地球科学进展 ›› 2018, Vol. 33 ›› Issue (10): 1005 -1023. doi: 10.11867/j.issn.1001-8166.2018.10.1005.

综述与评述 上一篇    下一篇

微生物碳酸盐岩的成因、分类以及问题与展望——来自华北地台寒武系微生物碳酸盐岩研究的启示
王龙 1( ), KhalidLatif 1, 2, MuhammadRiaz 1, 刘晓晔 1   
  1. 1. 中国地质大学(北京)地球科学与资源学院, 北京 100083
    2. National Centre of Excellence in Geology, University of Peshawar, Peshawar 25130, Pakistan
  • 收稿日期:2018-04-12 修回日期:2018-09-04 出版日期:2018-10-10
  • 基金资助:
    国家自然科学基金项目“华北克拉通北缘寒武纪生物丘沉积组构多样性研究”(编号:41472090)资助.

The Genesis, Classification, Problems and Prospects of Microbial Carbonates:Implications from the Cambrian Carbonate of North China Platform

Long Wang 1( ), Latif Khalid 1, 2, Riaz Muhammad 1, Xiaoye Liu 1   

  1. 1.School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
    2.National Centre of Excellence in Geology, University of Peshawar, Peshawar 25130, Pakistan
  • Received:2018-04-12 Revised:2018-09-04 Online:2018-10-10 Published:2018-11-16
  • About author:

    First author:Wang Long(1990-),male,Huining County,Gansu Province, Ph.D student. Research areas include sedimentology and petroleum geology. E-mail:wanglong1127@163.com

  • Supported by:
    Project supported by the National Natural Science Foundation of China "Study on the diversity of sedimentary fabrics of cambrian microbial mound on the northern margin of the North China Platform"(No.41472090).

微生物碳酸盐岩以其漫长的地史分布、多样的产出环境、复杂的沉积构成和与微生物活动密切相关的特性而成为沉积学研究的焦点,同时也是沉积学研究的难点,被誉为“最难研究的沉积岩之一”。其研究的中心主要是钙化微生物席和微生物膜及其地质记录,即石化/成岩作用的产物。从成因着手,系统总结和梳理了2个类型的微生物群落,较薄的生物膜和较厚的微生物席,经过生物/有机矿化作用和石化/成岩作用形成微生物碳酸盐岩的过程。提出除微生物群落自身的复杂性和沉积过程的复杂性之外,多重状生物膜是导致微生物碳酸盐岩多样性的另外一个重要原因。以中国华北地台寒武系微生物碳酸盐岩的研究为基础,梳理了不同类型的微生物碳酸盐岩的沉积特征和分类依据。认为微生物碳酸盐岩应该置于Embry和Kloven描述的黏结岩类下,根据宏观组构可进一步分为叠层石、凝块石、核形石、层纹石和均一石5类,树形石不易独立成类而应归于凝块石。微生物碳酸盐岩为整个地质历史时期与微生物活动相关的生物/有机矿化作用过程研究提供了有用信息,不但是了解地球表层环境演变的一个重要窗口,而且还形成和储集了较大规模的油气,具有重要的科学意义和经济价值。

Currently, sedimentologists focus on the challenging issue of microbial carbonates, which are regarded as "one of the sedimentary rocks most difficult to study", having complicated sedimentary fabric. Their characteristic features closely related to microbial activity, distributed over a long period of geological time, and formed in diversified sedimentary environments. The main research concentrations are the calcified microbial mats and biofilms in geological records as the products of lithification and diagenesis. Starting from the origin, this paper systematically reviewed and explained the processes dwelling within two types of microbial communities, the thinner biofilm and the thicker microbial mat, which enabled them to convert into microbial carbonates through biomineralization and lithification. This study proposed that the existence of multiple microbial mats was another important cause for the diversification and complexity of microbial carbonates in addition to its complex depositional process. Moreover, the sedimentary characteristics and classification of different types of microbial carbonates were reviewed, exemplifying the Cambrian microbial carbonates in the North China Platform. These microbial carbonates are suggested to be placed under "bindstone" after Embry and Kloven, which can be further divided into 5 types, stromatolites, thrombolites, oncolites, laminites and leiolites. Dendrolite is not categorized as a separate class, instead attributed to thrombolites. The microbial carbonates may possess good source rock potential because of the enriched organic content, and may also serve as hydrocarbon reservoirs because of certain microbial textures and fabrics leading to significant porosity and permeability. Because of their biomineralization processes related to microbial activity, the microbial carbonates are not only an important window to understand the evolution of the earth's surface environment, but also capable of forming large-scale reservoirs, and their scientific and economic values are self-evident.

