地球科学进展 ›› 2015, Vol. 30 ›› Issue (2): 268 -275. doi: 10.11867/j.issn.1001-8166.2015.02.0268

上一篇    下一篇

宇宙成因核素 10Be揭示的北祁连山侵蚀速率特征 *
胡凯 1( ), 方小敏 1, 赵志军 2   
  1. 1.中国科学院青藏高原研究所,北京 100101
    2. 南京师范大学地理科学学院,江苏 南京,210023
    3. 普度大学地球、大气与行星科学系,美国 印第安纳州,47907
  • 出版日期:2015-03-08
  • 基金资助:
    国家重点基础研究发展计划项目“中国西部大陆剥蚀风化与青藏高原隆升和全球变化的关系”(编号:2013CB956400);国家自然科学基金创新研究群体项目“青藏高原北部气候与构造相互作用”(编号:41321061)资助

Erosion rates of Northern Qilian Shan revealed by Cosmogenic 10Be

Kai Hu 1( ), Xiaomin Fang 1, Zhijun Zhao 2, Granger Darryl 3   

  1. 1. Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
    2. School of Geographical Sciences, Nanjing Normal University, Nanjing 210023, China
    3. Department of Earth, Atmospheric and Planetary Sciences, Purdue University, Indiana 47907, United States
  • Online:2015-03-08 Published:2015-02-20

山脉侵蚀速率的大小和时空分布信息是研究山脉构造—气候相互作用和地貌演化的关键切入点,其大小是受气候还是构造控制争论已久。宇宙成因核素10Be方法为从千年至万年尺度上定量研究流域平均侵蚀速率提供了一种先进和快捷的技术手段,为揭示侵蚀速率与现代气候和构造地貌因子的关系并进行相关分析提供了基础。利用该方法对北祁连山近现代侵蚀速率进行了研究。所采集的9个流域现代河沙样品,结合前人数据进行共同分析,结果显示该区侵蚀速率的变化范围为18.7~833 mm/ka,北祁连山中段的侵蚀速率约为323 mm/ka,该区侵蚀速率与降雨量没有明显的对应关系,但与流域平均坡度呈现很好的非线性关系,揭示坡度是该区侵蚀速率的最主要控制因素。通过对比北祁连山地表平均侵蚀速率和该区域的断层垂直滑动速率发现整体上该区域地表侵蚀速率要低于祁连山北缘断层的垂直滑动速率,反映了北祁连山正处于地形抬升和生长的过程之中。

Knowledge of temporal and spatial distribution of erosion is the key to understanding the climate-tectonic interaction and topographical evolution of mountain belts and to making clear the long debate whether erosion is controlled by tectonics or climate. The newly developed cosmogenic nuclides method provides us with an advanced and convenient tool to measure millennium basin-wide erosion rate, allowing us to analyze its relationship with modern climatic, geomorphic and tectonic factors. Hence, we adopted the 10Be method to investigate the basin-wide millennium erosion rates of Northern Qilian Mountains and aimed to find the controlling factors of erosion rates of this area. We collected and analyzed 9 samples from Heihe River and the front of the Northern Qilian Mountains. Our results, together with published 10Be derived erosion rates in this area, showed that the erosion rates of the basins we studied ranged from 18.7 mm/ka to 833 mm/ka, and that the weighted average erosion rates of the middle section of the Northern Qilian Mountains was about 323 mm/ka. Spatial distribution of erosion rates and correlation analysis reveal that the basin-wide erosion rate was nonlinearly correlated to the basin average slope, while no apparent correlation between erosion rate and precipitation was found. Altogether, it indicated that the slope or terrain steepness was the major controlling factor on erosion rate of the Northern Qilian Mountains area. By comparing the basin-wide average erosion rates and the vertical slip rates of faults of the Northern Qilian Mountains, our research also revealed that the surface erosion rates generally agreed with vertical slip rates of the Northern Qilian Mountains faults, implying that the Northern Qilian Mountains area was experiencing topographical uplift and outgrowth.

