[1]IPCC. Climate change 2007: The physical science basis[M]∥Solomon S, Qin D, Manning M, et al, eds. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2007.
[2]Martin J H. Glacial-interglacial CO2 change: The iron hypothesis[J]. Paleoceanography, 1990, 5(1): 1-13.
[3]Jickells T D, An Z S, Andersen K K, et al. Global iron conections between desert dust, ocean biogeochemistry, and climate[J]. Science, 2005, 308(5 718): 67-71.
[4]Gassó S, Grassian V H, Miller R L. Interactions between mineral dust, climate, and ocean ecosystems[J]. Elements, 2010, 6(4): 247-252.
[5]Mahowald N M, Baker A R, Bergametti G. Atmospheric global dust cycle and iron inputs to the ocean[J]. Global Biogeochemical Cycles, 2005, 19(4): GB4025,
doi:10.1029/2004GB002402.
[6]Boyd P W, Ellwood M J. The biogeochemical cycle of iron in the ocean[J]. Nature Geoscience, 2010,3: 675-682.
[7]Zhuang G, Yi Z, Duce R A, et al. Chemistry of iron in marine aerosols[J]. Global Biogeochemical Cycles, 1992, 6: 161-173.
[8]Zhuang G, Yi Z, Duce R A, et al. Link between iron and sulphur cycles suggested by detection of Fe(Ⅱ) in remote marine aerosols[J]. Nature, 1992, 355: 537-539.
[9]Hong B F, Tong G X, Shao G Y, et al. Photoinduced formation of Fe(III)-sulfato complexes on the surface of hematite and their photochemical performance[J]. The Journal of Physical Chemistry, 2009, 113: 11 316-11 322.
[10]Li J, Dong Z, Wang X, et al. Seasonal variations in dustfall and its iron content over North China[J]. Advances in Atmospheric Sciences, 2008, 25: 467-473.
[11]Han Y, Zhao T, Song L, et al. A linkage between Asian dust, dissolved iron and marine export production in the deep ocean[J]. Atmospheric Environment, 2011, 45: 4 291-4 298.
[12]Li J, Wang Z, Zhuang G, et al. Mixing of Asian mineral dust with anthropogenic pollutants over East Asia: A model case study of a super-duststorm in March 2010[J]. Atmospheric Chemistry and Physics, 2012, 12(16): 7 591-7 607.
[13]Shi J H,Gao H W,Zhang J,et al. Examination of causative link between a spring bloom and dry/wet deposition of Asian dust in the Yellow Sea, China[J]. Journal of Geophysical Research: Atmospheres,2012, D17304, doi:10.1029/2012JD017983.
[14]Yang Y H, Jiao N Z. Effects of iron on picoplankton in the south China sea as revealed by simulated in situ incubation experiment[J].Chinese Journal of Oceanology and Limnology, 2002, 20(Suppl.): 66-73.
[15]Sun Song, Pu Xinming, Zhang Yongshan. Testing iron hypothesis by in situ Fe addition experiments in Prydz Bay, Antarctia[J]. Science in China (Serise D), 2009, 39(2): 212-221.[孙松,蒲新明,张永山. 南大洋普里兹湾的铁加富实验: 对铁假说的检验[J]. 中国科学:D辑, 2009, 39(2): 212-221.]
[16]Gran H H. On the conditions for the production of plankton in the sea[J].
Conseil Permanent International pour I’Exploration de la Mer, 1931, 75: 37-46.
[17]Martin J H, Coale K H, Johnson K S. Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean[J]. Nature, 1994, 371(6 493): 123-129.
[18]Moore J K, Doney S C, Glover D M, et al. Iron cycling and nutrient-limitation patterns in surface waters of the World Ocean[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2001, 49(1/3): 463-507.
[19]Boyd P W, Jickells T, Law C S, et al. Mesoscale Iron enrichment experiments 1993-2005: Synthesis and future directions[J]. Science, 2007, 315(5 812): 612-617.
[20]Trick C G, Bill B D, Cochlan P W,et al. Iron enrichment stimulates toxic diatom production in high-nitrate, low-chlorophyll areas[J]. Proceedings of the National Academy of Sciences, 2010, doi: 10.1073/pnas.0910579107.
