地球科学进展 ›› 2008, Vol. 23 ›› Issue (1): 17 -23. doi: 10.11867/j.issn.1001-8166.2008.01.0017

综述与评述 上一篇    下一篇

长石微生物风化作用的研究现状与展望
周跃飞,陆现彩,王汝成,陆建军   
  1. 南京大学地球科学系内生金属成矿机制研究国家重点实验室,江苏 南京 210093
  • 收稿日期:2007-03-05 修回日期:2007-11-30 出版日期:2008-01-15
  • 通讯作者: 周跃飞 E-mail:yfzhou2713@gmail.com
  • 基金资助:

    教育部博士点基金项目“磁黄铁矿与氧化菌相互作用的实验研究”(编号:20050284044)和“铜陵地区多金属矿山酸性排水的微生物矿化作用研究”(编号:20050284043);国家自然科学基金项目“铜陵多金属矿山硫化物的微生物氧化作用研究”(编号:40573001)资助.

Recent Progress in the Study of Microbiomineralogy of Feldspar

Zhou Yuefei,Lu Xiancai,Wang Rucheng, Lu Jianjun   

  1. State Key Laboratory for Mineral Deposits Research,Department of Earth Sciences,Nanjing University,Nanjing 210093,China
  • Received:2007-03-05 Revised:2007-11-30 Online:2008-01-15 Published:2008-01-10

矿物—微生物相互作用是地球表生环境下重要的地质作用类型,由于硅酸盐矿物的微生物风化影响着地球物质循环及地貌的形成和演变,尤其受到地质地球化学领域的关注。作为地球表层分布最广的硅酸盐矿物类型,长石在风化分解过程中,微生物通常会以流体模式、生物膜及真菌菌丝等方式与矿物表面发生作用。而长石在微生物作用下的分解机制主要包括质子交换和配体络合作用。微生物生理活动、微生物及代谢产物种类、生长条件,以及长石的种类、结构、成分及表面特征等均会影响其风化速率和风化程度。由于长石在硅酸盐矿物中的代表性,因此对长石—微生物作用模式、机理、影响因素等方面的研究,可以大大促进硅酸盐的微生物地质学的发展。

Interactions between minerals and microorganisms, especially microbial weatherng of silicates which has been concerned much for its important significance in circulation of matters and evolution of topography, are important processes in subsurface of the Earth. As the most popular silicate on the Earth's surface, feldspar usually undergoes microbial weathering through three models: the fluid model, the biofilm and fungal hyphae. Usually, microorganisms can enhance decomposing feldspar by the proton and ligandpromoted mechanisms. The rate and degree for microbial weathering of feldspar are always affected by many factors such as physiological behaviors of microorganism, category of microorganisms and metabolites, growth condition and category, structure, composition of feldspar as well. It is believed that the researches on models, mechanisms, impact factors of interactions bewteen feldspar and microorganisms are very instructive in the investigaton of the geomicrobiology of silicate.

中图分类号: 

[1] Chai Yucheng. Disscussion on interdiscipline and Earth system science [J]. Earth Science Frontiers200293):2-4.[柴育成. 浅议学科交叉与地球系统科学[J].地学前缘200293):2-4.]

[2] Wang Pinxian. Earth system science in China Quo Vadis? [J]. Advances in Earth Science2003186: 837-851.[汪品先. 我国的地球系统科学研究向何处去?[J]. 地球科学进展2003186: 837-851.]

[3] Yuan Daoxian. Some cognitions on Earth system science [J].Geological Journal of China Universities199951: 1-6.[袁道先.对地球系统科学的几点认识[J]. 高校地质学报199951: 1-6.]

[4] Ehrlich H L. How microbes influence mineral growth and dissolution [J]. Chemical Geology1996132: 5-9.

[5] Ehrlich H L. Geomicrobiology: Its significance for geology [J]. Earth-Science Reviews199845: 45-60.

[6] Chardon E SLivens F RVaughan D J. Reactions of feldspar surfaces with aqueous solutions [J]. Earth-Science Reviews200628: 1-26. 

