[1] Chai Yucheng. Disscussion on interdiscipline and Earth system science [J]. Earth Science Frontiers,2002,9(3):2-4.[柴育成. 浅议学科交叉与地球系统科学[J].地学前缘,2002,9(3):2-4.]
[2] Wang Pinxian. Earth system science in China Quo Vadis? [J]. Advances in Earth Science,2003,18(6): 837-851.[汪品先. 我国的地球系统科学研究向何处去?[J]. 地球科学进展,2003,18(6): 837-851.]
[3] Yuan Daoxian. Some cognitions on Earth system science [J].Geological Journal of China Universities,1999,5(1): 1-6.[袁道先.对地球系统科学的几点认识[J]. 高校地质学报,1999,5(1): 1-6.]
[4] Ehrlich H L. How microbes influence mineral growth and dissolution [J]. Chemical Geology,1996,132: 5-9.
[5] Ehrlich H L. Geomicrobiology: Its significance for geology [J]. Earth-Science Reviews,1998,45: 45-60.
[6] Chardon E S,Livens F R,Vaughan D J. Reactions of feldspar surfaces with aqueous solutions [J]. Earth-Science Reviews,2006,28: 1-26.
[7] Berner R A. Chemical weathering and its effect on atmospheric CO2 and climate [J]. Review in Mineralogy,1995,31: 565-583.
[8] Muir I J,Nesbitt H W. Controls on differential leaching of calcium and aluminium from labradorite in dilute electrolyte solutions [J]. Geochimica et Cosmochimica Acta,1992,56: 3 979-3 985.
[9] Hiebert F K,Bennett P C. Microbial control of silicate weathering in organic-rich ground water [J]. Science,1992,258(9): 278-281.
[10] Bennett P C. The dissolution of quartz in organic-rich aqueous systems [J]. Geochimica et Cosmochimica Acta,1991,55:1 781-1 797.
[11] Bennett P C,Hiebert F K,Choi W J. Microbial colonization and weathering of silicates in a petroleum-contaminated groundwater [J]. Chemical Geology,1996,132: 45-53.
[12] Welch S A,Ullman W J. The effect of microbial glucose metabolism on bytownite feldspar dissolution rates between 5℃ and 35℃ [J]. Geochimica et Cosmochimica Acta,1999,63:3 247-3 259.
[13] Barker W W,Welch S A,Chu S,et al. Experimental observations of the effects of bacteria on aluminosilicate weathering [J]. American Mineralogist,1998,83:1 551-1 563.
[14] Jongmans A G,van Breemen N,Lungstrom U, et al. Rock-eating fungi [J]. Nature,1997,389:682-683.
[15] Hoffland E,Giesler R,Jongmans T,et al. Increasing feldspar tunneling by fungi across a north Sweden podzol chronosequence [J]. Ecosystems,2002,5: 11-22.
[16] Smits M M,Hoffland E,Jongmans A G,et al. Contribution of mineral tunneling to total feldspar weathering [J]. Geoderma,2005,125(1/2): 59-69.
[17] Banfield J F,Barker W W,Welch S A,et al. Biological impact on mineral dissolution: Application of the lichen model to understanding mineral weathering in the rhizosphere [J].PNAS,1999,96(7):3 404-3 411.
[18] Lee M R,Parsons I. Biomechanical and biochemical weathering of lichen-encrusted granite: Textural controls on organicmineral interactions and deposition of silica-rich layers [J].Chemical Geology,1999,161: 385-397.
[19] Lee M R,Hodson M E,Parsons I. The role of intergranular microtextures and microstructures in chemical and mechanical weathering: Direct comparisons of experimentally and naturally weathered alkali feldspars [J]. Geochimica et Cosmochimica Acta,1998,62:2 771-2 788.
[20] Welch S A,Barker W W,Banfield J F. Microbial extracellular polysaccharides and plagioclase dissolution [J]. Geochimica et Cosmochimica Acta,1999,63:1 405-1 419.
[21] Bennett P C,Hiebert F K,Rogers J R. Microbial control of mineral-groundwater equilibria: Macroscale to microscale [J]. Hydrogeology Journal,2000,8:47-62.
[22] Hutchens E,Valsami-Jones E, Mceldowney S,et al. The role of heterotrophic bacteria in feldspar dissolution—An experimental approach [J]. Mineralogical Magazine,2003,67(6):1 157-1 170.
[23] Bennett P C,Melcer M E,Siegel D I,et al. The dissolution of quartz in dilute aqueous solutions of organic acids at 25℃ [J]. Geochimica et Cosmochimica Acta,1988,52:1 521-1 530.
[24] Amrhein C,Suarez D L. The use of a surface complexation model to describe the kinetics of ligand-promoted dissolution of anorthite [J]. Geochimica et Cosmochimica Acta,1988,52: 2 785-2 793.
[25] Wieland E,Wehrli B,Stumm W. The coordination chemistry of weathering: III. A generalization on the dissolution rates of minerals [J]. Geochimica et Cosmochimica Acta,1988, 52:1 969-1 981.
[26] Ullman W J,Kirchman D L,Welch S A,et al. Laboratory evidence for microbially mediated silicate mineral dissolution in nature [J]. Chemical Geology,1996,132:11-17.
[27] Sterflinger K. Fungi as geologic agents [J]. Geomicrobiology Journal,2000,17: 97-124.