[21]Paytan A, Mackey K R M, Chen Y, et al. Toxicity of atmospheric aerosols on marine phytoplankton[J]. Proceedings of the National Academy of Sciences, 2009, 106(12): 4 601-4 605.
[22]Gaiero D M, Probst J L, Depetris P J, et al. Iron and other transition metals in Patagonian riverborne and windborne materials: Geochemical control and transport to the southern South Atlantic Ocean[J]. Geochimica et Cosmochimica Acta, 2003, 67(19): 3 603-3 623.
[23]Shao Y, Wyrwoll K H, Chappell A, et al. Dust cycle: An emerging core theme in Earth system science[J]. Aeolian Research, 2011, 2(4): 181-204.
[24]Gao Y, Fan S M, Sarmiento J L, et al. Aeolian iron input to the ocean through precipitation scavenging: A modeling perspective and its implication for natural iron fertilization in the ocean[J]. Journal of Geophysical Research Atmospheirs, 2003, 108(D7): 4 221.
[25]Gao Y, Kaufman Y J, Tanré D, et al. Seasonal distributions of aeolian iron fluxes to the global ocean[J]. Geophysical Research Letters, 2001, 28(1): 29-32.
[26]Fung I Y, Meyn S K, Tegen I, et al. Iron supply and demand in the upper ocean[J]. Global Biogeochemical Cycles, 2000, 14(1): 281-295.
[27]Duce R A, LaRoche J, Altieri K, et al. Impacts of atmospheric anthropogenic nitrogen on the open ocean[J]. Science, 2008, 320(5 878): 893-897.
[28]Mahowald N, Jickells T D, Baker A R, et al. Global distribution of atmospheric phosphorus sources, concentrations and deposition rates, and anthropogenic impacts[J]. Global Biogeochemical Cycles, 2008, 22(4): GB4026,doi:10.1029/2008GB003240.
[29]Lam P J, Bishop J K B. The continental margin is a key source of iron to the HNLC North Pacific Ocean[J]. Geophysical Research Letters, 2008, 35(7): L07608,
,doi:10.1029/2008GL033294.
[30]Johnson K S, Chavez F P, Friederich G E, et al. Continental-shelf sediment as a primary source of iron for coastal phytoplankton[J]. Nature, 1999, 398(6 729): 697-700.
[31]Nürnberg D, Wollenburg I, Dethleff D, et al. Sediments in Arctic sea ice: Implications for entrainment, transport and release[J]. Marine Geology, 1994, 119(3/4): 185-214.
[32]Elrod V A, Berelson W M, Coale K H, et al. The flux of iron from continental shelf sediments: A missing source for global budgets[J]. Geophysical Research Letters, 2004, 31(12): L12307.
[33]de Jong J T M, Boyé M, Gelado-Caballero M D, et al. Inputs of iron, manganese and aluminium to surface waters of the Northeast Atlantic Ocean and the European continental shelf[J]. Marine Chemistry, 2007, 107(2): 120-142.
[34]Krachler R, Jirsa F, Ayromlou S. Factors influencing the dissolved iron input by river water to the open ocean[J]. Biogeosciences, 2005, (4): 311-315.
[35]Batchelli S, Muller F L, Chuang K C, et al. Evidence for strong but dynamic iron humic colloidal associations in humic-rich coastal waters[J]. Environmental Science & Technology, 2010, 44(22): 8 485-8 490.
[36]Tagliabue A, Bopp L, Dutay J C, et al. Hydrothermal contribution to the oceanic dissolved iron inventory[J]. Nature Geoscience, 2010, 3(4): 252-256.
[37]Klinkhammer G P, Chin C S, Keller R A, et al. Discovery of new hydrothermal vent sites in Bransfield Strait, Antarctica[J].Earth and Planetary Science Letters, 2001, 193(3/4): 395-407.
[38]Yucel M, Gartman A, Chan C S, et al. Hydrothermal vents as a kinetically stable source of iron-sulphide-bearing nanoparticles to the ocean[J]. Nature Geoscience, 2011, 4(6): 367-371.
