Please wait a minute...
img img
高级检索
地球科学进展  2015, Vol. 30 Issue (2): 268-275    DOI: 10.11867/j.issn.1001-8166.2015.02.0268
研究论文     
宇宙成因核素10Be揭示的北祁连山侵蚀速率特征
胡凯1, 方小敏1, 赵志军2
1.中国科学院青藏高原研究所,北京 100101; 2. 南京师范大学地理科学学院,江苏 南京,210023; 3. 普度大学地球、大气与行星科学系,美国 印第安纳州,47907
Erosion rates of Northern Qilian Shan revealed by Cosmogenic 10Be
Hu Kai1, Fang Xiaomin1, Zhao Zhijun2, Darryl Granger3
1. Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; 2. School of Geographical Sciences, Nanjing Normal University, Nanjing 210023, China; 3. Department of Earth, Atmospheric and Planetary Sciences, Purdue University, Indiana 47907, United States
 全文: PDF(4961 KB)   HTML
摘要:

山脉侵蚀速率的大小和时空分布信息是研究山脉构造—气候相互作用和地貌演化的关键切入点,其大小是受气候还是构造控制争论已久。宇宙成因核素10Be方法为从千年至万年尺度上定量研究流域平均侵蚀速率提供了一种先进和快捷的技术手段,为揭示侵蚀速率与现代气候和构造地貌因子的关系并进行相关分析提供了基础。利用该方法对北祁连山近现代侵蚀速率进行了研究。所采集的9个流域现代河沙样品,结合前人数据进行共同分析,结果显示该区侵蚀速率的变化范围为18.7~833 mm/ka,北祁连山中段的侵蚀速率约为323 mm/ka,该区侵蚀速率与降雨量没有明显的对应关系,但与流域平均坡度呈现很好的非线性关系,揭示坡度是该区侵蚀速率的最主要控制因素。通过对比北祁连山地表平均侵蚀速率和该区域的断层垂直滑动速率发现整体上该区域地表侵蚀速率要低于祁连山北缘断层的垂直滑动速率,反映了北祁连山正处于地形抬升和生长的过程之中。

关键词: 降水量坡度祁连山流域平均侵蚀速率宇宙成因核素    
Abstract:

Knowledge of temporal and spatial distribution of erosion is the key to understanding the climate-tectonic interaction and topographical evolution of mountain belts and to making clear the long debate whether erosion is controlled by tectonics or climate. The newly developed cosmogenic nuclides method provides us with an advanced and convenient tool to measure millennium basin-wide erosion rate, allowing us to analyze its relationship with modern climatic, geomorphic and tectonic factors. Hence, we adopted the 10Be method to investigate the basin-wide millennium erosion rates of Northern Qilian Mountains and aimed to find the controlling factors of erosion rates of this area. We collected and analyzed 9 samples from Heihe River and the front of the Northern Qilian Mountains. Our results, together with published 10Be derived erosion rates in this area, showed that the erosion rates of the basins we studied ranged from 18.7 mm/ka to 833 mm/ka, and that the weighted average erosion rates of the middle section of the Northern Qilian Mountains was about 323 mm/ka. Spatial distribution of erosion rates and correlation analysis reveal that the basin-wide erosion rate was nonlinearly correlated to the basin average slope, while no apparent correlation between erosion rate and precipitation was found. Altogether, it indicated that the slope or terrain steepness was the major controlling factor on erosion rate of the Northern Qilian Mountains area. By comparing the basin-wide average erosion rates and the vertical slip rates of faults of the Northern Qilian Mountains, our research also revealed that the surface erosion rates generally agreed with vertical slip rates of the Northern Qilian Mountains faults, implying that the Northern Qilian Mountains area was experiencing topographical uplift and outgrowth.

Key words: Slope    Qilian Mountains.    Cosmogenic nuclide    Precipitation    Basin-wide erosion rates
出版日期: 2015-02-20
:  P512.2  
基金资助:

国家重点基础研究发展计划项目“中国西部大陆剥蚀风化与青藏高原隆升和全球变化的关系”(编号:2013CB956400); 国家自然科学基金创新研究群体项目“青藏高原北部气候与构造相互作用”(编号:41321061)资助

作者简介: 作者简介:胡凯(1989-),男,湖南双峰人,硕士研究生,主要从事山地侵蚀和构造地貌学研究.E-mail: huk@itpcas.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

胡凯, 方小敏, 赵志军. 宇宙成因核素10Be揭示的北祁连山侵蚀速率特征[J]. 地球科学进展, 2015, 30(2): 268-275.