[28] Drever J I. The effect of land plants on weathering rates of silicate minerals [J]. Geochimica et Cosmochimica Acta,1994,58:2 325-2 332.
[29] Drever J I,Stillings L L. The role of organic acids in mineral weathering [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,1997,120: 167-181.
[30] Sverdrup H U. The Kinetics of Base Cation Release Due to Chemical Weathering [M]. Lund, Sweden:Lund University Press,1990:246.
[31] Schweda P. Kinetics and mechanisms of alkali feldspar dissolution at low temperatures [D]. Stockholm: Stockholm University,1990.
[32] Oxburgh R,Drever J I,Sun Y. Mechanism of plagioclase dissolution in acid solutions at 25℃[J]. Geochimica et Cosmochimica Acta,1994,58: 661-669.
[33] Wilson M J. Weathering of rocks by lichens with special reference to stonework: A review [J]. Land Reconstruction and Management,2004,3: 51-60.
[34] Keller C K,Wood B D. Possibility of chemical weathering before the advent of vascular plants [J]. Nature,1993,364: 223-225.
[35] Welch S A,Ullman W J. The effect of organic acids on plagioclase dissolution rates and stoichiometry [J]. Geochimica et Cosmochimica Acta,1993,57:2 725-2 736.
[36] Shotyk W,Nesbitt H W. Ligand-promoted dissolution of plagioclase feldspar: A comparison of the surface chemistry of dissolving labradorite and bytownite using SIMS [C]. The 2nd Int. Symp. on Geochemistry of the Earth's Surface and of Mineral Formation,Aix-en-Provence,1990:320-321.
[37] Welch S A,Ullman W J. Dissolution of feldspars in oxalic acid solutions[C]∥Kharaka Y K,Maest A S,eds. Proceedings of the 7th Water Rock Interaction Meeting. Park City,Utah,A.A. Balkema,Rotterdam,1992:127-130.
[38] Welch S A,Ullman W J. Effect of bacteria and organic acids on the apparent activation energy of feldspar dissolution at low temperatures[C]∥Abstr V M. Goldschmidt Conference,University Park,Pa,1995:24-26.
[39] Sheng X F,He L Y. Solubilization of potassium-bearing minerals by a wildtype strain of Bacillus edaphicus and its mutants and increased potassium uptake by wheat [J]. Canadian Journal Microbiology,2006,52 (1): 66-72.
[40] Sutherland I W. Bacterial exopolysaccharides [J]. Advances in Microbiological Physiology,1972,8:143-213.
[41] Williams A G,Wimpenny J W T. Exopolysaccharide production by Pseudomonas NCIB1 1264 grown in continuous culture [J]. Journal of Genetic Microbiology,1978,104:47-57.
[42] Rogers J R,Bennett P C,Choi W J. Feldspars as a source of nutrients for microorganisms [J]. American Mineralogist,1998,83:1 532-1 540.
[43] Bennett P C,Rogers J R,Choi W J. Silicates,silicate weathering,and microbial ecology [J]. Geomicrobiology Journal,2001,18(1): 3-19.
[44] Rogers J R,Bennett P C. Mineral stimulation of subsurface microorganisms: Release of limiting nutrients from silicates [J]. Chemical Geology,2004,203: 91-108.
[45] Hoffland E,Giesler R,Jongmans A G,et al. Feldspar tunneling by fungi along natural productivity gradients [J]. Ecosystems,2003,6(8): 739-746.
[46] Maurice P A,Lee Y J,Hersman L E. Dissolution of Al-substituted goethites by an aerobic Pseudomonas mendocina var. bacteria [J]. Geochimica et Cosmochimica Acta,2000,64(8):1 363-1 374.
[47] Cail T L,Hochella M F. The effects of solution chemistry on the sticking efficiencies of viable Enterococcus faecalis: An atomic force microscopy and modeling study [J]. Geochimica Cosmochimica Acta,2005,69(12):2 959-2 969.
[48] Obst M,Gasser P,Mavrocordatos D,et al. TEM-specimen preparation of cell/mineral interfaces by focused ion beam milling [J]. American Mineralogy,2005,90:1 270-1 277.
[49] Benzerara K,Menguy N,Guyot F,et al. TEM study of a silicatecarbonate-interface prepared by focus ion beam milling [J]. Geochimica et Cosmochimica Acta,2005,69(6):1 413-1 422.
[50] Benzerara K,Hyun Yoon,Menguy N,et al. Nanoscale environments associated with bioweathering of a Mg-Fe-pyroxene [J]. PNAS,2005,102: 979-982.
[51] Benzerara K N,Menguy P,Lopez-Garcia T H,et al. Nanoscale detection of organic signatures in carbonate microbialites [J]. PNAS,2006,103(25): 9 440-9 445.
[52] White A F,Brantley S L. The effect of time on the weathering of silicate minerals: Why do weathering rates differ in the laboratory and field? [J]. Chemical Geology,2003,202:479-506.
[53] Schnoor J L. Kinetics of chemical weathering: A comparison of laboratory and field rates[C]∥Stumm W,ed. Aquatic Chemical Kinetics. New York:Wiley,1990:475-504.
[54] White A F,Hochella Jr M F. Surface chemistry associated with the cooling and subaerial weathering of recent basalt flows [J]. Geochimica et Cosmochimica Acta,1992,56: 3 711-3 721. |