中图分类号: 

图1 微生物席(膜)的构成及结构(据参考文献[ 29 , 30 , 31 ]修改)
(a)古巴现代微生物席:纹层A为2014年发育的微生物席,纹层B为表面黏性微生物席,纹层C为较早(古代)形成的微生物席及沉积物;对微生物席的顶部10 mm进行氧气和硫化物的微电极测量(方框位置),发现氧气的峰值对应于绿色纹层(纹层A的顶部),表明了较高的光合作用活动(据参考文献[ 29 ]修改);(b)在叠层石微生物席中,围绕蓝细菌和异养细菌(蓝色)发育大量EPS分泌物(绿色);红色的圆形物体为碳酸钙沉积物——鲕粒,共焦激光扫描显微照片(据参考文献[ 30 ]修改);(c)叠层石中的蓝细菌生物膜,生物膜由丝状蓝细菌(C)所主导,也出现了少量的球形蓝细菌(CC),下部的石化部分可见蓝细菌丝状体(LS)的残余物(据参考文献[ 31 ]修改)
Fig.1 The fabric and structure of microbial mats and biofilms (modified after references[29~31])
(a) Modern microbial mats of Cuba: Layer A corresponds to the microbial mat developed during the year 2014; Layer B is the surface cohesive mat;Layer C corresponds to ancient mats and sediments; Microelectrode measurements of oxygen and sulphide in the top 10 mm of the mat (the square indicates the location of the measurements). The O 2 peak is associated with the green laminae (upper part of Layer A) and indicates high photosynthetic activity (modified after reference[29]). (b)The abundant Extracellular Polymeric Substance (EPS) secretions (green) surrounding cyanobacteria and heterotrophic bacteria (blue) within a stromatolite microbial mat. The large round objects (red) are calcium carbonate sediments,called ooids. Image was collected using a confocal scanning laser microscopy (modified after reference [30]) . (c) Cyanobacterial biofilms in stromatolites, which are dominated by filamentous cyanobacteria (C), and a small number of Coccoid Cyanobacteria (CC). The lower lithified portion shows the residues of cyanobacterial filaments (LS; modified after reference[31])
图2 钙化蓝细菌的形态学分类(据参考文献[ 35 ]修改)和一些典型的钙化蓝细菌(华北地台寒武系)
(a)~(c)为管状蓝细菌,其中葛万菌的菌丝未分支,管状构造发育良好,互相不规则的缠绕状,单一直径的管状丝状体小于50 μm,并且具有一厚度均匀的薄壁;取样层为寒武系徐庄组,取样地点吉林白山剖面;(d)~(f)团块状、棒状或球粒状致密泥晶构成的蓝细菌,其中附枝菌为粗枝杈状,枝晶状生长;取样层为寒武系凤山组,取样地点辽宁金州湾剖面;(g)~(i)中空状(具房室状)蓝细菌,其中肾形菌或饼状菌呈不规则肾形或小球状,泥晶壁的厚度约为10 μm,中腔为微亮晶方解石填充;取样层为寒武系碱厂组,取样地点辽宁复州湾剖面
Fig.2 Morphological classification of cyanobacteria (modified after reference[35]),and some typical Calcified cyanobacteria of Cambrian in the North China Platform
(a)~(c) Tubular cyanobacteria, in which the Girvanella have unbranched, well developed tubular, and irregularly tanged filaments with a diameter less than 50 μm,and uniform thickness; Cambrian Xuzhuang Formation, Jilin Baishan section. (d)~(f) The cyanobacteria are composed by lumpy,rod-shaped or dense micritc thalli, with branching and dendritic grown; Cambrian Fengshan Formation, Liaoning Jinzhou Bay section. (g)~(i) Hollow chambers of cyanobacteria, in which the Renalcis or Tarthina are preserved in irregular kidney or spherical shapes, with micritic walls of 10 μm thickness, and their cavities are filled with micro-sparite; Cambrian Jianchang Formation, Liaoning Fuzhou Bay section
图3 推测的CCMs诱导下蓝细菌鞘的钙化作用机制(据参考文献[ 47 ]修改)
(a)葛万菌丝状体及暗色泥晶鞘(白色箭头);华北地台寒武系徐庄组,辽宁金州湾;(b)CCMs机制:细胞主动吸HC O 3 - ,并释放OH -,导致细胞外鞘的pH值升高,进而诱发鞘内碳酸钙成核和沉淀,最终导致鞘被碳酸钙晶体浸染并保存下来
Fig.3 Presumed mechanism of calcified cyanobacteria sheath induced by CCMs (modified after reference[47])
(a) Girvanella filaments and sheath (white arrow); Cambrian Xuzhuang Formation of North China Platform, Liaoning Jinzhou Bay section;(b) CCMs. The cells actively absorb HC O 3 - and release OH -, leading to pH increase around the sheath, which in turn induces nucleation and precipitation of calcium carbonate, and the preservation of Girvanella sheath
图4 微生物席垂向微环境梯度中细菌群落的活动与碳酸钙的沉淀—溶解作用(据参考文献[8,56,57]修改)
(a)微生物席中氧气、硫化物和pH值在24小时内的变化,剖面I和II分别为下午2点和早上3点的“地球化学快照”,可以最显著地反映出微生物席在白天和黑夜之间的不同。当黑夜降临时,由于光合作用的停止和异常细菌的消耗,微生物席很快就转变为缺氧环境(据参考文献[8,56]修改);(b)发生在一个典型的微生物席中的6种主要化学代谢反应,这些反应按对碳酸钙沉淀作用的影响分类;光合作用和硫酸盐还原反应通过增加微环境碱度而促进沉淀,而呼吸作用、硫化物的氧化反应和发酵作用则很可能会导致溶解作用的发生,当黑夜降临时,需氧细菌的活动逐渐停止,厌氧的异养微生物的活动开始占据主导地位。碳酸钙的净沉淀量取决于不同类型的微生物的新陈代谢活动及其时空分布及变化(据参考文献[8,57]修改)
Fig.4 Activities of microbial communities in a microbial mat under vertical microenvironment gradients leading to carbonate precipitation and dissolution (modified after references[8,56,57])