Hu Kai, Fang Xiaomin, Zhao Zhijun, Darryl Granger. Erosion rates of Northern Qilian Shan revealed by Cosmogenic 10Be. Advances in Earth Science, 2015, 30(2): 268-275.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2015.02.0268        http://www.adearth.ac.cn/CN/Y2015/V30/I2/268

[1] Beaumont C, Jamieson R A, Nguyen M H, et al. Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation[J]. Nature, 2001, 414(6 865): 738-742.
[2] Dahlen F A, Suppe J. Mechanics, growth, and erosion of mountain belts[J]. Geological Society of America Special Papers, 1988, 218: 161-178.
[3] Burbank D W, Blythe A E, Putkonen J, et al. Decoupling of erosion and precipitation in the himalayas[J]. Nature, 2003, 426(6 967): 652-655.
[4] Godard V, Bourlès D L, Spinabella F, et al. Dominance of tectonics over climate in himalayan denudation[J]. Geology, 2014, 42(3): 243-246.
[5] Molnar P, England P. Late cenozoic uplift of mountain ranges and global climate change: Chicken or egg?[J]. Nature, 1990, 346(6 279): 29-34.
[6] Raymo M E, Ruddiman W F. Tectonic forcing of late cenozoic climate[J]. Nature, 1992, 359(6 391): 117-122.
[7] Ding Yongjian, Zhou Chenghu, Shao Ming’an,et al. Studies of Earth surface proceses: Progress and prospect[J]. Advances in Earth Science, 2013, 28(4): 407-419.[丁永建,周成虎,邵明安,等. 地表过程研究进展与趋势[J]. 地球科学进展, 2013, 28(4): 407-419.]
[8] Granger D E, Kirchner J W, Finkel R. Spatially averaged long-term erosion rates measured from in situ-produced cosmogenic nuclides in alluvial sediment[J]. Journal of Geology, 1996, 104: 249.
[9] Brown E T, Stallard R F, Larsen M C, et al. Denudation rates determined from the accumulation of in situ-produced 10 Be in the luquillo experimental forest, Puerto Rico[J]. Earth and Planetary Science Letters, 1995, 129(1/4): 193-202.
[10] Granger D E, Lifton N A, Willenbring J K. A cosmic trip: 25 years of cosmogenic nuclides in geology[J]. Geological Society of America Bulletin, 2013,125(9/10): 1379-1402.
[11] Wang Xingshan, Zhang Jie, Qin Zhong. Methods for measuring erosion rate of rock: An overview[J]. Advances in Earth Science, 2013, 28(4): 447-454.[王兴山,张捷,秦中. 岩石侵蚀速率测算方法研究综述及展望[J]. 地球科学进展, 2013, 28(4): 447-454.]
[12] Bookhagen B, Strecker M R. Spatiotemporal trends in erosion rates across a pronounced rainfall gradient: Examples from the southern central andes[J]. Earth and Planetary Science Letters, 2012, 327/328: 97-110.
[13] Wobus C, Heimsath A, Whipple K, et al. Active out-of-sequence thrust faulting in the central nepalese himalaya[J]. Nature, 2005, 434(7 036): 1 008-1 011.
[14] Yao T, Masson-Delmotte V, Gao J, et al. A review of climatic controls on δ 18 O in precipitation over the Tibetan Plateau: Observations and simulations[J]. Reviews of Geophysics, 2013, 51(4): 525-548.
[15] Liu Yong, Zou Songbing. A study on the distributing climatic models in arid mountainous area-distributing temperature and precipitation models in high spatial resolution in the Qilian Mountains[J]. Journal of Lanzhou University(Natural Sciences), 2006, 42(1): 7-12.[刘勇, 邹松兵. 祁连山地区高分辨率气温降水量分布模型[J]. 兰州大学学报:自然科学版, 2006, 42(1): 7-12.]
[16] Chen Shaoyong, Dong Anxiang, Han Tong. Differences in summer precipitation between the east and west of Qilian Mountains and its contributing factors[J]. Journal of Nanjing Institute of Meteorology,2007, 30(5): 715-719.[陈少勇, 董安祥, 韩通. 祁连山东、西部夏季降水量时空分布的差异及其成因研究[J]. 南京气象学院学报, 2007, 30(5): 715-719.]
[17] Hetzel R. Active faulting, mountain growth, and erosion at the margins of the Tibetan Plateau constrained by in situ-produced cosmogenic nuclides[J]. Tectonophysics, 2013, 582: 1-24.
