6):700-711.
[张林晔,李钜源,李政,等.北美页岩油气研究进展及对中国陆相页岩油气勘探的思考[J].地球科学进展,2014,29(6):700-711.]
[19] Gonzlez-Gómez W S, Quintana P, May-Pat A, et al. Thermal effects on the physical properties of limestones from the Yucatan Peninsula[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 75: 182-189.
[20] Yavuz H, Demirdag S, Caran S.Thermal effect on the physical properties of carbonate rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(1): 94-103.
[21] Lynch T J, Bell D W, Sordella R, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib[J]. New England Journal of Medicine, 2004, 350(21): 2 129-2 139.
[22] Xu Zhenzhang.A discussion of factors influencing thermophysical characteristics of rock sand the their mechanisms[J]. Petroleum Exploration and Development,1992,19(6):85-89.
[徐振章. 试论影响岩石热物理性质的因素及机制[J].石油勘探与开发,1992,19(6):85-89.]
[23] Mielke P, Nehler M, Bignall G, et al. Thermo-physical rock properties and the impact of advancing hydrothermal alteration—A case study from the Tauhara geothermal field, New Zealand[J]. Journal of Volcanology and Geothermal Research, 2015, 301: 14-28.
[24] Min Kai, Liu Bin, Wen Guang.Thermal conductivity measurement method and application analysis[J]. Storage and Process,2005, 5(6):35-38.
[闵凯,刘斌,温广.导热系数测量方法与应用分析[J].保鲜与加工,2005, 5(6):35-38.]
[25] Shen Chao, Zeng Zhigang, Shen Binjie, et al. Measurement of cross-plane thermal diffusivity of thin-films by thermal wave method[J]. Journal of Shanghai Jiao Tong University,2012,46(7):1 159-1 162.
[沈超,曾志刚,沈斌杰,等.一维热波法测量薄膜纵向热扩散系数[J].上海交通大学学报,2012,46(7):1 159-1 162.]
[26] Yu Jinxian, Li Tiezhen, Bi Wuzhen.Measurement of low temperature thermal conductivity of metal materials by longitudinal heat flow steady state method[J]. Journal of Refrigeration,1982,2:6-10.
[卫锦先,李铁真,毕务珍.用纵向热流稳态法测量金属材料的低温导热系数[J].制冷学报,1982,2:6-10.]
[27] Sun Yue, Li Zenghua, Gao Siyuan, et al.Measurement of changing thermal conductivity of loose coal with transient radial heat flow method[J]. Journal of Safety Science and Technology,2012,(1):42-46.
[孙越,李增华,高思源, 等.瞬态径向热流法测定松散煤体变导热系数[J].中国安全生产科学技术,2012,(1):42-46.]
[28] Zhang Tao.Thermal Conductivity Measurement of Thermal Insulation Materials by Low Temperature Protection Hot Plate Method[D]. Nanjing:Nanjing University of Aeronautics & Astronautics,2015:7-9.
[张涛. 低温保护热板法测量绝热材料导热系数研究[D].南京:南京航空航天大学,2015:7-9.]
[29] Shen Xianjie, Zhang Wenren, Lu Xiuwen,et al. Geotherm-Ⅱ model thermal conductivity meter of steady-state divided bar type—A precise rock thermal conductivity measuring device[J]. Acta Petrologica Sinica,1987, 3(1): 86-95.
[沈显杰,张文仁,陆秀文, 等.地热—Ⅱ型稳定分棒式热导仪——岩石热导率精密测量装置[J].岩石学报,1987, 3(1): 86-95.]
[30] Chen Longwu, Zhuang Xiaowen.Measurement of heat capacity of solid materials by differential scanning calorimetry[J]. University Chemistry, 1987,2(2):37-39.
[陈龙武,庄小文.差示扫描量热法测量固体物质的热容[J].大学化学,1987,2(2):37-39.]