中图分类号: 

图1 北祁连山地形、年均降水量、主要断裂和采样流域、样点及流域侵蚀速率分布图
Fig.1 The distribution map of topography , annual mean precipitation, major faults, sampling basins and obtained erosion rates of the Northern Qilian Shan
表1 采样点位置和相应盆地平均侵蚀速率
Table 1 Sample locations and corresponding basin-wide erosion rates
样品编号 采样位置 盆地面积/km2 盆地平均坡度 样品10Be含量/(103 atoms/g quartz) 误差/(±1σ, 103 atoms/g quartz) 侵蚀速率/(mm/ka) 误差/(±1σ, mm/ka)
纬度/°N 经度/°E
JN-29-1 38.544 100.252 51.9 28.4 121.0 5.6 247.2 11.4
JN-29-3 38.526 100.359 146 30.0 99.5 5.0 321.7 16.4
JN-29-4 38.459 100.496 225.4 30.0 71.2 3.2 483.1 21.5
JN-30-3 38.265 100.778 357.9 24.8 126.8 6.2 263.2 12.9
JN-30-5 38.355 100.624 103.4 30.7 115.1 7.9 320.9 22.1
JL-2-1 38.847 98.880 661 10.1 1449.0 37.0 29.7 0.8
JL-2-13 38.222 100.044 4902.9 16.6 99.0 4.9 398.6 19.9
JL-3-2 37.994 100.783 432.5 13.8 41.1 1.9 787.9 37.3
JL-3-12 38.208 100.193 2466.4 18.7 75.3 3.5 434.7 20.2
P06C16 38.795 99.555 813.2 25.8 220.0 12.0 196.0 11.0
P06C32 38.671 100.036 9423.4 19.8 113.0 6.2 325.0 12.0
P07C12 39.075 99.246 53 30.9 71.2 5.6 550.0 43.0
P07C13 39.162 99.169 559.1 29.4 92.4 6.1 422.0 28.0
P07C19 39.250 99.053 41.4 31.9 78.3 5.1 395.0 26.0
P07C20 39.027 99.287 37.4 31.5 36.3 5.1 768.0 108.0
P07C23 38.856 99.529 56.5 30.3 353.0 18.0 103.0 5.4
P07C41 39.680 97.512 545.2 21.6 1104.0 35.0 39.2 1.3
P07C42 39.643 97.660 663.3 22.0 393.0 19.0 100.0 4.8
P07C43 39.403 97.695 0.2 21.1 337.0 18.0 127.0 6.8
P07C44 39.716 97.227 347.1 19.8 449.0 19.0 77.0 3.3
P07C45 39.400 97.629 66.9 25.4 1064.0 44.0 50.6 2.1
P07C46 39.339 98.815 565 29.5 47.6 3.9 833.0 68.0
QS-JG-33 38.767 99.410 15.2 27.9 143.2 8.0 248.0 14.0
QS-JG-34 38.825 99.313 154.4 22.8 129.5 7.7 314.0 19.0
QS-JG-40 38.806 99.306 6.2 27.0 653.0 27.0 62.3 2.6
QS-JG-41 38.812 99.316 15.4 25.6 560.0 21.0 67.1 2.5
QS-JG-42 38.766 99.451 548.7 25.1 175.2 8.3 216.0 10.0
QS-JG-43 38.828 99.274 6.6 25.9 447.0 16.0 96.0 3.4
QS-JG-47 38.769 99.165 11.6 17.7 1608.0 48.0 27.4 0.8
QS-JG-48 38.725 99.287 12.1 20.5 2341.0 70.0 18.7 0.6
QS-JG-49 38.682 99.252 1876.4 10.8 857.0 26.0 47.0 1.5
QS-JG-55 38.802 99.093 13.9 17.6 2215.0 66.0 20.3 0.6
图2 北祁连山流域侵蚀速率与降水量关系散点图
Fig. 2 Scatter plot of erosion rates and annual mean precipitations of the Northern Qilian Shan
图3 北祁连山流域侵蚀速率与流域平均坡度关系(a)及其与龙门山流域侵蚀速率与平均坡度关系(b)的对比
Fig. 3 Relationship between basin-wide erosion rate and average basin slope in the Northern Qilian Shan(a) and its comparison with that of the Longmen Shan in the eastern Tibetan Plateau(b)
图4 北祁连山内部黑河上游流经的第三系红层盆地及其高山草原景观
Fig.4 The Tertiary red beds of the upper Heihe (River) and the surrounding alpine grassland
[1] Beaumont C, Jamieson R A, Nguyen M H, et al.Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation[J]. Nature, 2001, 414(6 865): 738-742.
[2] Dahlen F A, Suppe J.Mechanics, growth, and erosion of mountain belts[J]. Geological Society of America Special Papers, 1988, 218: 161-178.
[3] Burbank D W, Blythe A E, Putkonen J, et al.Decoupling of erosion and precipitation in the himalayas[J]. Nature, 2003, 426(6 967): 652-655.
[4] Godard V, Bourlès D L, Spinabella F, et al.Dominance of tectonics over climate in himalayan denudation[J]. Geology, 2014, 42(3): 243-246.
[5] Molnar P, England P.Late cenozoic uplift of mountain ranges and global climate change: Chicken or egg?[J]. Nature, 1990, 346(6 279): 29-34.
