地球科学进展 ›› 2013, Vol. 28 ›› Issue (5): 597 -607. doi: 10.11867/j.issn.1001-8166.2013.05.0597

综述与评述 上一篇    下一篇

生物活性元素Fe来源及其溶解度影响因素研究综述
杜志恒 1,3 ,效存德 1,2,李向应 1   
  1. 1. 中国科学院寒区旱区环境与工程研究所,冰冻圈科学国家重点实验室, 甘肃 兰州 730000;2. 中国气象科学研究院,气候系统研究所,北京 100081;3. 中国科学院大学,北京 100049
  • 收稿日期:2012-12-07 修回日期:2013-03-28 出版日期:2013-05-10
  • 基金资助:

    国家重大科学研究计划项目“冰冻圈变化及其影响研究”(编号:2013CBA01804);冰冻圈科学国家重点实验室自主课题“格陵兰NEEM冰芯研究”(编号:SKLCS-22-2012-01-03)资助

A Review of the Sources and Controlling Factors of the Bioavailability Iron (Fe)

Du Zhiheng 1,3, Xiao Cunde 1,2, Li Xiangying 1   

  1. 1.State Key Laboratory of Cryospheric Sciences, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China;2.Institute of Climate System, Chinese Academy of Meteorological Science, China Meteorology Administration, Beijing 100081, China; 3. University of Chinese Academy of Science, Beijing 100049, China
  • Received:2012-12-07 Revised:2013-03-28 Online:2013-05-10 Published:2013-05-10

具有生物活性的元素Fe被认为限制了海洋生物生产力,其在海洋生态系统中的生物地球化学循环对全球碳循环起到调节作用,全球40%~50%的海洋因“高叶绿素低营养盐”(HNLC)“缺Fe”而初级生产力较低。然而,关于生物活性元素Fe的研究不仅涉及海洋科学,还与大气科学、环境科学、地球科学等学科紧密联系。近些年,围绕生物活性元素“Fe”开展的研究不仅是地球科学领域的前沿问题,还是海洋学家与环境学家共同关注的热点问题。目前,尽管对于生物活性元素Fe的研究已取得很大的进展,但模型、室内实验及野外观测之间仍存在很大的挑战与不确定性。系统地总结了生物活性元素Fe最重要的自然来源方式,详细介绍了影响生物活性元素Fe溶解度的主要因素,最后,对将来的工作提出建议,为我国未来开展类似的研究提供参考。

In the marine ecosytem  bioavailability iron (Fe) is one of the most important micronutrient for the marine primary productivity. It plays an important role in the global biogeochemical cycles and the carbon cycle. About 40%~50% of the total surface ocean is High Nutrient Low Chlorophyll (HNLC) owing to limiting of bioavailability Fe. However, research on bioavailability Fe not only involves in the discipline of ocean science, but also has a close connection with atmosphere science, environment science, geoscience, etc. In recent years, the research on it is considered as one of the most important scientific problems in Earth science system and   attracts extensive concerns from the oceanographers and environmentalists. However, there are still lots of challenges and uncertainties existing in models, experiments and field observations. Due to the complicated   Fe in dust, we only summarize the natural sources of bioavailability Fe and detailed   influence factors of bioavailability Fe solubility in this review. Finally, we come up with the suggestions and   reference for our   future work.

中图分类号: 

[1]IPCC. Climate change 2007: The physical science basis[M]∥Solomon S, Qin D, Manning M, et al, eds. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2007.

[2]Martin J H. Glacial-interglacial CO2 change: The iron hypothesis[J]. Paleoceanography, 1990, 5(1): 1-13.

[3]Jickells T D, An Z S, Andersen K K, et al. Global iron conections between desert dust, ocean biogeochemistry, and climate[J]. Science, 2005, 308(5 718): 67-71.

[4]Gassó S, Grassian V H, Miller R L. Interactions between mineral dust, climate, and ocean ecosystems[J]. Elements, 2010, 6(4): 247-252.

[5]Mahowald N M, Baker A R, Bergametti G. Atmospheric global dust cycle and iron inputs to the ocean[J]. Global Biogeochemical Cycles, 2005, 19(4): GB4025,

doi:10.1029/2004GB002402.

[6]Boyd P W, Ellwood M J. The biogeochemical cycle of iron in the ocean[J]. Nature Geoscience, 2010,3: 675-682.