[18] Palumbo L, Hetzel R, Tao M X, et al. Catchment-wide denudation rates at the margin of NE Tibet from in situ-produced cosmogenic 10 Be[J]. Terra Nova, 2011, 23(1): 42-48.
[19] Fang X M, Liu D L, Song C H, et al. Oligocene slow and miocene-quaternary rapid deformation and uplift of the Yumu Shan and north Qilian Shan: Evidence from high-resolution magnetostratigraphy and tectonosedimentology[J]. Geological Society, London, Special Publications, 2012, 373:1-12.
[20] Tapponnier P, Xu Z Q, Roger F, et al. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 2001, 294(5 547): 1 671-1 677.
[21] Fang X M, Zhao Z J, Li J J, et al. Magnetostratigraphy of the late cenozoic Laojunmiao anticline in the northern Qilian Mountains and its implications for the northern Tibetan Plateau uplift[J]. Science in China(Series D), 2005, 48(7): 1 040-1 051.
[22] Zhang Huiping, Zhang Peizhen, Zheng Dewen, et al. Tectonic geomorphology of the Qilian Shan: Insight into the late Cenozoic landscape evolution and deformation in the north eastern Tibetan Plateau[J]. Quaternary Sciences, 2012, 32(5): 907-920.[张会平, 张培震, 郑德文, 等. 祁连山构造地貌特征:青藏高原东北缘晚新生代构造变形和地貌演化过程的启示[J]. 第四纪研究, 2012, 32(5): 907-920.]
[23] Zhang P Z, Shen Z, Wang M, et al. Continuous deformation of the Tibetan Plateau from global positioning system data[J]. Geology, 2004, 32(9): 809-812.
[24] Dunai T J. Cosmogenic Nuclides-principles, Concepts and Applications in the Earth Surface Sciences[M]. UK: Cambridge University Press, 2010: 187.
[25] Lal D. Cosmic ray labeling of erosion surfaces: In situ nuclide production rates and erosion models[J]. Earth and Planetary Science Letters, 1991, 104(2/4): 424-439.
[26] Nishiizumi K, Lal D, Klein J, et al. Production of 10 Be and 26 Al by cosmic rays in terrestrial quartz in situ and implications for erosion rates[J]. Nature, 1986, 319(6 049): 134-136.
[27] Bierman P, Steig E J. Estimating rates of denudation using cosmogenic isotope abundances in sediment[J]. Earth Surface Processes and Landforms, 1996, 21: 125-139.
[28] Greensfelder Liese. Subtleties of sand reveal how mountains crumble[J]. Science,2002, 295(5 553): 256-258.
[29] Ouimet W B, Whipple K X, Granger D E. Beyond threshold hillslopes: Channel adjustment to base-level fall in tectonically active mountain ranges[J]. Geology, 2009, 37(7): 579-582.
[30] Roering J J, Kirchner J W, Dietrich W E. Hillslope evolution by nonlinear, slope-dependent transport: Steady state morphology and equilibrium adjustment timescales[J].Journal of Geophysical Research, 2001, 106(B8): 16 499-16 513.
[31] Burbank D W, Anderson R S. Tectonic Geomorphology[M]. New Jersey: Black Publishing, 2000.
[32] Hu Xiaofei, Pan Baotian, Kirby E, et al. Spatial differences in rock uplift rates inferred from channel steepness indices along the northern flank of the Qilian Mountain, northeast Tibetan Plateau[J]. Chinese Science Bulletin, 2010, 55(23): 2 329-2 338.[胡小飞, 潘保田, Kirby E, 等. 河道陡峭指数所反映的祁连山北翼抬升速率的东西差异[J]. 科学通报, 2010, 55(23): 2 329-2 338.]
[33] Hetzel R, Niedermann S, Tao M X, et al. Low slip rates and long-term preservation of geomorphic features in central Asia[J]. Nature, 2002, 417(6 887): 428-432.
[34] Hetzel R, Tao M X, Stokes S, et al. Late pleistocene/holocene slip rate of the Zhangye thrust (Qilian Shan, China) and implications for the active growth of the northeastern Tibetan Plateau[J]. Tectonics, 2004, 23(6), doi:10.1029/2004TC001653.
[35] Zheng D W, Clark M K, Zhang P Z, et al. Erosion, fault initiation and topographic growth of the north Qilian Shan (northern Tibetan Plateau)[J]. Geosphere, 2010, 6(6): 937-941.