(a)The variation in oxygen, sulfide and pH within a microbial mat over a 24 h period. Profiles I and II represent two geochemical "snapshots" taken at 2pm and 3am that show key differences in depth profiles between day and night. As soon as the dark period starts, the photosynthesis ceases and the mat turns completely anoxic because of rapid O 2 consumption by aerobic heterotrophs (modified after references[8,56]). (b) The six major guilds of microorganisms that compose a typical microbial mat are arranged by their respective effects on the precipitation process. Photosynthesis and sulfate reduction are known to increase alkalinity (promoting carbonate precipitation), whereas aerobic respiration, sulfide oxidation and fermentation are more likely to induce dissolution. When oxygen-depending metabolisms stop during the night, anaerobic heterotrophy such as sulfate reduction prevails. The net carbonate precipitation depends on the balance between the different metabolic activities as well as their temporal and spatial variations (modified after references[8,57])
图5 灰岩的成因—结构分类(据参考文献[ 61 ]修改)
Fig.5 The genetic-textural classification of limestones (modified after reference[61])
图6 不同尺度下微生物碳酸盐岩的沉积构造及组构特征(华北地台寒武系)
(a)微生物生物层(白色箭头),寒武系徐庄组,河北省邢台市北会村;(b)微生物丘(白色箭头),寒武系徐庄组,河南省鲁山县;(c)(b)的局部放大,不显任何构造,由泥晶组成的均一石;(d)叠层石,箭头指向叠层石主体,寒武系凤山组,河北省井陉县;(e)凝块石,寒武系凤山组,河北省井陉县;(f)核形石(白色箭头),寒武系毛庄组,河北省邢台市北会村;(g)叠层石的显微照片,箭头指向微叠层状构造,寒武系凤山组,路通沟
Fig.6 Sedimentary structures and fabric of microbial carbonates in different scales (Cambrian of North China Platform)
(a) Microbialbiostrome (white arrows); Cambrian Xuzhuang Formation; Xingtai Beihui section, Hebei Province; (b) Microbial mound (white arrows);Cambrian Xuzhuang Formation; Lushan section, Henan Province; (c) A close up of (b), note leiolite without any macro-structure; (d) Stromatolite,and the arrows point to its column; Cambrian Fengshan Formation; Jingxing section, Hebei Province; (e) Thrombolite; Cambrian Fengshan Formation; Jingxing section, Hebei Province; (f) Oncoids (white arrows); Cambrian Maozhuang Formation; Xingtai Beihui section, Hebei Province; (g) Microstromatdite and the arrows pointing to micro-lamella;Cambrian Fengshan Formation; Lutonggou section
图7 微观尺度下的钙化(蓝细菌)微生物席( Lithocodium)
(a)左下角为 Lithocodium,可见饼状菌或肾形菌化石(白色箭头),右上角主要为致密球粒状泥晶构成的附枝菌,枝晶结构已经很模糊(可能是硫酸盐还原细菌降解所致),两者之间没有明显的界限;(b)棒状或球粒状致密泥晶构成的附枝菌,趋近(a)取样点,进而推断了(a)右上角的蓝细菌类型;(c)不规则分布的丝状蓝细菌的残余物(亮晶方解石),呈网状散布在泥晶基质中,较多的黄铁矿(白色箭头)表明了可能的硫酸盐还原细菌的活动;(d)现象同(c),隐约可见管丝状蓝细菌化石(白色箭头);(a)~(d)都为单偏光镜显微照片;(a)和(b)为寒武系凤山组,辽宁金州湾剖面,(c)为寒武系张夏组,河北秦皇岛驻操营剖面,(d)为寒武系长山组,吉林郭家店剖面
Fig.7 Calcified (Cyanobacteria) microbial mats in microcosmic scale ( Lithocodium)
(a) The lower-left corner is Lithocodium, note Tarthina (white arrows); the upper-right part is Epithyton with blurred branches (probably due to the degradation by sulfate-reducing bacteria), and there is no obvious boundary between the two; (b) Epithyton with rod or spherical shapes, the sample near (a), impies the type of cyanobacterial in the upper-right part of (a); (c) Irregularly distributed calcified cyanobacteria (sparite) are dispersed in the micrite, and pervasive pyrite (white arrows) indicates the possible activities of sulfate-reducing bacteria; (d) has similar phenomena with (c), note faintly visible tubular filamentous of cyanobacteria (white arrows); (a)and (b) is Cambrian Fengshan Formation, Liaoning Jinzhou Bay section,(c)is Cambrian Zhangxia Formation, Hebei Qinhuangdao Zhucaoying section,and (d) is Cambrian Changshan Formation, Jilin Guojiadian section
图8 华北地台寒武系中多种微生物碳酸盐岩的共生现象
(a)整体为均一石质微生物丘,球形,直径约2.2 m,寒武系崮山组,北京下苇甸;(b)为(a)的局部放大,可见叠层石和硬地(底)构造;(c)为(a)的局部放大,见凝块构造,在丘上可见清晰的缝合线;(d)为(a)的显微照片,在泥晶和微亮晶基质中可见溶解—充填结构的鲕粒;(e)均一石微生物丘和含鲕粒含生物碎屑微生物丘交互生长,寒武系徐庄组,河北省唐县;(f)核心石、粗鲕粒和细鲕粒共生现象,寒武系徐庄组,河南省济源市
Fig.8 Symbiosis of various microbial carbonates in Cambrian of the North China Platform
(a) A leiolite microbial mound, spherical, about 2.2 m in diameter, Cambrian Gushan Formation, Beijing Xiaweidian section; (b) A close up of (a), note stromatolite and hard ground; (c) A close up of (a), note mud clots and clear stylolite; (d) A micrograph of (a), note the ooid with a dissolved-filled structure distributed in the micrite and micro-sparite; (e) Symbiosis of leiolite microbial mound and oolitic-bioclastic microbial mound, Cambrian Xuzhuang Formation, Hebei Tangxian section; (f) Symbiosis of oncoids, coarse ooide and fine ooides, Cambrian Xuzhuang Formation, He'nan Jiyuan section
图9 大气中CO 2水平与微生物碳酸盐岩的组构演化及蓝细菌鞘的出现(据参考文献[ 35 ]修改)
Fig.9 The CO 2 level in the atmosphere, the fabric evolution of microbial carbonates and first appearance of calcified cyanobacteria sheath (modified after reference[35])
[1] Burne R V, Moore L S.Microbialites, organosedimentary deposits of benthic microbial communities[J]. Palaios, 1987, 2(3):241-254.