[7]Zhuang G, Yi Z, Duce R A, et al. Chemistry of iron in marine aerosols[J]. Global Biogeochemical Cycles, 1992, 6: 161-173.

[8]Zhuang G, Yi Z, Duce R A, et al. Link between iron and sulphur cycles suggested by detection of Fe(Ⅱ) in remote marine aerosols[J]. Nature, 1992, 355: 537-539.

[9]Hong B F, Tong G X, Shao G Y, et al. Photoinduced formation of Fe(III)-sulfato complexes on the surface of hematite and their photochemical performance[J]. The Journal of Physical Chemistry, 2009, 113: 11 316-11 322.

[10]Li J, Dong Z, Wang X, et al. Seasonal variations in dustfall and its iron content over North China[J]. Advances in Atmospheric Sciences, 2008, 25: 467-473.

[11]Han Y, Zhao T, Song L, et al. A linkage between Asian dust, dissolved iron and marine export production in the deep ocean[J]. Atmospheric Environment, 2011, 45: 4 291-4 298.

[12]Li J, Wang Z, Zhuang G, et al. Mixing of Asian mineral dust with anthropogenic pollutants over East Asia: A model case study of a super-duststorm in March 2010[J]. Atmospheric  Chemistry and Physics, 2012, 12(16): 7 591-7 607.

[13]Shi J H,Gao H W,Zhang J,et al. Examination of causative link between a spring bloom and dry/wet deposition of Asian dust in the Yellow Sea, China[J]. Journal of Geophysical Research: Atmospheres,2012, D17304, doi:10.1029/2012JD017983.

[14]Yang Y H, Jiao N Z. Effects of iron on picoplankton in the south China sea as revealed by simulated in situ incubation experiment[J].Chinese Journal of Oceanology and Limnology, 2002, 20(Suppl.): 66-73.

[15]Sun Song, Pu Xinming, Zhang Yongshan. Testing iron hypothesis by in situ Fe addition experiments in Prydz Bay, Antarctia[J]. Science in  China (Serise D), 2009, 39(2): 212-221.[孙松,蒲新明,张永山. 南大洋普里兹湾的铁加富实验: 对铁假说的检验[J]. 中国科学:D辑, 2009, 39(2): 212-221.]

[16]Gran H H. On the conditions for the production of plankton in the sea[J].

Conseil Permanent International pour I’Exploration de la Mer, 1931, 75: 37-46.

[17]Martin J H, Coale K H, Johnson K S. Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean[J]. Nature, 1994, 371(6 493): 123-129.

[18]Moore J K, Doney S C, Glover D M, et al. Iron cycling and nutrient-limitation patterns in surface waters of the World Ocean[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2001, 49(1/3): 463-507.

[19]Boyd P W, Jickells T, Law C S, et al. Mesoscale Iron enrichment experiments 1993-2005: Synthesis and future directions[J]. Science, 2007, 315(5 812): 612-617.

[20]Trick C G, Bill B D, Cochlan P W,et al. Iron enrichment stimulates toxic diatom production in high-nitrate, low-chlorophyll areas[J]. Proceedings of the National Academy of Sciences, 2010, doi: 10.1073/pnas.0910579107.

[21]Paytan A, Mackey K R M, Chen Y, et al. Toxicity of atmospheric aerosols on marine phytoplankton[J]. Proceedings of the National Academy of Sciences, 2009, 106(12): 4 601-4 605.

[22]Gaiero D M, Probst J L, Depetris P J, et al. Iron and other transition metals in Patagonian riverborne and windborne materials: Geochemical control and transport to the southern South Atlantic Ocean[J]. Geochimica et Cosmochimica Acta, 2003, 67(19): 3 603-3 623.

[23]Shao Y, Wyrwoll K H, Chappell A, et al. Dust cycle: An emerging core theme in Earth system science[J]. Aeolian Research, 2011, 2(4): 181-204.

[24]Gao Y, Fan S M, Sarmiento J L, et al. Aeolian iron input to the ocean through precipitation scavenging: A modeling perspective and its implication for natural iron fertilization in the ocean[J]. Journal of Geophysical Research Atmospheirs, 2003, 108(D7): 4 221.

[25]Gao Y, Kaufman Y J, Tanré D, et al. Seasonal distributions of aeolian iron fluxes to the global ocean[J]. Geophysical Research Letters, 2001, 28(1): 29-32.