[31] Yin Renchao, Gao Ping, Mei Zhenzhou.Measurement and analysis of thermal conductivity of rock and soil in TCS[J]. China Water Transport,2014,14(3):344-345.
[殷仁朝,高平,梅振宙.TCS岩土导热系数测试与分析[J].中国水运,2014,14(3):344-345.]
[32] Zhao Shiqian.Development of Hot Disk Instrument for Measuring Thermal Conductivity[D]. Tianjin: Tianjin University, 2009.
[赵世迁. Hot Disk法导热系数测定仪的开发[D].天津:天津大学,2009.]
[33] He Xiaowa.Verification measurement precision and test range of thermophysical properties of Transient Plane Source(TPS) method[J]. Journal of Astronautic Metrology and Measurement,2006,26(4):31-42.
[何小瓦. 瞬态平面热源法热物理性能测量精度和适用范围的标定[J].宇航计测技术, 2006,26(4):31-42.]
[34] Li Jishan.Testing and analysis of thermal properties of reservoir rocks[J]. Journal of Daqing Petroleum Institute,2009,33(5):23-26.
[李继山. 油藏岩石热物理性质测试[J].大庆石油学院学报,2009,33(5):23-26.]
[35] Li Baochun, Dong Youer.Application of hot-wire method in thermal conductivity measurement[J]. Physics Examination and Testing, 2005,23(4):32-34.
[李保春,董有尔.热线法在导热系数测量中的应用[J].物理测试, 2005,23(4):32-34.]
[36] Wang Zhiyang, Yang Wenjian, Nie Xueli, et al. Measurement of thermal conductivity of nanofluids by transient hot wire method[J].Materials Review, 2007, 21(Suppl.2):59-61.
[王志阳,杨文健,聂雪丽,等.瞬态热丝法测量纳米流体的导热系数[J].材料导报, 2007, 21(增刊2):59-61.]
[37] Miao Sheqiang, Li Heping, Chen Gang.Measurement of thermal diffusivity for rocks at high temperature and high pressure: Application to basalt[J]. Journal of High Pressure Physics,2014,28(1):11-16.
[苗社强,李和平,陈刚,等.高温高压下岩石热扩散系数的测量:以玄武岩为例[J].高压物理学报,2014,28(1):11-16.]
[38] Chen Xingui, He Guanhu, Du Jinhong.The research of thermal conductivity of HDPE/MWCNT composite films by laser pulse method[J]. Science in China(Series E),2009,39(10):1 685-1 690.
[陈新贵,何冠虎,杜金红,等.HDPE/MWCNT复合材料薄膜热导率的激光脉冲法研究[J].中国科学:E辑,2009,39(10):1 685-1 690.]
[39] Xie Huaqing, Wang Jinchang, Cheng Shuxia, et al. A fine needle probe for determining the thermal conductivity of penetrable materials[J]. Journal of Applied Sciences,2002,20(1):6-9.
[谢华清,王锦昌,程曙霞,等.热针法测量材料导热系数研究[J]. 应用科学学报,2002,20(1):6-9.]
[40] Ge Shan, Yin Yucheng.Principle and method of refractory thermal conductivity measurement by laser flash method[J]. Physical Testing and Chemical Analysis(Part A),2008,44(2):75-78.
[葛山,尹玉成.激光闪光法测定耐火材料导热系数的原理与方法[J].理化检验:物理分册,2008,44(2):75-78.]
[41] Miao Sheqiang, Li Heping, Chen Gang.The temperature dependence of thermal conductivity for lherzolites from the North China Craton and the associated constraints on the thermodynamic thickness of the lithosphere[J]. Geophysical Journal International,2014,197(2):900-909.
[42] Wen Hu, Lu Junhui, Xiao Yang.Temperature dependence of thermal conductivity, diffusion and specific heat capacity for coal and rocks from coalfield[J]. Thermochimica Acta,2015, 619(9): 41-47.