doi: 10.2307/3514674     URL    
[2] Riding R.Microbial carbonates: The geological record of calcified bacterial-algal mats and biofilms[J]. Sedimentology, 2000, 47(Suppl.1): 179-214.
doi: 10.1046/j.1365-3091.2000.00003.x     URL    
[3] Riding R.Structure and composition of organic reefs and carbonate mud mounds: Concepts and categories[J]. Earth Science Reviews, 2002, 58(1):163-231.
doi: 10.1016/S0012-8252(01)00089-7     URL    
[4] Mei Mingxiang.Revised classification of microbial carbonates: Complementing the classification of limestones[J]. Earth Science Frontiers, 2007, 14(5):222-234.
[梅冥相. 微生物碳酸盐岩分类体系的修订:对灰岩成因结构分类体系的补充[J]. 地学前缘, 2007, 14(5):222-234.]
doi: 10.3321/j.issn:1005-2321.2007.05.022     URL    
[5] Nutman A P, Bennett V C, Friend C R L, et al. Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures[J]. Nature, 2016, 537(7 621):535.
doi: 10.1038/nature19355     URL     pmid: 27580034
[6] Grotzinger J P, Knoll A H.Stromatolites in Precambrian carbonates: Evolutionary mileposts or environmental dipsticks?[J]. Annual Review of Earth & Planetary Sciences, 1999, 27(1):313.
doi: 10.1146/annurev.earth.27.1.313     URL     pmid: 11543060
[7] Bosence D, Gibbons K, Heron D P L, et al. Microbial carbonates in space and time: Introduction[J]. Geological Society London Special Publications, 2015, 418(1):437-454.
doi: 10.1144/SP418.14     URL    
[8] Dupraz C, Reid R P, Braissant O, et al. Processes of carbonate precipitation in modern microbial mats[J]. Earth Science Reviews, 2009, 96(3):141-162.
doi: 10.1016/j.earscirev.2008.10.005     URL    
[9] Mei Mingxiang.Feature and nature of microbial-mat: Theoretical basis of microbial-mat sedimentology[J]. Journal of Palaeogeography, 2014, 16(3):285-304.
[梅冥相. 微生物席的特征和属性:微生物席沉积学的理论基础[J]. 古地理学报, 2014, 16(3):285-304.]
doi: 10.7605/gdlxb.2014.03.026     URL    
[10] Luo Ping, Wang Shi, Li Pengwei, et al. Review and prospectives of microbial carbonate reservoirs[J]. Acta Sedimentologica Sinica, 2013, 31(5):807-823.
[罗平,王石,李朋威,等. 微生物碳酸盐岩油气储层研究现状与展望[J]. 沉积学报, 2013, 31(5):807-823.]
URL    
[11] Tucker M E, Wright V P, Dickson J A D. Carbonate sedimentology[J]. Environmental & Engineering Geoscience, 2009, 18(4):401-402.
[12] Kalkowsky E.Oolith and Stromatolith im norddeutschen Buntsandstein[J]. Zeitschrift Der Deutschen Geologischen Gesellschaft, 1908, 60:68-125.
URL    
[13] Thompson E F.Journal of researches into the geology and natural history of the various countries visited by H.M.S. Beagle[J]. Yale Journal of Biology & Medicine, 1953, 26(1):99.
URL    
[14] Logan B W, Rezak R, Ginsburg R N.Classification and environmental significance of algal stromatolites[J]. Journal of Geology, 1964, 72(1):68-83.
doi: 10.1086/626965     URL    
[15] Brock T D, Madigan M T, Martinko J M,et al. Biology of Microorganisms(7th edition)[M]. New Jersey: Prentice Hall,1994.
[16] Tice M M, Lowe D R.Photosynthetic microbial mats in the 3,416-Myr-old ocean[J]. Nature, 2004, 431(7 008):549-552.
doi: 10.1038/nature02888     URL     pmid: 15457255
[17] Tice M M, Lowe D R.Hydrogen-based carbon fixation in the earliest known photosynthetic organisms[J]. Geology, 2006, 34(1): 37-40.
doi: 10.1130/G22012.1     URL    
[18] Farmer J.Hydrothermal systems: Doorways to early biosphere evolution[J]. Gsa Today, 2000, 10(7): 1-9.
[19] Kasting J F, Howard M T.Atmospheric composition and climate on the early Earth[J]. Philosophical Transactions of the Royal Society of London, 2006, 361(1 474):1 733-1 742.
doi: 10.1098/rstb.2006.1902     URL     pmid: 17008214
[20] Gerdes G.What are microbial mats?[M]∥Microbial Mats. Dordrecht: Springer,2010:3-25.
[21] Mei Mingxiang, Gao Jinhan, Meng Qingfen.Frommat ground structures to the primary sedimentary structures of a fifth category: Significant concepts on sedimentology[J]. Geoscience, 2006, 20(3):413-422.