[26]Fung I Y, Meyn S K, Tegen I, et al. Iron supply and demand in the upper ocean[J]. Global Biogeochemical Cycles, 2000, 14(1): 281-295.

[27]Duce R A, LaRoche J, Altieri K, et al. Impacts of atmospheric anthropogenic nitrogen on the open ocean[J]. Science, 2008, 320(5 878): 893-897.

[28]Mahowald N, Jickells T D, Baker A R, et al. Global distribution of atmospheric phosphorus sources, concentrations and deposition rates, and anthropogenic impacts[J]. Global Biogeochemical Cycles, 2008, 22(4): GB4026,doi:10.1029/2008GB003240.

[29]Lam P J, Bishop J K B. The continental margin is a key source of iron to the HNLC North Pacific Ocean[J]. Geophysical Research Letters, 2008, 35(7): L07608,

,doi:10.1029/2008GL033294.

[30]Johnson K S, Chavez F P, Friederich G E, et al. Continental-shelf sediment as a primary source of iron for coastal phytoplankton[J]. Nature, 1999, 398(6 729): 697-700.

[31]Nürnberg D, Wollenburg I, Dethleff D, et al. Sediments in Arctic sea ice: Implications for entrainment, transport and release[J]. Marine Geology, 1994, 119(3/4): 185-214.

[32]Elrod V A, Berelson W M, Coale K H, et al. The flux of iron from continental shelf sediments: A missing source for global budgets[J]. Geophysical Research Letters, 2004, 31(12): L12307.

[33]de Jong J T M, Boyé  M, Gelado-Caballero M D, et al. Inputs of iron, manganese and aluminium to surface waters of the Northeast Atlantic Ocean and the European continental shelf[J]. Marine Chemistry, 2007, 107(2): 120-142.

[34]Krachler R, Jirsa F, Ayromlou S. Factors influencing the dissolved iron input by river water to the open ocean[J]. Biogeosciences, 2005, (4): 311-315.

[35]Batchelli S, Muller F L, Chuang K C, et al. Evidence for strong but dynamic iron humic colloidal associations in humic-rich coastal waters[J]. Environmental Science & Technology, 2010, 44(22): 8 485-8 490.

[36]Tagliabue A, Bopp L, Dutay J C, et al. Hydrothermal contribution to the oceanic dissolved iron inventory[J]. Nature Geoscience, 2010, 3(4): 252-256.

[37]Klinkhammer G P, Chin C S, Keller R A, et al. Discovery of new hydrothermal vent sites in Bransfield Strait, Antarctica[J].Earth and Planetary Science Letters, 2001, 193(3/4): 395-407.

[38]Yucel M, Gartman A, Chan C S, et al. Hydrothermal vents as a kinetically stable source of iron-sulphide-bearing nanoparticles to the ocean[J]. Nature Geoscience, 2011, 4(6): 367-371.

[39]Ayris P, Delmelle P. Volcanic and atmospheric controls on ash iron solubility: A review[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2012, 45/46: 103-112.

[40]Langmann B, Zakek K, Hort M, et al. Volcanic ash as fertiliser for the surface ocean[J]. Atmospheric Chemistry and Physics Discussions, 2010, 10(1): 711-734.

[41]Klinkhammer G P, Chin C S, Keller R A, et al. Discovery of new hydrothermal vent sites in Bransfield Strait, Antarctica[J]. Earth and Planetary Science Letters, 2001, 193(3/4): 395-407.

[42]Wiesner M G, Wang Y, Zheng L. Fallout of volcanic ash to the deep Suth China Sea induced by the 1991 eruption of Mount Pinatubo[J]. Geology, 1995, 23:885-888.

[43]Hamme R C, Webley P W, Crawford W R, et al. Volcanic ash fuels anomalous plankton bloom in subarctic northeast Pacific[J]. Geophysical Research Letters, 2010, 37(19): L19604,doi:10.1029/2010QL044629.

[44]Duggen S, Olgun N, Croot P,  et al. The role of airborne volcanic ash for the surface ocean biogeochemical iron-cycle: A review[J]. Biogeosciences, 2010, 7: 827-844 .

[45]van der Merwe P, Lannuzel D, Mancuso N C A, et al. Iron fractionation in pack and fast ice in East Antarctica: Temporal decoupling between the release of dissolved and particulate iron during spring melt[J]. Deep-Sea Research  II, 2011, 58(9/10): 1 222-1 236.