[43] Muhammad Abid, Ulf Hammerschmidt, Jürgen Köhler.Thermophysical properties of a fluid-saturated sandstone[J]. International Journal of Thermal Sciences,2013,76(2):43-50.
[44] Tang Furong, Wang Lianguo, Lu Yinlong.Thermophysical properties of coal measure strata under high temperature[J]. Environmental Earth Sciences, 2015,73(10): 6 009-6 018.
[45] Guimarães A O, De Souza C G, Da Silva E C, et al. Thermal diffusivity of sandstone using photoacoustics[J]. International Journal of Thermophysics, 2015,36(6): 1 093-1 098.
[46] Jorand R, Clauser C, Marquart G, et al. Statistically reliable petrophysical properties of potential reservoir rocks for geothermal energy use and their relation to lithostratigraphy and rock composition: The NE Rhenish Massif and the Lower Rhine Embayment (Germany)[J]. Geothermics,2015,53(1):413-428.
[47] Suo Yu, Wang Xiaoqiong, Ge Hongkui, et al. Heating Induces Changes in the Properties of the Organic Shale and Its Wave Velocity Anisotropy[C].Joint Annual Conference on Geosciences in China,2014.
[索彧,王小琼,葛洪魁,等.加热引起含有机质页岩的性质变化及其波速各向异性[C].中国地球科学联合学术年会,2014.]
[48] Gong Jianluo, Zhang Jingong, Hui Tao, et al. Thermal conductivity difference between parallel and perpendicular to bedding plane of sedimentary rocks and its relationship to the difference of pore connectivity[J].Journal of Jilin University(Earth Science Edition),2014,44(6):1 007-1 010.
[龚建洛,张金功,惠涛,等.沉积岩平行层面与垂直层面方向热导率与孔隙连通性之间的关系[J].吉林大学学报:地球科学版,2014,44(6):1 007-1 010.]
[49] Hui Tao, Zhang Jingong,Yu Xiaofei, et al. Petroliferous basin in the rock thermal conductivity and thermal conductivity research[J]. Inner Mongolia Petrochemical Industry,2009,(10):169-170.
[惠涛,张金功,于晓菲,等.含油气盆地中热传导与岩石热导率研究[J].内蒙古石油化工,2009,(10):169-170.]
[50] Clauser C, Huenges E.Thermal Conductivity of Rocks and Minerals[M].Washington, USA: American Geophysical Union, 1995:105-126.
[51] Tavman I H.Effective thermal conductivity of granular porous materials[J]. International Communications in Heat and Mass Transfer, 1996, 23(2):169-176.
[52] Fuchs S, Förster A.Rock thermal conductivity of Mesozoic geothermal aquifers in the Northeast German Basin[J]. Chemie der Erde, 2010, 70: 13-22.
[53] Schärli U, Rybach L.On the thermal conductivity of low-porosity crystalline rocks[J]. Tectonophysics,1984, 103(1/4): 307-313.
[54] Sayed A M A E. Thermophysical study of sandstone reservoir rocks[J]. Journal of Petroleum Science and Engineering,2011, 76(3): 138-147.
[55] Walsh J B, Decker E R.Effect of pressure and saturating fluid on the thermal conductivity of compact rock[J]. Journal of Geophysical Research, 1966, 71(12): 3 053-3 061.
[56] Cho W J, Kwon S, Choi J W.The thermal conductivity for granite with various water contents[J]. Engineering Geology, 2009, 107(3): 167-171.
[57] Abid M, Hammerschmidt U, Köhler J.Temperature and moisture dependent thermophysical properties of Sander sandstone[J]. International Journal of Thermal Sciences, 2014, 86: 88-94.
[58] Görgülü K, Durutürk Y S, Demirci A, et al. Influences of uniaxial stress and moisture content on the thermal conductivity of rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(8): 1 439-1 445.