[7] Berner R A. Chemical weathering and its effect on atmospheric CO2 and climate [J]. Review in Mineralogy199531: 565-583.

[8] Muir I JNesbitt H W. Controls on differential leaching of calcium and aluminium from labradorite in dilute electrolyte solutions [J]. Geochimica et Cosmochimica Acta199256: 3 979-3 985.

[9] Hiebert F KBennett P C. Microbial control of silicate weathering in organic-rich ground water [J]. Science19922589: 278-281.

[10] Bennett P C. The dissolution of quartz in organic-rich aqueous systems [J]. Geochimica et Cosmochimica Acta199155:1 781-1 797.

[11] Bennett P CHiebert F KChoi W J. Microbial colonization and weathering of silicates in a petroleum-contaminated groundwater [J]. Chemical Geology1996132: 45-53.

[12] Welch S AUllman W J. The effect of microbial glucose metabolism on bytownite feldspar dissolution rates between 5 and 35 [J]. Geochimica et Cosmochimica Acta199963:3 247-3 259.

[13] Barker W WWelch S AChu Set al. Experimental observations of the effects of bacteria on aluminosilicate weathering [J]. American Mineralogist199883:1 551-1 563.

[14] Jongmans A Gvan Breemen NLungstrom U et al. Rock-eating fungi [J]. Nature1997389:682-683.

[15] Hoffland EGiesler RJongmans Tet al. Increasing feldspar tunneling by fungi across a north Sweden podzol chronosequence [J]. Ecosystems20025: 11-22.

[16] Smits M MHoffland EJongmans A Get al. Contribution of mineral tunneling to total feldspar weathering [J]. Geoderma20051251/2: 59-69.

[17] Banfield J FBarker W WWelch S Aet al. Biological impact on mineral dissolution: Application of the lichen model to understanding mineral weathering in the rhizosphere [J].PNAS1999967:3 404-3 411.

[18] Lee M RParsons I. Biomechanical and biochemical weathering of lichen-encrusted granite: Textural controls on organicmineral interactions and deposition of silica-rich layers [J].Chemical Geology1999161: 385-397.

[19] Lee M RHodson M EParsons I. The role of intergranular microtextures and microstructures in chemical and mechanical weathering: Direct comparisons of experimentally and naturally weathered alkali feldspars [J]. Geochimica et Cosmochimica Acta199862:2 771-2 788.

[20] Welch S ABarker W WBanfield J F. Microbial extracellular polysaccharides and plagioclase dissolution [J]. Geochimica et Cosmochimica Acta199963:1 405-1 419.

[21] Bennett P CHiebert F KRogers J R. Microbial control of mineral-groundwater equilibria: Macroscale to microscale [J]. Hydrogeology Journal20008:47-62. 

[22] Hutchens EValsami-Jones E Mceldowney Set al. The role of heterotrophic bacteria in feldspar dissolution—An experimental approach [J]. Mineralogical Magazine2003676:1 157-1 170.

[23] Bennett P CMelcer M ESiegel D Iet al. The dissolution of quartz in dilute aqueous solutions of organic acids at 25 [J]. Geochimica et Cosmochimica Acta198852:1 521-1 530.

[24] Amrhein CSuarez D L. The use of a surface complexation model to describe the kinetics of ligand-promoted dissolution of anorthite [J]. Geochimica et Cosmochimica Acta198852: 2 785-2 793.

[25] Wieland EWehrli BStumm W. The coordination chemistry of weathering: III. A generalization on the dissolution rates of minerals [J]. Geochimica et Cosmochimica Acta1988 52:1 969-1 981.

[26] Ullman W JKirchman D LWelch S Aet al. Laboratory evidence for microbially mediated silicate mineral dissolution in nature [J]. Chemical Geology1996132:11-17.

[27] Sterflinger K. Fungi as geologic agents [J]. Geomicrobiology Journal200017: 97-124.