[46]Bhatia M P, Kujawinski E B, Das S B, et al. Greenland meltwater as a significant and potentially bioavailable source of iron to the ocean[J]. Nature Geoscience, 2013,doi:10.1038/ngeo1746.

[47]Roche D M, Crosta X, Renssen H. Evaluating Southern Ocean sea-ice for the Last Glacial Maximum and pre-industrial climates: PMIP-2 models and data evidence[J]. Quaternary Science Reviews, 2012, 56: 99-106.

[48]Aguilar-Islas A M, Rember R D, Mordy C W, et al. Sea ice-derived dissolved iron and its potential influence on the spring algal bloom in the Bering Sea[J]. Geophysical Research Letters, 2008, 35(24): L24601,doi:10.1029/2008QL035736.

[49]Lannuzel D, Schoemann V, Jeroen D J, et al. Distribution of dissolved iron in Antarctic sea ice: Spatial, seasonal, and inter-annual variability[J]. Journal of Geophysical Research Blogeosciences, 2010, 115(G3): G03022.

[50]Raiswell R, Benning L G, Tranter M, et al. Bioavailable iron in the Southern Ocean: The significance of the iceberg conveyor belt[J]. Geochemical Transactions, 2008, 9:7. doi:10.1186/1467-4866-9-7.

[51]Raiswell R, Tranter M, Benning L G, et al. Contributions from glacially derived sediment to the global iron (oxyhydr)oxide cycle: Impli-cations for iron delivery to the oceans[J]. Geochimica et Cosmochimica  Acta, 2006, 70: 2 765-2 780.

[52]Geibert W, Assmy P, Bakker D C E, et al. High productivity in an ice melting hot spot at the eastern boundary of the Weddell Gyre[J]. Global Biogeochemical Cycles, 2010, 24(3), GB3007,doi:10.1029/2009GB003657.

[53]Smith K L, Robison B H, Helly J J. Free-drifting icebergs: Hot spots of chemical and biological enrichment in the Weddell Sea[J]. Science, 2007, 317(5 837): 478-482.

[54]Johnson K S. Iron supply and demand in the upper ocean: Is extraterrestrial dust a significant source of bioavailable iron?[J]. Global Biogeochemical  Cycles, 2001, 15(1): 61-63.

[55]Sholkovitz E R, Sedwick P N, Church T M, et al. Fractional solubility of aerosol iron: Synthesis of a global-scale data set[J]. Geochimica et Cosmochimica Acta, 2012, 89: 173-189.

[56]Baker A R, Jickells T D, Witt M, et al. Trends in the solubility of iron, aluminium, manganese and phosphorus in aerosol collected over the Atlantic Ocean[J]. Marine Chemistry, 2006, 98(1): 43-58.

[57]Baker A R, Croot P L. Atmospheric and marine controls on aerosol iron solubility in seawater[J]. Marine Chemistry, 2010, 120(1/4): 4-13.

[58]Schroth A W, Crusius J, Sholkovitz E R, et al. Iron solubility driven by speciation in dust sources to the ocean[J]. Nature Geoscience, 2009, 2(5): 337-340.

[59]Chuang P Y, Duvall R M, Shafer M M, et al. The origin of water soluble particulate iron in the Asian atmospheric outflow[J]. Geophysical Research Letters, 2009, 32(7): L07813,doi:10.1029/2004QL021946.

[60]Sedwick P N, Sholkovitz E R, Church T M. Impact of anthropogenic combustion emissions on the fractional solubility of aerosol iron: Evidence from the Sargasso Sea[J]. Geochemistry, Geophysics, Geosystems, 2007, 8(10):210206, doi:10.1029/2007GC001586.

[61]Journet E, Desboeufs K V, Caquineau S, et al. Mineralogy as a critical factor of dust iron solubility[J]. Geophysical Research Letters, 2008, 35(7): L07805,doi:10.1029/2007GL031589.

[62]Shi Z, Krom M D, Bonneville S, et al. Influence of chemical weathering and aging of iron oxides on the potential iron solubility of Saharan dust during simulated atmospheric processing[J]. Global Biogeochemical Cycles, 2011, 25(2): GB2010,

doi,10.1029/2010GB003837.

[63]Formenti P, Schütz L, Balkanski Y, et al. Recent progress in understanding physical and chemical properties of African and Asian mineral dust[J]. Atmospheric Chemistry & Physics, 2011, 11(16): 8 231-8 256.