[梅冥相, 高金汉, 孟庆芬. 从席底构造到第五类原生沉积构造:沉积学中具有重要意义的概念[J]. 现代地质, 2006, 20(3):413-422.]
[22] Seilacher A.Biomats, biofilms, and bioglue as preservational agents for arthropod trackways[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2009, 270(3):252-257.
doi: 10.1016/j.palaeo.2008.07.011     URL    
[23] Krumbein W E, Brehm U, Gerdes G, et al. Biofilm, biodictyon, biomat microbialites, oolites, stromatolites geophysiology, global mechanism, parahistology[M]∥Fossil and Recent Biofilms. Dordrecht: Springer, 2003: 1-27.
[24] Costerton J W, Dr C D K, Lappinscott H M, et al. Microbial biofilms[J]. Annual Review of Microbiology, 1995, 49:711-745.
doi: 10.1146/annurev.mi.49.100195.003431     URL    
[25] Characklis W G,Wilderer P A.Structure and Function of Biofilms (Dahlem Workshop Reports. Life Sciences Research Report 46)[M]. Chichester: Wiley, 1989.
[26] Neu T R, Marshall K C.Bacterial polymers: Physicochemical aspects of their interactions at interfaces[J]. Journal of Biomaterials Applications, 1990, 5(2):107.
doi: 10.1177/088532829000500203     URL     pmid: 2266486
[27] Cohen Y.Photosynthesis in cyanobacterial mats and its relation to the sulfur cycle: A model for microbial sulfur interactions[M]∥Cohen Y, Rosenberg E, eds. Microbial Mats: Physiological Ecology of Benthic Microbial Communities. Washington: ASM,1989:22-36.
[28] Krumbein W E.The year of the slime[M]∥KrumbeinW E, Paterson D M, StalL J,ed. Biostabilization of Sediments. Oldenburg:Bibliotheks-Informations System (BIS).Verlag, 1994:1-7.
[29] Wachendörfer V, Krumbein W E, Schellnhuber H J.Bacteriogenic porosity of marine sediments—A case of biomorphogenesis of sedimentary rocks[M]∥Krumbein W E,Paterson D M,Stal L J,eds. Biostabilization of Sediments. Oldenburg: Bibliotheks-Informations System(BIS), 1994:203-220.
[30] Decho A W. Extracellular Polymeric Substances (EPS)[M]∥Reitner J, Thiel V,eds. Encyclopedia of Geobiology. Encyclopedia of Earth Sciences Series. Dordrecht: Springer Netherlands, 2011.
[31] Flemming H C, Neu T R, Wozniak D J.The EPS matrix: The "house of biofilm cells"[J]. Journal of Bacteriology, 2007, 189(22): 7 945-7 947.
doi: 10.1128/JB.00858-07     URL    
[32] Bouton A, Vennin E, Pace A, et al. External controls on the distribution, fabrics and mineralization of modern microbial mats in a coastal hypersaline lagoon, Cayo Coco (Cuba)[J]. Sedimentology, 2016, 63(4):972-1 016.
doi: 10.1111/sed.12246     URL    
[33] Reitner J, Quéric N V, Arp G.Advances in stromatolite geobiology[J]. Springer Berlin, 2011, 131:157-173.
[34] Decho A W, Visscher P T, Reid R P.Production and cycling of natural microbial exopolymers (EPS) within a marine stromatolite[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2005, 219(1):71-86.
doi: 10.1016/j.palaeo.2004.10.015     URL    
[35] Riding R.Calcified cyanobacteria[M]∥Reitner J, Thiel V,eds. Encyclopedia of Geobiology. Encyclopedia of Earth Science Series. Heidelberg: Springer, 2011: 211-223.
[36] Herrero A, Flores E.The Cyanobacteria: Molecular biology, genomics and evolution[M]∥The Cyanobacteria: Molecular Biology, Genomics, and Evolution. Caister Academic Press, 2008.
[37] Raven J A.The evolution of cyanobacterial symbioses[J]. Biology & Environment Proceedings of the Royal Irish Academy, 2002, 102B(1):3-6.
doi: 10.1007/0-306-48005-0_16     URL    
[38] Riding R.Calcified cyanobacteria[M]∥Calcareous Algae and Stromatolites. Heidelberg: Springer Berlin, 1990:211-223.
[39] Mei Mingxiang, Meng Qingfen.Composition diversity of modern stromatolites: A key and window for further understanding of the formation of ancient stromatolites[J]. Journal of Palaeogeography, 2016, 18(2):127-146.
[梅冥相, 孟庆芬. 现代叠层石的多样化构成:认识古代叠层石形成的关键和窗口[J]. 古地理学报, 2016, 18(2):127-146.]
doi: 10.7605/gdlxb.2016.02.010    
[40] Riding R.The nature of stromatolites: 3,500 million years of history and a century of research[J]. Advances in Stromatolite Geobiology, 2011, 131:29-74.
doi: 10.1007/978-3-642-10415-2     URL    
[41] Mei Mingxiang.Organomineralization derived from the biomineralization: An important theme within the framework of geobiology[J]. Geological Review, 2012, 58(5):937-951.
[梅冥相. 从生物矿化作用衍生出的有机矿化作用:地球生物学框架下重要的研究主题[J]. 地质论评, 2012, 58(5):937-951.]
doi: 10.3969/j.issn.0371-5736.2012.05.015     URL    
[42] Schulz H N, Schulz H D.Large sulfur bacteria and the formation of phosphorite[J]. Science, 2005, 307(5 708):416-418.
doi: 10.1126/science.1103096     URL    
[43] Scholle P A, Ulmerscholle D S.A Color Guide to the Petrography of Carbonate Rocks: Grains, Textures, Porosity, Diagenesis, AAPG Memoir 77[M]. Tulsa: American Association of Petroleum Geologists, 2003.