[28] Drever J I. The effect of land plants on weathering rates of silicate minerals [J]. Geochimica et Cosmochimica Acta199458:2 325-2 332.

[29] Drever J IStillings L L. The role of organic acids in mineral weathering [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects1997120: 167-181.

[30] Sverdrup H U. The Kinetics of Base Cation Release Due to Chemical Weathering [M]. Lund Sweden:Lund University Press1990:246.

[31] Schweda P. Kinetics and mechanisms of alkali feldspar dissolution at low temperatures [D]. Stockholm: Stockholm University1990.

[32] Oxburgh RDrever J ISun Y. Mechanism of plagioclase dissolution in acid solutions at 25[J]. Geochimica et Cosmochimica Acta199458: 661-669.

[33] Wilson M J. Weathering of rocks by lichens with special reference to stonework: A review [J]. Land Reconstruction and Management20043: 51-60.

[34] Keller C KWood B D. Possibility of chemical weathering before the advent of vascular plants [J]. Nature1993364: 223-225.

[35] Welch S AUllman W J. The effect of organic acids on plagioclase dissolution rates and stoichiometry [J]. Geochimica et Cosmochimica Acta199357:2 725-2 736.

[36] Shotyk WNesbitt H W. Ligand-promoted dissolution of plagioclase feldspar: A comparison of the surface chemistry of dissolving labradorite and bytownite using SIMS [C]. The 2nd Int. Symp. on Geochemistry of the Earth's Surface and of Mineral FormationAix-en-Provence1990:320-321.

[37] Welch S AUllman W J. Dissolution of feldspars in oxalic acid solutions[C]Kharaka Y KMaest A Seds. Proceedings of the 7th Water Rock Interaction Meeting. Park CityUtahA.A. BalkemaRotterdam1992:127-130.

[38] Welch S AUllman W J. Effect of bacteria and organic acids on the apparent activation energy of feldspar dissolution at low temperatures[C]Abstr V M. Goldschmidt ConferenceUniversity ParkPa1995:24-26.

[39] Sheng X FHe L Y. Solubilization of potassium-bearing minerals by a wildtype strain of Bacillus edaphicus and its mutants and increased potassium uptake by wheat [J]. Canadian Journal Microbiology200652 1: 66-72.

[40] Sutherland I W. Bacterial exopolysaccharides [J]. Advances in Microbiological Physiology19728:143-213.

[41] Williams A GWimpenny J W T. Exopolysaccharide production by Pseudomonas NCIB1 1264 grown in continuous culture [J]. Journal of Genetic Microbiology1978104:47-57.

[42] Rogers J RBennett P CChoi W J. Feldspars as a source of nutrients for microorganisms [J]. American Mineralogist199883:1 532-1 540.

[43] Bennett P CRogers J RChoi W J. Silicatessilicate weatheringand microbial ecology [J]. Geomicrobiology Journal2001181: 3-19.

[44] Rogers J RBennett P C. Mineral stimulation of subsurface microorganisms: Release of limiting nutrients from silicates [J]. Chemical Geology2004203: 91-108.

[45] Hoffland EGiesler RJongmans A Get al. Feldspar tunneling by fungi along natural productivity gradients [J]. Ecosystems200368: 739-746.

[46] Maurice P ALee Y JHersman L E. Dissolution of Al-substituted goethites by an aerobic Pseudomonas mendocina var. bacteria [J]. Geochimica et Cosmochimica Acta2000648:1 363-1 374.

[47] Cail T LHochella M F. The effects of solution chemistry on the sticking efficiencies of viable Enterococcus faecalis: An atomic force microscopy and modeling study [J]. Geochimica Cosmochimica Acta20056912:2 959-2 969.

[48] Obst MGasser PMavrocordatos Det al. TEM-specimen preparation of cell/mineral interfaces by focused ion beam milling [J]. American Mineralogy200590:1 270-1 277.

[49] Benzerara KMenguy NGuyot Fet al. TEM study of a silicatecarbonate-interface prepared by focus ion beam milling [J]. Geochimica et Cosmochimica Acta2005696:1 413-1 422.