[64]Zhu X R, Prospero J M, Millero F J. Diel variability of soluble Fe(II) and soluble total Fe in North African dust in the trade winds at Barbados[J]. Journal of Geophysical Research: Atmospheres, 1997, 102(D17): 21 297-21 305.

[65]Grassian V H. Chemical Reactions of nitrogen oxides on the surface of oxide, carbonate, soot, and mineral dust particles:  Implications for the chemical balance of the troposphere[J]. The Journal of Physical Chemistry A, 2002, 106: 860-877.

[66]Rubasinghege G, Elzey S, Baltrusaitis J, et al. Reactions on atmospheric dust particles: Surface photochemistry and size-dependent nanoscale redox chemistry[J]. The Journal of Physical Chemistry Letters, 2010, 1: 1 729-1 737.

[67]Cwiertny D M, Hunter G J, Pettibone J M, et al. Surface chemistry and dissolution of α-FeOOH nanorods and microrods: Environmental implications of size-dependent interactions with Oxalate[J]. The Journal of Physical Chemistry C, 2008, 113: 2 175-2 186.

[68]Spokes L J, Jickells T D. Factors controlling the solubility of aerosol trace metals in the atmosphere and on mixing into seawater[J]. Aquatic Geochemistry, 1995, 1(4): 355-374.

[69]Spokes L J, Jickells T D, Lim B. Solubilisation of aerosol trace metals by cloud processing: A laboratory study[J]. Geochimica et Cosmochimica Acta, 1994, 58(15): 3 281-3 287.

[70]Faust B C, Zepp R G. Photochemistry of aqueous iron(III)-polycarboxylate complexes: Roles in the chemistry of atmospheric and surface waters[J]. Environmental Science & Technology, 1993, 27(12): 2 517-2 522.

[71]Upadhyay N, Majestic B J, Herckes P. Solubility and speciation of atmospheric iron in buffer systems simulating cloud conditions[J]. Atmospheric Environment, 2011, 45(10): 1 858-1 866.

[72]Baker A R, Jickells T D. Mineral particle size as a control on aerosol iron solubility[J]. Geophysical Research Letters, 2006, 33(17): L17608,doi:10.1029/2006GL026557.

[73]Buck C S, Landing W M, Resing J A. Particle size and aerosol iron solubility: A high-resolution analysis of Atlantic aerosols[J]. Marine Chemistry, 2010, 120(1/4): 14-24.

[74]Paris R, Desboeufs K V, Journet E. Variability of dust iron solubility in atmospheric waters: Investigation of the role of oxalate organic complexation[J]. Atmospheric Environment, 2011, 45(36): 6 510-6 517.

[75]Manktelow P T, Carslaw K S, Mann G W, et al. The impact of dust on sulfate aerosol, CN and CCN during an East Asian dust storm[J]. Atmospheric Chemistry and Physics, 2010, 10(2): 365-382.

[76]Andreae M O, Crutzen P J. Atmospheric aerosols: Biogeochemical sources and role in atmospheric chemistry[J]. Science, 1997, 276(5 315): 1 052-1 058.

[77]Ito A, Feng Y. Role of dust alkalinity in acid mobilization of iron[J]. Atmospheric Chemistry and Physics, 2010, 10(19): 9 237-9 250.

[78]Rubasinghege G, Lentz R W, Scherer M M, et al. Simulated atmospheric processing of iron oxyhydroxide minerals at low pH: Roles of particle size and acid anion in iron dissolution[J]. Proceedings of the National Academy of Sciences, 2010, 107:6 628-6 633.

[79]Hinga K R. Effects of pH on coastal marine phytoplankton[J]. Marine Ecology Progress Series, 2002, 238: 281-300.

[80]Liu X, Millero F J. The solubility of iron in seawater[J]. Marine Chemistry, 2002, 77(1): 43-54.

[81]Hsu S C, Wong G T F, Gong G C, et al. Sources, solubility, and dry deposition of aerosol trace elements over the East China Sea[J]. Marine Chemistry, 2010, 120(1/4): 116-127.

[82]Chen C Y, Durbin E G. Effects of pH on the growth and carbon uptake of marine phytoplankton[J]. Marine Ecology  Progress Series, 1994, 109: 83-94.

[83]Hinga K R. Effects of pH on coastal phytoplankton[J]. Marine Ecology Progress Series, 2002, 238: 281-300.