[44] Riding R.Cyanobacterial calcification, carbon dioxide concentrating mechanisms, and Proterozoic-Cambrian changes in atmospheric composition[J]. Geobiology, 2006, 4(4):299-316.
doi: 10.1111/j.1472-4669.2006.00087.x     URL    
[45] Couradeau E, Benzerara K, Gérard E, et al. An early-branching microbialite cyanobacterium forms intracellular carbonates[J]. Science, 2012, 336(6 080):459.
doi: 10.1126/science.1216171     URL     pmid: 22539718
[46] Miller A G, Colman B.Evidence for $HCO_{3}^{-}$ transport by the Blue-Green Alga (Cyanobacterium) Coccochloris peniocystis[J]. Plant Physiology, 1980, 65(2):397-402.
doi: 10.1104/pp.65.2.397     URL    
[47] Kah L C, Riding R.Mesoproterozoic carbon dioxide levels inferred from calcified cyanobacteria[J]. Geology, 2007, 35(9):799.
doi: 10.1130/G23680A.1     URL    
[48] Thompson J B, Ferris F G.Cyanobacterial precipitation of gypsum, calcite, and magnesite from natural alkaline lake water[J]. Geology, 1990, 18(10):995.
doi: 10.1130/0091-7613(1990)018<0995:CPOGCA>2.3.CO;2     URL    
[49] Han Zuozhen, Chen Jitao, Chi Naijie, et al. Microbial carbonates: A review and perspectives[J]. Marine Geology & Quaternary Geology, 2009, 29(4): 29-38.
[韩作振, 陈吉涛, 迟乃杰,等. 微生物碳酸盐岩研究:回顾与展望[J]. 海洋地质与第四纪地质, 2009,29(4):29-38.]
URL    
[50] Dai Yongding, Liu Tiebing.Bio-ore formation and biomineralization[J]. Journal of Paleontology, 1994,33(5):575-592.
[戴永定, 刘铁兵. 生物成矿作用与生物矿化作用[J]. 古生物学报, 1994,33(5):575-592.]
URL    
[51] Lowenstam H A, Weiner S.On Biomineralization[M]. New York: Oxford University Press, 1989.
[52] Trichet J, Défarge C.Non-biologically supported organomineralization[J]. Bulletin de Institu Oceanographique Monaco, 1995,14(2): 203-236.
[53] Perry R S, Mcloughlin N, Lynne B Y,et al. Defining biominerals and organominerals: Direct and indirect indicators of life[J]. Sedimentary Geology, 2007, 201(1):157-179.
doi: 10.1016/j.sedgeo.2007.05.014     URL    
[54] Drews G.Function, structure and composition of cell walls and external layers[M]∥Carr N G, Whittnm B A, eds. The Biology of Cyanobacteria. Oxford: Blackwell, 1982: 333-358.
[55] Teske A, Nelson D C. The Genera Beggiatoa,Thioploca[M]∥The Prokaryotes. New York, NY: Springer, 2006: 784-810.
[56] Visscher P, Stolz J.Microbial mats as bioreactors: Populations, processes, and products[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2005, 219(1):87-100.
doi: 10.1016/j.palaeo.2004.10.016     URL    
[57] Visscher P T, Rogers D R, Reid R P, et al. Microelectrode measurements in stromatolites: Unraveling the Earth's past?[J]. Environmental Electrochemistry Analyses of Trace Element Biogeochemistry, 2002, 811: 265-282.
doi: 10.1021/symposium     URL    
[58] Jorgensen B B.Biogeochemistry: Space for hydrogen[J]. Nature, 2001, 412(6 844): 286.
doi: 10.1038/35085676    
[59] Arp G, Reimer A, Reitner J.Photosynthesis-induced biofilm calcification and calcium concentrations in Phanerozoic Oceans[J]. Science, 2001, 292(5 522):1 701-1 704.
doi: 10.1126/science.1057204     URL     pmid: 11387471
[60] Braissant O, Decho A W, Dupraz C, et al. Exopolymeric substances of sulfate-reducing bacteria: Interactions with calcium at alkaline pH and implication for formation of carbonate minerals[J]. Geobiology, 2010, 5(4):401-411.
doi: 10.1111/j.1472-4669.2007.00117.x     URL    
[61] Wright V P.A revised classification of limestones[J]. Sedimentary Geology, 1992, 76(3/4):177-185.
doi: 10.1016/0037-0738(92)90082-3     URL    
[62] Folk R L.Spectral subdivision of limestone type[M]∥Ham W E,ed. Classification of Carbonate Rocks, A symposium, AAPG Geological Memoir 1. 1962, 1: 62-84.
[63] Dunham R J.Classification of carbonates rocks according to Deposicional texture[J]. Aapg Memoir, 1962, 1:108-121.
[64] Embry A F, Klovan J E.A late Devonian reef tract on northeastern Banks Island, N.W.T[J]. Bulletin of Canadian Petroleum Geology, 1971, 19(4):730-781.