[39]Ayris P, Delmelle P. Volcanic and atmospheric controls on ash iron solubility: A review[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2012, 45/46: 103-112.
[40]Langmann B, Zakek K, Hort M, et al. Volcanic ash as fertiliser for the surface ocean[J]. Atmospheric Chemistry and Physics Discussions, 2010, 10(1): 711-734.
[41]Klinkhammer G P, Chin C S, Keller R A, et al. Discovery of new hydrothermal vent sites in Bransfield Strait, Antarctica[J]. Earth and Planetary Science Letters, 2001, 193(3/4): 395-407.
[42]Wiesner M G, Wang Y, Zheng L. Fallout of volcanic ash to the deep Suth China Sea induced by the 1991 eruption of Mount Pinatubo[J]. Geology, 1995, 23:885-888.
[43]Hamme R C, Webley P W, Crawford W R, et al. Volcanic ash fuels anomalous plankton bloom in subarctic northeast Pacific[J]. Geophysical Research Letters, 2010, 37(19): L19604,doi:10.1029/2010QL044629.
[44]Duggen S, Olgun N, Croot P, et al. The role of airborne volcanic ash for the surface ocean biogeochemical iron-cycle: A review[J]. Biogeosciences, 2010, 7: 827-844 .
[45]van der Merwe P, Lannuzel D, Mancuso N C A, et al. Iron fractionation in pack and fast ice in East Antarctica: Temporal decoupling between the release of dissolved and particulate iron during spring melt[J]. Deep-Sea Research II, 2011, 58(9/10): 1 222-1 236.
[46]Bhatia M P, Kujawinski E B, Das S B, et al. Greenland meltwater as a significant and potentially bioavailable source of iron to the ocean[J]. Nature Geoscience, 2013,doi:10.1038/ngeo1746.
[47]Roche D M, Crosta X, Renssen H. Evaluating Southern Ocean sea-ice for the Last Glacial Maximum and pre-industrial climates: PMIP-2 models and data evidence[J]. Quaternary Science Reviews, 2012, 56: 99-106.
[48]Aguilar-Islas A M, Rember R D, Mordy C W, et al. Sea ice-derived dissolved iron and its potential influence on the spring algal bloom in the Bering Sea[J]. Geophysical Research Letters, 2008, 35(24): L24601,doi:10.1029/2008QL035736.
[49]Lannuzel D, Schoemann V, Jeroen D J, et al. Distribution of dissolved iron in Antarctic sea ice: Spatial, seasonal, and inter-annual variability[J]. Journal of Geophysical Research Blogeosciences, 2010, 115(G3): G03022.
[50]Raiswell R, Benning L G, Tranter M, et al. Bioavailable iron in the Southern Ocean: The significance of the iceberg conveyor belt[J]. Geochemical Transactions, 2008, 9:7. doi:10.1186/1467-4866-9-7.
[51]Raiswell R, Tranter M, Benning L G, et al. Contributions from glacially derived sediment to the global iron (oxyhydr)oxide cycle: Impli-cations for iron delivery to the oceans[J]. Geochimica et Cosmochimica Acta, 2006, 70: 2 765-2 780.
[52]Geibert W, Assmy P, Bakker D C E, et al. High productivity in an ice melting hot spot at the eastern boundary of the Weddell Gyre[J]. Global Biogeochemical Cycles, 2010, 24(3), GB3007,doi:10.1029/2009GB003657.
[53]Smith K L, Robison B H, Helly J J. Free-drifting icebergs: Hot spots of chemical and biological enrichment in the Weddell Sea[J]. Science, 2007, 317(5 837): 478-482.
[54]Johnson K S. Iron supply and demand in the upper ocean: Is extraterrestrial dust a significant source of bioavailable iron?[J]. Global Biogeochemical Cycles, 2001, 15(1): 61-63.
[55]Sholkovitz E R, Sedwick P N, Church T M, et al. Fractional solubility of aerosol iron: Synthesis of a global-scale data set[J]. Geochimica et Cosmochimica Acta, 2012, 89: 173-189.