[59] Zhang Yanjun,Yu Ziwang,Huang Rui, et al. Measurement of thermal conductivity and temperature effect of geotechnical materials[J]. Chinese Journal of Geotechnical Engineering,2009,31(2):213-217.
[张延军,于子望,黄芮,等.岩土热导率测量和温度影响研究[J].岩土工程学报,2009,31(2):213-217.]
[60] Yavuz H, Demirdag S, Caran S.Thermal effect on the physical properties of carbonate rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(1): 94-103.
[61] Özkahraman H T, Selver R, Iᶊɩk E C. Determination of the thermal conductivity of rock from P-wave velocity[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(4): 703-708.
[62] Gegenhuber N, Schoen J.New approaches for the relationship between compressional wave velocity and thermal conductivity[J]. Journal of Applied Geophysics, 2012, 76: 50-55.
[63] Davis M G, Chapman D S, Wagoner V, et al. Thermal conductivity anisotropy of metasedimentary and igneous rocks[J]. Journal of Geophysical Research, 2007, 112(B5),doi:10.1029/2006JB004755.
[64] Esteban L, Pimienta L, Sarout J, et al. Study cases of thermal conductivity prediction from P-wave velocity and porosity[J]. Geothermics, 2015, 53: 255-269.
[65] Maxwell J C.A Treatise of Electricity and Magnetism (3rd edition)[M]. Oxford: Clarendon Press, 1904: 435-445.
[66] Abdulagatov I M, Abdulagatova Z Z, Kallaev S N, et al. Thermal-diffusivity and heat-capacity measurements of sandstone at high temperatures using laser flash and DSC methods[J]. International Journal of Thermophysics, 2015, 36(4): 658-691.
[67] Sugawara A, Yoshizawa Y.An investigation on the thermal conductivity of porous materials and its applications to porous rocks[J]. Australian Journal of Physics, 1961, 14:469-480.
[68] Huang J H.Effective thermal conductivity of porous rocks[J]. Journal of Geophysical Research, 1971, 76: 6 420-6 427.
[69] Litovskii Eya.Interpolation formula for the expression of thermal conductivity of solid materials on porosity[J]. Izv Akad Nauk, SSSR Neorg Mater,1980, 16: 559-560.
[70] Torquato S.Thermal conductivity of disordered heterogeneous media from microstructure[J]. Reviews in Chemical Engineering, 1987, 4(3/4):151-204.
[71] Buntebarth G, Schopper J R.Experimental and theoretical investigations on the influence of fluids, solids and interactions between them on thermal properties of porous rocks[J]. Physics and Chemistry of the Earth,1998, 23(9/10):1 141-1 146.
[72] Vosteen H D, Schellschmidt R.Influence of temperature on thermal conductivity, thermal capacity and thermal diffusivity for different types of rock[J]. Physics & Chemistry of the Earth: Parts A/B/C,2003, 28(9/11):499-509.
[73] Aichlmayr H T, Kulacki F A.The effective thermal conductivity of saturated porous media[M]∥Greene G, ed. Advances in Heat Transfer. New York: Academic Press,2006:377-460.
[74] Luo J, Jia J, Zhao H, et al. Determination of the thermal conductivity of sandstones from laboratory to field scale[J]. Environmental Earth Sciences,2016, 75(16):1-9.
[75] Xin Shouliang, Wang Jiali, Dou Huiping,et al. Experiment and analysis of thermal physical of rocks and its effect factor on buried hill resource[J]. Journal of Mineralogy and Petrology,2014,(4):102-107.
[辛守良,王家立,豆惠萍,等.潜山油藏岩石热物理性质影响因素实验及分析[J].矿物岩石,2014,(4):102-107.]
[76] Cosenza P, Guerin R, Tabbagh A.Relationship between thermal conductivity and water content of soils using numerical modeling[J]. European Journal of Soil Science,2003, 54(3): 581-588.