[84]Bonneville S, Behrends T, Van C P. Solubility and dissimilatory reduction kinetics of iron(III) oxyhydroxides: A linear free energy relationship[J]. Geochimica et Cosmochimica Acta, 2009, 73(18): 5 273-5 282.

[85]Trick C G. Hydroxamate-siderophore production and utilizat ion by marine eubacteria[J]. Current Microbiology, 1989, 18: 375-378.

[86]Wu J, Luther G W. Complexation of Fe (III) by natural organic ligands in the Northwest Atlantic Ocean determined by a competitive equilibration method and kinetic approach[J]. Marine Chemistry, 1995, 50: 159-177.

[87][JP2]Sato M, Takeda S, Furuya K. Iron regeneration and organic iron(III)-binding ligand production during in situ zooplankton grazing experiment[J]. Marine Chemistry, 2007, 106(3/4): 471-488.[JP]

[88]Hudson R J M, Morel F M M. Trace metal transport by marine microorganisms: Implications of metal coordination kinetics[J].Deep-Sea Research, 1993, 40: 129-150.

[89]Gilbert B, Lu G, Kim C S. Stable cluster formation in aqueous suspensions of iron oxyhydroxide nanoparticles[J]. Journal of Colloid and Interface Science, 2007, 313(1): 152-159.

[90]Cui Yanhua, Dong Aijun, Qu Xiaojun. Siderophores-mediated iron uptake system of microorganisms[J]. Chemistry of Life, 2008, 28(6):786-790.[崔艳华,董爱军,曲晓军. 微生物铁载体运输系统[J]. 生命的化学, 2008, 28(6):786-790.]

[91]Rich H W, Morel F M M. Availability of well-defined ironcolloids to the marine diatom Thalassiosira weissflogii[J]. Limnology &  Oceanography, 1990, 35: 652-662.

[92]Naito K, Matsui M, Imai I. Ability of marine eukaryotic red tide microalgae to utilize insoluble iron[J]. Harmful Algae, 2005, 4(6): 1 021-1 032.

[93]Wells M L, Mayer L M, Donard O F X. The photolysis of colloidal iron in the oceans[J]. Nature, 1991, 353(6 341): 248-250.

[94]Hutchins D A, Bruland K W. Grazer-mediated regeneration and assimilation of Fe, Zn and Mn from planktonic prey[J]. Marine Ecology Progress Series, 1994, 110: 259-269.

[95]Barbeau K, Moffett J W, Caron D A, et al. Role of protozoan grazing in relieving iron limitation of phytoplankton[J]. Nature,1996, 380(6 569): 61-64.

[96]Barbeau K, Rue E L, Bruland K W, et al. Photochemical cycling of iron in the surface ocean mediated by microbial iron(III)-binding ligands[J]. 2001, Nature, 2001, 413: 409-413.

[97]Waychunas G A, Kim C S, Banfield J F. Nanoparticulate iron oxide minerals in soils and sediments: Unique properties and contaminant scavenging mechanisms[J]. Journal of Nanoparticle Research, 2005, 7: 409-433.

[98]Chen M, Dei R C H, Wang W X, et al. Marine diatom uptake of iron bound with natural colloids of different origins[J]. Marine Chemistry, 2003, 81(3/4): 177-189.

[99]Morgan B, Lahav O. The effect of pH on the kinetics of spontaneous Fe(II) oxidation by O2 in aqueous solution-basic principles and a simple heuristic description[J]. Chemosphere, 2007,68(11): 2 080-2 084.

[100]Cornell R M, Schwertmann U. The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses, Seconded[M].Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA, 2003.

[101]Qin Yanwen, Zhang Manping, Zhou Gefei, et al. Iron sources, existing forms and their limiting action on the primary productivity of phytoplankton in seawater[J]. Journal of Oceanography of Huanghai & Bohai Seas, 1998, 16(3): 67-75.[秦延文, 张曼平,周革非. 海洋中铁的来源、形态和对初级生产力的限制作用[J]. 黄渤海海洋, 1998, 16(3): 67-75.]

[102]Shi Z B, Krom M, Bonneville S, et al. Formation of iron nanoparticles and increase in iron reactivity in the mineral dust during simulated cloud processing[J]. Environmental Science & Technology, 2009, 43: 6 592-6 596.

[103]Shi Z B, Krom M, Jickells T D, et al. Impacts on iron solubility in the mineral dust by processes in the source region and the atmosphere: A review[J]. Aeolian Research, 2012, 5:21-42.