URL    
[65] Shapiro R S.A comment on the systematic confusion of thrombolites[J]. Palaios, 2000, 15(2):166-169.
doi: 10.1669/0883-1351(2000)015<0166:ACOTSC>2.0.CO;2     URL    
[66] Chen J, Lee J H, Woo J.Formative mechanisms, depositional processes, and geological implications of Furongian (late Cambrian) reefs in the North China Platform[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2014, 414:246-259.
doi: 10.1016/j.palaeo.2014.09.004     URL    
[67] Lee J H, Chen J, Chough S K.The middle-late Cambrian reef transition and related geological events: A review and new view[J]. Earth-Science Reviews, 2015, 145:66-84.
doi: 10.1016/j.earscirev.2015.03.002     URL    
[68] Pomar L, Hallock P.Carbonate factories: A conundrum in sedimentary geology[J]. Earth Science Reviews, 2008, 87(3):134-169.
doi: 10.1016/j.earscirev.2007.12.002     URL    
[69] Walter M R.Stromatolites[M]. Amsterdam: Elsevier,1976.
[70] Semikhatov M A, Gebelein C D, Cloud P, et al.Stromatolite morphogenesis: Progress and problems[J]. Canadian Journal of Earth Sciences, 1979, 16: 992-1 015.
doi: 10.1139/e79-088     URL    
[71] Awramik S M.Respect for stromatolites[J]. Nature, 2006, 441: 700-701.
doi: 10.1038/441700a     URL    
[72] Aitken J D.Classification andenvironmental significance of cryptalgal Limestones and dolomites, with illustrations from the cambrian and ordovician of southwestern Alberta[J]. Journal of Sedimentary Research, 1967, 37(4):1 163-1 178.
[73] Du Rulin.Paleontology and Geohistory of Precambrian[M].Beijing: Geological Publish Press, 1992.
[杜汝霖. 前寒武纪古生物学及地史学[M]. 北京:地质出版社, 1992.]
[74] Wang Zhaopeng.Characteristic and Geological Significance of Dendrolite from Zhangxia Formation,Cambrian, Jiulongshan Section[D]. Qingdao:Shandong University of Science and Technology, 2011.
[王兆鹏. 莱芜九龙山寒武系张夏组树形石特征及地质意义[D]. 青岛:山东科技大学, 2011.]
[75] Cherchi A, Schroeder R.Remarks on the systematic position of Lithocodium, Elliott, a problematic microorganism from the Mesozoic carbonate platforms of the Tethyan realm[J]. Facies, 2006, 52(3):435-440.
doi: 10.1007/s10347-006-0045-5     URL    
[76] Schmid D U, Leinfelder R R.The jurassic Lithocodium aggregatum-Troglotella incrustans foraminiferal consortium[J]. Palaeontology, 1996, 39(1):21-52.
[77] Mei Mingxiang, Zhang Rui, Li Yiyao, et al. Calcified cyanobacterias within the stromatolotic bioherm for the Cambrian Furongian Series in the northeastern margin of the North-China Platform[J]. Acta Petrologica Sinica, 2017, 33(4):1 073-1 093.
[梅冥相, 张瑞, 李屹尧,等. 华北地台东北缘寒武系芙蓉统叠层石生物丘中的钙化蓝细菌[J]. 岩石学报, 2017, 33(4):1 073-1 093.]
URL    
[78] Cloud P E, Semikhatov M A.Proterozoic stromatolite zonation[J]. American Journal of Science, 1969, 267(9):1 017-1 061.
doi: 10.2475/ajs.267.9.1017     URL    
[79] Schopf J W.Earth's Earliest Biosphere: Its Origin and Evolution[M]. Princeton: Princeton University Press, 1983.
[80] Baumgartner L K, Reid R P, Dupraz C, et al. Sulfate reducing bacteria in microbial mats: Changing paradigms, new discoveries[J]. Sedimentary Geology, 2006,185: 131-145.
doi: 10.1016/j.sedgeo.2005.12.008     URL    
[81] Castanier S, Métayer-Levrel G L, Perthuisot J P. Bacterial roles in the precipitation of carbonate minerals[M]∥Microbial Sediments. Heidelberg:Springer Berlin, 2000:32-39.
[82] Visscher P T, Reid R P, Bebout Brad M.Microscale observations of sulfate reduction: Correlation of microbial activity with lithified micritic laminae in modern marine stromatolites[J]. Geology, 2000, 28(10):919-922.
doi: 10.1130/0091-7613(2000)282.0.CO;2     URL    
[83] Andrews J E, Brasier A T.Seasonal records of climatic change in annually laminated tufas: Short review and future prospects[J]. Journal of Quaternary Science, 2010, 20(5):411-421.
doi: 10.1002/jqs.942     URL    
[84] Vasconcelos C, Dittrich M, Mckenzie J A.Evidence of microbiocoenosis in the formation of laminae in modern stromatolites[J]. Facies, 2014, 60(1):3-13.
doi: 10.1007/s10347-013-0371-3     URL    
[85] Stolz J F, Reid R P, Visscher P T, et al. The microbial communities of the modern marine stromatolites at Highborn Cay, Bahamas[J]. Atoll Research Bulletin, 2009, 567: 1-29.
[86] Andersen D T, Sumner D Y, Hawes I, et al. Discovery of large conical stromatolites in Lake Untersee, Antarctica[J]. Geobiology, 2011,9(3): 280-293.
doi: 10.1111/j.1472-4669.2011.00279.x     URL     pmid: 21504538
[87] Mei Mingxiang.Brief introduction on new advances on the origin of oids[J]. Acta Sedimentologica Sinica, 2012, 30(1):20-32.
[梅冥相. 鲕粒成因研究的新进展[J]. 沉积学报, 2012, 30(1):20-32.]