[77] Singh T N, Sinha S, Singh V K.Prediction of thermal conductivity of rock through physico-mechanical properties[J]. Building and Environment,2005,42:146-155.
[78] Bakker K.Using the finite element method to compute the influence of complex porosity and inclusion structures on the thermal and electrical conductivity[J]. International Journal of Heat and Mass Transfer,1997, 40(15): 3 503-3 511.
[79] Gao Ping.Analysis of Rock Thermal Properties and Research on Multi-field Thermal Effects Coupled Model[D].Changchun: Jilin University,2015:49-52.
[高平. 岩石热物性参数分析及多场热效应耦合模型研究[D].长春:吉林大学,2015:49-52.]
[80] Hartmann A, Rath V, Clauser C.Thermal conductivity from core and well log data[J]. International Journal of Rock Mechanics and Mining Sciences,2005, 42: 1 042-1 055.
[81] Sven Fuchs, Andrea Förster.Well-log based prediction of thermal conductivity of sedimentary successions: A case study from the North German Basin[J]. Geophysical Journal International,2014,196:291-311.
[1] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[2] 陈愿愿,杨晓,邓小江,王小兰,何奇,程莉莉,陈科贵. 海鸥优化算法在四川盆地渝西区块 H井区页岩气储层最优化测井解释中的应用[J]. 地球科学进展, 2020, 35(7): 761-768.
[3] 李亚龙, 刘先贵, 胡志明, 端祥刚, 张杰, 詹鸿铭. 页岩气水平井产能预测数值模型综述[J]. 地球科学进展, 2020, 35(4): 350-362.
[4] 孟宪萌,张鹏举,周宏,刘登峰. 水系结构分形特征的研究进展[J]. 地球科学进展, 2019, 34(1): 48-56.
[5] 王宇航, 朱园园, 黄建东, 宋虎跃, 杜勇, 李哲. 海相碳酸盐岩稀土元素在古环境研究中的应用[J]. 地球科学进展, 2018, 33(9): 922-932.
[6] 王芳慧, 陈莹, 王波, 李好文, 周升钱. 海洋微生物气溶胶的丰度、群落结构及影响机制[J]. 地球科学进展, 2018, 33(8): 783-793.
[7] 琚宜文, 戚宇, 房立志, 朱洪建, 王国昌, 王桂梁. 中国页岩气的储层类型及其制约因素[J]. 地球科学进展, 2016, 31(8): 782-799.
[8] 徐祖新, 郭少斌. 基于NMR和X-CT的页岩储层孔隙结构研究[J]. 地球科学进展, 2014, 29(5): 624-631.
[9] 琚宜文, 卜红玲, 王国昌. 页岩气储层主要特征及其对储层改造的影响[J]. 地球科学进展, 2014, 29(4): 492-506.
[10] 张盼盼, 刘小平, 王雅杰, 孙雪娇. 页岩纳米孔隙研究新进展[J]. 地球科学进展, 2014, 29(11): 1242-1249.
[11] 杜志恒,效存德,李向应. 生物活性元素Fe来源及其溶解度影响因素研究综述[J]. 地球科学进展, 2013, 28(5): 597-607.
[12] 蒋建军,代立东,李和平,单双明,胡海英,惠科石. 地球内部物质电学性质原位测量的影响因素和导电机制——以地壳矿物为例[J]. 地球科学进展, 2013, 28(4): 455-466.
[13] 李云春,王显祥,赵茂俊. 纳米零价铁原位修复有机卤化物的影响因素[J]. 地球科学进展, 2013, 28(10): 1106-1118.
[14] 张雪芬,陆现彩,张林晔,刘庆. 页岩气的赋存形式研究及其石油地质意义[J]. 地球科学进展, 2010, 25(6): 597-604.
[15] 徐晓斌,葛宝珠,林伟立. 臭氧生成效率(OPE)相关研究进展[J]. 地球科学进展, 2009, 24(8): 845-853.
阅读次数
全文


摘要