[56]Baker A R, Jickells T D, Witt M, et al. Trends in the solubility of iron, aluminium, manganese and phosphorus in aerosol collected over the Atlantic Ocean[J]. Marine Chemistry, 2006, 98(1): 43-58.
[57]Baker A R, Croot P L. Atmospheric and marine controls on aerosol iron solubility in seawater[J]. Marine Chemistry, 2010, 120(1/4): 4-13.
[58]Schroth A W, Crusius J, Sholkovitz E R, et al. Iron solubility driven by speciation in dust sources to the ocean[J]. Nature Geoscience, 2009, 2(5): 337-340.
[59]Chuang P Y, Duvall R M, Shafer M M, et al. The origin of water soluble particulate iron in the Asian atmospheric outflow[J]. Geophysical Research Letters, 2009, 32(7): L07813,doi:10.1029/2004QL021946.
[60]Sedwick P N, Sholkovitz E R, Church T M. Impact of anthropogenic combustion emissions on the fractional solubility of aerosol iron: Evidence from the Sargasso Sea[J]. Geochemistry, Geophysics, Geosystems, 2007, 8(10):210206, doi:10.1029/2007GC001586.
[61]Journet E, Desboeufs K V, Caquineau S, et al. Mineralogy as a critical factor of dust iron solubility[J]. Geophysical Research Letters, 2008, 35(7): L07805,doi:10.1029/2007GL031589.
[62]Shi Z, Krom M D, Bonneville S, et al. Influence of chemical weathering and aging of iron oxides on the potential iron solubility of Saharan dust during simulated atmospheric processing[J]. Global Biogeochemical Cycles, 2011, 25(2): GB2010,
doi,10.1029/2010GB003837.
[63]Formenti P, Schütz L, Balkanski Y, et al. Recent progress in understanding physical and chemical properties of African and Asian mineral dust[J]. Atmospheric Chemistry & Physics, 2011, 11(16): 8 231-8 256.
[64]Zhu X R, Prospero J M, Millero F J. Diel variability of soluble Fe(II) and soluble total Fe in North African dust in the trade winds at Barbados[J]. Journal of Geophysical Research: Atmospheres, 1997, 102(D17): 21 297-21 305.
[65]Grassian V H. Chemical Reactions of nitrogen oxides on the surface of oxide, carbonate, soot, and mineral dust particles: Implications for the chemical balance of the troposphere[J]. The Journal of Physical Chemistry A, 2002, 106: 860-877.
[66]Rubasinghege G, Elzey S, Baltrusaitis J, et al. Reactions on atmospheric dust particles: Surface photochemistry and size-dependent nanoscale redox chemistry[J]. The Journal of Physical Chemistry Letters, 2010, 1: 1 729-1 737.
[67]Cwiertny D M, Hunter G J, Pettibone J M, et al. Surface chemistry and dissolution of α-FeOOH nanorods and microrods: Environmental implications of size-dependent interactions with Oxalate[J]. The Journal of Physical Chemistry C, 2008, 113: 2 175-2 186.
[68]Spokes L J, Jickells T D. Factors controlling the solubility of aerosol trace metals in the atmosphere and on mixing into seawater[J]. Aquatic Geochemistry, 1995, 1(4): 355-374.
[69]Spokes L J, Jickells T D, Lim B. Solubilisation of aerosol trace metals by cloud processing: A laboratory study[J]. Geochimica et Cosmochimica Acta, 1994, 58(15): 3 281-3 287.
[70]Faust B C, Zepp R G. Photochemistry of aqueous iron(III)-polycarboxylate complexes: Roles in the chemistry of atmospheric and surface waters[J]. Environmental Science & Technology, 1993, 27(12): 2 517-2 522.
[71]Upadhyay N, Majestic B J, Herckes P. Solubility and speciation of atmospheric iron in buffer systems simulating cloud conditions[J]. Atmospheric Environment, 2011, 45(10): 1 858-1 866.
[72]Baker A R, Jickells T D. Mineral particle size as a control on aerosol iron solubility[J]. Geophysical Research Letters, 2006, 33(17): L17608,doi:10.1029/2006GL026557.