[104]Onishi T, Mitsudera H, Uchimoto K. Numerical simulation of dissolved iron production and transport in the Amur River and the Sea of Okhotsk[M]∥Taniguchi M, Shiraiwa T, eds. The Dilemma of Boundaries. Japan: Springer,2012:87-105.

[105]Chen H, Laskin A, Baltrusaitis J, et al. Coal fly ash as a source of iron in atmospheric dust[J]. Environmental Science & Technology, 2012, 46: 2112-2120.

[106]Luo C, Mahowald N, Bond T, et al. Combustion iron distribution and deposition[J]. Global Biogeochemical Cycles, 2008, 22: GB1012.

[107][JP2]Siefert R L, Pehkonen S O, Erel Y, et al.Iron photochemistry of queous suspensions of ambient aerosol with added organic acids[J].Geochimical et Cosmochimica Acta,1994,58:3 271-3 279.[JP]

[108]Solmon F, Chuang P Y, Meskhidze N, et al. Acidic processing of mineral dust iron by anthropogenic compounds over the north Pacific Ocean[J]. Journal of Geophysical Research: Atmospheres, 2009, 114: D02305.

[109]Scott C, Planavsky N J, Dupont C L, et al. Bioavailability of zinc in marine systems through time[J]. Nature Geoscience, 2012, 6: 125-128, doi:10.1038/ngeo1679.

[110]Bning P, Frllje H, Beck M, et al. Underestimation of the authigenic fraction of Cu and Ni in organic-rich sediments[J]. Marine Geology, 2012, 24-28:323-325.

[1] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[2] 孟宪萌,张鹏举,周宏,刘登峰. 水系结构分形特征的研究进展[J]. 地球科学进展, 2019, 34(1): 48-56.
[3] 王宇航, 朱园园, 黄建东, 宋虎跃, 杜勇, 李哲. 海相碳酸盐岩稀土元素在古环境研究中的应用[J]. 地球科学进展, 2018, 33(9): 922-932.
[4] 王芳慧, 陈莹, 王波, 李好文, 周升钱. 海洋微生物气溶胶的丰度、群落结构及影响机制[J]. 地球科学进展, 2018, 33(8): 783-793.
[5] 由德方, 王汝建, 肖文申. 北太平洋中部赫斯海隆(Hess Rise) 晚第四纪以来生源组分与粉尘输入的关系及其变化机制 *[J]. 地球科学进展, 2018, 33(11): 1203-1214.
[6] 程超, 于文刚, 贾婉婷, 林海宇, 李莲庆. 岩石热物理性质的研究进展及发展趋势[J]. 地球科学进展, 2017, 32(10): 1072-1083.
[7] 蒋建军,代立东,李和平,单双明,胡海英,惠科石. 地球内部物质电学性质原位测量的影响因素和导电机制——以地壳矿物为例[J]. 地球科学进展, 2013, 28(4): 455-466.
[8] 李云春,王显祥,赵茂俊. 纳米零价铁原位修复有机卤化物的影响因素[J]. 地球科学进展, 2013, 28(10): 1106-1118.
[9] 徐晓斌,葛宝珠,林伟立. 臭氧生成效率(OPE)相关研究进展[J]. 地球科学进展, 2009, 24(8): 845-853.
[10] 杨群慧,周怀阳,季福武,王虎,杨伟芳. 海底生物扰动作用及其对沉积过程和记录的影响[J]. 地球科学进展, 2008, 23(9): 932-941.
[11] 周跃飞,陆现彩,王汝成,陆建军. 长石微生物风化作用的研究现状与展望[J]. 地球科学进展, 2008, 23(1): 17-23.
[12] 邓琦,刘世忠,刘菊秀,孟泽,张德强. 南亚热带森林凋落物对土壤呼吸的贡献及其影响因素[J]. 地球科学进展, 2007, 22(9): 976-986.
[13] 刘璟,赵峰华,刘建权. 环境中Al 13的研究进展[J]. 地球科学进展, 2007, 22(3): 305-312.
[14] 张东秋;石培礼;张宪洲. 土壤呼吸主要影响因素的研究进展[J]. 地球科学进展, 2005, 20(7): 778-785.
[15] 郭胜利,张文菊,党廷辉,吴金水,郝明德. 干旱半干旱地区农田土壤NO 3-N深层积累及其影响因素[J]. 地球科学进展, 2003, 18(4): 584-591.
阅读次数
全文


摘要