[1] 张乐乐, 高黎明, 赵林, 乔永平, 史健宗. 降水观测误差修正研究进展[J]. 地球科学进展, 2017, 32(7): 723-730.
[2] 陈京华, 贾文雄 , 赵珍, 张禹舜, 刘亚荣. 1982—2006年祁连山植被覆盖的时空变化特征研究[J]. 地球科学进展, 2015, 30(7): 834-845.
[3] 尹金方, 王东海, 许焕斌, 翟国庆, 姜晓玲. 冰核对云物理属性和降水影响的研究[J]. 地球科学进展, 2015, 30(3): 323-333.
[4] 张红梅, 吴炳方, 闫娜娜. 饱和水汽压差的卫星遥感研究综述[J]. 地球科学进展, 2014, 29(5): 559-568.
[5] 孟素花,费宇红,张兆吉,雷廷,钱永,李亚松. 50年来华北平原降水入渗补给量时空分布特征研究[J]. 地球科学进展, 2013, 28(8): 923-929.
[6] 孔祥辉, 周卫健, 鲜 锋, 武振坤. 布容—松山极性倒转事件的海陆地质记录及其不同步性探讨[J]. 地球科学进展, 2012, 27(9): 937-946.
[7] 刘彧,王世杰,刘秀明. 宇宙成因核素在地质年代学研究中的新进展[J]. 地球科学进展, 2012, 27(4): 386-397.
[8] 郑国光,陈跃,陈添宇,陈乾,朱君鉴,李照荣. 祁连山夏季地形云综合探测试验[J]. 地球科学进展, 2011, 26(10): 1057-1070.
[9] 由伟丰,张海清,校培喜,曹宣铎,胡云绪,谢从瑞. 北祁连山—阿拉善地区寒武纪构造—岩相古地理[J]. 地球科学进展, 2011, 26(10): 1092-1100.
[10] 余吉远,李向民,马中平,孙吉明,王建强. 青海省祁连县清水沟-白柳沟矿田含矿火山岩系年代学研究[J]. 地球科学进展, 2010, 25(1): 55-60.
[11] 武震,刘时银,张世强. 祁连山老虎沟12号冰川冰下形态特征分析[J]. 地球科学进展, 2009, 24(10): 1149-1158.
[12] 杨凯,高清竹,李玉娥,林而达,盛文萍,江村旺扎,王宝山,李文福. 藏北地区草地退化空间特征及其趋势分析[J]. 地球科学进展, 2007, 22(4): 410-416.
[13] 王宝鉴,黄玉霞,王劲松,陶健红. 祁连山云和空中水汽资源的季节分布与演变[J]. 地球科学进展, 2006, 21(9): 948-955.
[14] 白云来;范育新;汤中立;江荣伏. 关于中国西部龙首山、祁连山成矿区(带)进一步找矿问题的思考[J]. 地球科学进展, 2005, 20(1): 36-041.
[15] 贾玉连,施雅风,曹建廷,范云崎. 40~30 ka BP期间高湖面稳定存在时青藏高原西南部封闭流域的古降水量研究[J]. 地球科学进展, 2001, 16(3): 346-351.