[73]Buck C S, Landing W M, Resing J A. Particle size and aerosol iron solubility: A high-resolution analysis of Atlantic aerosols[J]. Marine Chemistry, 2010, 120(1/4): 14-24.
[74]Paris R, Desboeufs K V, Journet E. Variability of dust iron solubility in atmospheric waters: Investigation of the role of oxalate organic complexation[J]. Atmospheric Environment, 2011, 45(36): 6 510-6 517.
[75]Manktelow P T, Carslaw K S, Mann G W, et al. The impact of dust on sulfate aerosol, CN and CCN during an East Asian dust storm[J]. Atmospheric Chemistry and Physics, 2010, 10(2): 365-382.
[76]Andreae M O, Crutzen P J. Atmospheric aerosols: Biogeochemical sources and role in atmospheric chemistry[J]. Science, 1997, 276(5 315): 1 052-1 058.
[77]Ito A, Feng Y. Role of dust alkalinity in acid mobilization of iron[J]. Atmospheric Chemistry and Physics, 2010, 10(19): 9 237-9 250.
[78]Rubasinghege G, Lentz R W, Scherer M M, et al. Simulated atmospheric processing of iron oxyhydroxide minerals at low pH: Roles of particle size and acid anion in iron dissolution[J]. Proceedings of the National Academy of Sciences, 2010, 107:6 628-6 633.
[79]Hinga K R. Effects of pH on coastal marine phytoplankton[J]. Marine Ecology Progress Series, 2002, 238: 281-300.
[80]Liu X, Millero F J. The solubility of iron in seawater[J]. Marine Chemistry, 2002, 77(1): 43-54.
[81]Hsu S C, Wong G T F, Gong G C, et al. Sources, solubility, and dry deposition of aerosol trace elements over the East China Sea[J]. Marine Chemistry, 2010, 120(1/4): 116-127.
[82]Chen C Y, Durbin E G. Effects of pH on the growth and carbon uptake of marine phytoplankton[J]. Marine Ecology Progress Series, 1994, 109: 83-94.
[83]Hinga K R. Effects of pH on coastal phytoplankton[J]. Marine Ecology Progress Series, 2002, 238: 281-300.
[84]Bonneville S, Behrends T, Van C P. Solubility and dissimilatory reduction kinetics of iron(III) oxyhydroxides: A linear free energy relationship[J]. Geochimica et Cosmochimica Acta, 2009, 73(18): 5 273-5 282.
[85]Trick C G. Hydroxamate-siderophore production and utilizat ion by marine eubacteria[J]. Current Microbiology, 1989, 18: 375-378.
[86]Wu J, Luther G W. Complexation of Fe (III) by natural organic ligands in the Northwest Atlantic Ocean determined by a competitive equilibration method and kinetic approach[J]. Marine Chemistry, 1995, 50: 159-177.
[87][JP2]Sato M, Takeda S, Furuya K. Iron regeneration and organic iron(III)-binding ligand production during in situ zooplankton grazing experiment[J]. Marine Chemistry, 2007, 106(3/4): 471-488.[JP]
[88]Hudson R J M, Morel F M M. Trace metal transport by marine microorganisms: Implications of metal coordination kinetics[J].Deep-Sea Research, 1993, 40: 129-150.
[89]Gilbert B, Lu G, Kim C S. Stable cluster formation in aqueous suspensions of iron oxyhydroxide nanoparticles[J]. Journal of Colloid and Interface Science, 2007, 313(1): 152-159.
[90]Cui Yanhua, Dong Aijun, Qu Xiaojun. Siderophores-mediated iron uptake system of microorganisms[J]. Chemistry of Life, 2008, 28(6):786-790.[崔艳华,董爱军,曲晓军. 微生物铁载体运输系统[J]. 生命的化学, 2008, 28(6):786-790.]
[91]Rich H W, Morel F M M. Availability of well-defined ironcolloids to the marine diatom Thalassiosira weissflogii[J]. Limnology & Oceanography, 1990, 35: 652-662.
[92]Naito K, Matsui M, Imai I. Ability of marine eukaryotic red tide microalgae to utilize insoluble iron[J]. Harmful Algae, 2005, 4(6): 1 021-1 032.