[50] Benzerara KHyun YoonMenguy Net al. Nanoscale environments associated with bioweathering of a Mg-Fe-pyroxene [J]. PNAS2005102: 979-982.

[51] Benzerara K NMenguy PLopez-Garcia T Het al. Nanoscale detection of organic signatures in carbonate microbialites [J]. PNAS200610325: 9 440-9 445.

[52] White A FBrantley S L. The effect of time on the weathering of silicate minerals: Why do weathering rates differ in the laboratory and field? [J]. Chemical Geology2003202:479-506.

[53] Schnoor J L. Kinetics of chemical weathering: A comparison of laboratory and field rates[C]Stumm Wed. Aquatic Chemical Kinetics. New York:Wiley1990:475-504.

[54] White A FHochella Jr M F. Surface chemistry associated with the cooling and subaerial weathering of recent basalt flows [J]. Geochimica et Cosmochimica Acta199256: 3 711-3 721.

[1] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[2] 殷怡童,罗锡明. 含铁介质稳定砷与根际微生物的相互作用[J]. 地球科学进展, 2020, 35(10): 1052-1063.
[3] 冯世博,姜玥璐,蔡中华,曾艳华,周进. 海洋环境中铁的来源、微生物作用过程及生态效应[J]. 地球科学进展, 2019, 34(5): 513-522.
[4] 罗中原,李江涛,贾国东. 深水珊瑚的食物及其地球化学意义[J]. 地球科学进展, 2019, 34(12): 1234-1242.
[5] 孟宪萌,张鹏举,周宏,刘登峰. 水系结构分形特征的研究进展[J]. 地球科学进展, 2019, 34(1): 48-56.
[6] 王宇航, 朱园园, 黄建东, 宋虎跃, 杜勇, 李哲. 海相碳酸盐岩稀土元素在古环境研究中的应用[J]. 地球科学进展, 2018, 33(9): 922-932.
[7] 王芳慧, 陈莹, 王波, 李好文, 周升钱. 海洋微生物气溶胶的丰度、群落结构及影响机制[J]. 地球科学进展, 2018, 33(8): 783-793.
[8] 祁建华, 李孟哲, 高冬梅, 甄毓, 张大海. 沙尘天气对大气生物气溶胶中微生物浓度、特性和分布的影响[J]. 地球科学进展, 2018, 33(6): 568-577.
[9] 王龙, KhalidLatif, MuhammadRiaz, 刘晓晔. 微生物碳酸盐岩的成因、分类以及问题与展望——来自华北地台寒武系微生物碳酸盐岩研究的启示[J]. 地球科学进展, 2018, 33(10): 1005-1023.
[10] 王蕾彬, 魏海涛, 贾佳, 李国强, 陈发虎. 亚洲中部干旱区黄土释光测年研究进展及其问题[J]. 地球科学进展, 2018, 33(1): 93-102.
[11] 张亮, 秦蕴珊. 深海热液生态系统特征及其对极端微生物的影响[J]. 地球科学进展, 2017, 32(7): 696-706.
[12] 程超, 于文刚, 贾婉婷, 林海宇, 李莲庆. 岩石热物理性质的研究进展及发展趋势[J]. 地球科学进展, 2017, 32(10): 1072-1083.
[13] 郑伟, 齐永安, 张忠慧, 邢智峰. 豫西荥阳陆相二叠纪—三叠纪之交的微生物成因构造(MISS)及其地质意义[J]. 地球科学进展, 2016, 31(7): 737-750.
[14] 王莹, 刘同旭, 李芳柏. 微生物—矿物间半导体介导电子传递机制研究进展[J]. 地球科学进展, 2016, 31(4): 347-356.
[15] 吴金水, 葛体达, 祝贞科. 稻田土壤碳循环关键微生物过程的计量学调控机制探讨[J]. 地球科学进展, 2015, 30(9): 1006-1017.
阅读次数
全文


摘要