[88] Berelson W M,Corsetti F A,Pepe-Ranney C, et al. Hot spring siliceous stromatolites from Yellowstone National Park: Assessing growth rate and laminae formation[J]. Geobiology, 2011,9:411-424.
doi: 10.1111/j.1472-4669.2011.00288.x     URL     pmid: 21777367
[89] Cao Ruiji, Yuan Xunlai.Brief history and current status of stromatolite study in China[J]. Acta Micropalaeontologica Sinica, 2003, 20(1):5-14.
[曹瑞骥, 袁训来. 中国叠层石研究的历史和现状[J]. 微体古生物学报, 2003, 20(1):5-14.]
[90] Addadi L, Raz S, Weiner S.Taking advantage of disorder: Amorphous calcium carbonate and its roles in biomineralization[J]. Cheminform, 2003, 34(33):959-970.
doi: 10.1002/adma.200300381    
[91] Mann S.Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry[M]. New York: Oxford University Press, 2001.
[92] Demicco R V, Hardie L A.The "Carbonate Factory" revisited: A reexamination of sediment production functions used to model deposition on carbonate platforms[J]. Journal of Sedimentary Research, 2002, 72(6):849-857.
doi: 10.1306/041502720849     URL    
[93] Harris M T.The carbonate factory of Middle Triassic buildups in the Dolomites, Italy: A quantitative analysis[J]. Sedimentology, 2010, 41(6):1 147-1 159.
doi: 10.1111/j.1365-3091.1994.tb01446.x     URL    
[94] James N P, Reid C M, Bone Y, et al. The macroalgal carbonate factory at a cool-to-warm temperate marine transition, Southern Australia[J]. Sedimentary Geology, 2013, 291:1-26.
doi: 10.1016/j.sedgeo.2013.03.007     URL    
[95] Schlager W.Benthic carbonate factories of the Phanerozoic[J]. International Journal of Earth Sciences, 2003, 92(4):445-464.
doi: 10.1007/s00531-003-0327-x     URL    
[96] Playford P E.Geology of the Shark Bay area, Western Australia[R]∥Berry P F, Bradshaw S D, Wilson B R, eds. Research in Shark Bay: Report of the France-Australe Bicentenary Expedition Committee. Perth: Western Australian Museum, 1990: 13-33.
[1] 张晓智, 周怀阳, 钱生平. 俯冲带岩浆弧安山岩的成因研究进展[J]. 地球科学进展, 2021, 36(3): 288-306.
[2] 鲍园, 唐佳阳, 琚宜文, 安超. 鄂尔多斯盆地东南缘黄陵矿区中生代煤系烃源层构造—热演化过程与生物气生成[J]. 地球科学进展, 2021, 36(10): 993-1003.
[3] 秦磊,毛金昕,倪凤玲,徐少华,李小刚,蔡长娥,尚文亮,刘家恺. 浅谈深水块体搬运复合体的结构、成因分类以及识别方法[J]. 地球科学进展, 2020, 35(6): 632-642.
[4] 闫昕旸,张强,闫晓敏,王胜,任雪塬,赵福年. 全球干旱区分布特征及成因机制研究进展[J]. 地球科学进展, 2019, 34(8): 826-841.
[5] 汪智军,殷建军,蒲俊兵,袁道先. 钙华生物沉积作用研究进展与展望[J]. 地球科学进展, 2019, 34(6): 606-617.
[6] 林祖苇,赵新福,熊乐,朱照先. 胶东三山岛金矿床黄铁矿原位微区微量元素特征及对矿床成因的指示[J]. 地球科学进展, 2019, 34(4): 399-413.
[7] 黄飞鹏, 任俊杰, 吕延武, 赵俊香. 东昆仑断裂带秀沟段晚第四纪滑动速率研究[J]. 地球科学进展, 2018, 33(3): 321-332.
[8] 佟小雪, 王长乐, 彭自栋, 南景博, 黄华, 张连昌. 早前寒武纪BIF原生矿物组成及演化、沉积相模式研究进展[J]. 地球科学进展, 2018, 33(2): 152-165.
[9] 张瑞刚, 高雪, 杨立强. 岩浆混合作用的识别:以义敦岛弧稻城岩体为例[J]. 地球科学进展, 2018, 33(10): 1058-1074.
[10] 王佳, 谭先锋, 曾春林, 陈青, 冉天, 薛伟伟, 李霞, 陈岑. 泥质岩成岩系统过程及其对SiO 2赋存状态的制约——以渝东南地区龙马溪组为例[J]. 地球科学进展, 2017, 32(3): 292-306.
[11] 吕璇, 刘志飞. 大洋红层的分布、组成及其科学研究意义综述[J]. 地球科学进展, 2017, 32(12): 1307-1318.
[12] 郑伟, 齐永安, 张忠慧, 邢智峰. 豫西荥阳陆相二叠纪—三叠纪之交的微生物成因构造(MISS)及其地质意义[J]. 地球科学进展, 2016, 31(7): 737-750.
[13] 黄擎宇, 刘伟, 张艳秋, 石书缘, 王坤. 白云石化作用及白云岩储层研究进展 *[J]. 地球科学进展, 2015, 30(5): 539-551.
[14] 胡凯, 方小敏, 赵志军. 宇宙成因核素 10Be揭示的北祁连山侵蚀速率特征[J]. 地球科学进展, 2015, 30(2): 268-275.
[15] 王淼, 陈勇, 徐兴友, 张学军, 韩云, 王成军, 曹梦春. 泥质岩中纤维状结构脉体成因机制及其与油气活动关系研究进展[J]. 地球科学进展, 2015, 30(10): 1107-1118.
阅读次数
全文


摘要