[93]Wells M L, Mayer L M, Donard O F X. The photolysis of colloidal iron in the oceans[J]. Nature, 1991, 353(6 341): 248-250.
[94]Hutchins D A, Bruland K W. Grazer-mediated regeneration and assimilation of Fe, Zn and Mn from planktonic prey[J]. Marine Ecology Progress Series, 1994, 110: 259-269.
[95]Barbeau K, Moffett J W, Caron D A, et al. Role of protozoan grazing in relieving iron limitation of phytoplankton[J]. Nature,1996, 380(6 569): 61-64.
[96]Barbeau K, Rue E L, Bruland K W, et al. Photochemical cycling of iron in the surface ocean mediated by microbial iron(III)-binding ligands[J]. 2001, Nature, 2001, 413: 409-413.
[97]Waychunas G A, Kim C S, Banfield J F. Nanoparticulate iron oxide minerals in soils and sediments: Unique properties and contaminant scavenging mechanisms[J]. Journal of Nanoparticle Research, 2005, 7: 409-433.
[98]Chen M, Dei R C H, Wang W X, et al. Marine diatom uptake of iron bound with natural colloids of different origins[J]. Marine Chemistry, 2003, 81(3/4): 177-189.
[99]Morgan B, Lahav O. The effect of pH on the kinetics of spontaneous Fe(II) oxidation by O2 in aqueous solution-basic principles and a simple heuristic description[J]. Chemosphere, 2007,68(11): 2 080-2 084.
[100]Cornell R M, Schwertmann U. The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses, Seconded[M].Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA, 2003.
[101]Qin Yanwen, Zhang Manping, Zhou Gefei, et al. Iron sources, existing forms and their limiting action on the primary productivity of phytoplankton in seawater[J]. Journal of Oceanography of Huanghai & Bohai Seas, 1998, 16(3): 67-75.[秦延文, 张曼平,周革非. 海洋中铁的来源、形态和对初级生产力的限制作用[J]. 黄渤海海洋, 1998, 16(3): 67-75.]
[102]Shi Z B, Krom M, Bonneville S, et al. Formation of iron nanoparticles and increase in iron reactivity in the mineral dust during simulated cloud processing[J]. Environmental Science & Technology, 2009, 43: 6 592-6 596.
[103]Shi Z B, Krom M, Jickells T D, et al. Impacts on iron solubility in the mineral dust by processes in the source region and the atmosphere: A review[J]. Aeolian Research, 2012, 5:21-42.
[104]Onishi T, Mitsudera H, Uchimoto K. Numerical simulation of dissolved iron production and transport in the Amur River and the Sea of Okhotsk[M]∥Taniguchi M, Shiraiwa T, eds. The Dilemma of Boundaries. Japan: Springer,2012:87-105.
[105]Chen H, Laskin A, Baltrusaitis J, et al. Coal fly ash as a source of iron in atmospheric dust[J]. Environmental Science & Technology, 2012, 46: 2112-2120.
[106]Luo C, Mahowald N, Bond T, et al. Combustion iron distribution and deposition[J]. Global Biogeochemical Cycles, 2008, 22: GB1012.
[107][JP2]Siefert R L, Pehkonen S O, Erel Y, et al.Iron photochemistry of queous suspensions of ambient aerosol with added organic acids[J].Geochimical et Cosmochimica Acta,1994,58:3 271-3 279.[JP]
[108]Solmon F, Chuang P Y, Meskhidze N, et al. Acidic processing of mineral dust iron by anthropogenic compounds over the north Pacific Ocean[J]. Journal of Geophysical Research: Atmospheres, 2009, 114: D02305.
[109]Scott C, Planavsky N J, Dupont C L, et al. Bioavailability of zinc in marine systems through time[J]. Nature Geoscience, 2012, 6: 125-128, doi:10.1038/ngeo1679.
[110]Bning P, Frllje H, Beck M, et al. Underestimation of the authigenic fraction of Cu and Ni in organic-rich sediments[J]. Marine Geology, 2012, 24-28:323-325. |