[6] Raymo M E, Ruddiman W F.Tectonic forcing of late cenozoic climate[J]. Nature, 1992, 359(6 391): 117-122.
[7] Ding Yongjian, Zhou Chenghu, Shao Ming’an,et al.Studies of Earth surface proceses: Progress and prospect[J]. Advances in Earth Science, 2013, 28(4): 407-419.
[丁永建,周成虎,邵明安,等. 地表过程研究进展与趋势[J]. 地球科学进展, 2013, 28(4): 407-419.]
[8] Granger D E, Kirchner J W, Finkel R.Spatially averaged long-term erosion rates measured from in situ-produced cosmogenic nuclides in alluvial sediment[J]. Journal of Geology, 1996, 104: 249.
[9] Brown E T, Stallard R F, Larsen M C, et al.Denudation rates determined from the accumulation of in situ-produced 10Be in the luquillo experimental forest, Puerto Rico[J]. Earth and Planetary Science Letters, 1995, 129(1/4): 193-202.
[10] Granger D E, Lifton N A, Willenbring J K.A cosmic trip: 25 years of cosmogenic nuclides in geology[J]. Geological Society of America Bulletin, 2013,125(9/10): 1379-1402.
[11] Wang Xingshan, Zhang Jie, Qin Zhong. Methods for measuring erosion rate of rock: An overview[J]. Advances in Earth Science, 2013, 28(4): 447-454.
[王兴山,张捷,秦中. 岩石侵蚀速率测算方法研究综述及展望[J]. 地球科学进展, 2013, 28(4): 447-454.]
[12] Bookhagen B, Strecker M R. Spatiotemporal trends in erosion rates across a pronounced rainfall gradient: Examples from the southern central andes[J]. Earth and Planetary Science Letters, 2012, 327/328: 97-110.
[13] Wobus C, Heimsath A, Whipple K, et al.Active out-of-sequence thrust faulting in the central nepalese himalaya[J]. Nature, 2005, 434(7 036): 1 008-1 011.
[14] Yao T, Masson-Delmotte V, Gao J, et al.A review of climatic controls on δ18O in precipitation over the Tibetan Plateau: Observations and simulations[J]. Reviews of Geophysics, 2013, 51(4): 525-548.
[15] Liu Yong, Zou Songbing.A study on the distributing climatic models in arid mountainous area-distributing temperature and precipitation models in high spatial resolution in the Qilian Mountains[J]. Journal of Lanzhou University(Natural Sciences), 2006, 42(1): 7-12.
[刘勇, 邹松兵. 祁连山地区高分辨率气温降水量分布模型[J]. 兰州大学学报:自然科学版, 2006, 42(1): 7-12.]
[16] Chen Shaoyong, Dong Anxiang, Han Tong.Differences in summer precipitation between the east and west of Qilian Mountains and its contributing factors[J]. Journal of Nanjing Institute of Meteorology,2007, 30(5): 715-719.
[陈少勇, 董安祥, 韩通. 祁连山东、西部夏季降水量时空分布的差异及其成因研究[J]. 南京气象学院学报, 2007, 30(5): 715-719.]
[17] Hetzel R.Active faulting, mountain growth, and erosion at the margins of the Tibetan Plateau constrained by in situ-produced cosmogenic nuclides[J]. Tectonophysics, 2013, 582: 1-24.
[18] Palumbo L, Hetzel R, Tao M X, et al.Catchment-wide denudation rates at the margin of NE Tibet from in situ-produced cosmogenic 10Be[J]. Terra Nova, 2011, 23(1): 42-48.
[19] Fang X M, Liu D L, Song C H, et al.Oligocene slow and miocene-quaternary rapid deformation and uplift of the Yumu Shan and north Qilian Shan: Evidence from high-resolution magnetostratigraphy and tectonosedimentology[J]. Geological Society, London, Special Publications, 2012, 373:1-12.
[20] Tapponnier P, Xu Z Q, Roger F, et al.Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 2001, 294(5 547): 1 671-1 677.
[21] Fang X M, Zhao Z J, Li J J, et al.Magnetostratigraphy of the late cenozoic Laojunmiao anticline in the northern Qilian Mountains and its implications for the northern Tibetan Plateau uplift[J]. Science in China(Series D), 2005, 48(7): 1 040-1 051.
[22] Zhang Huiping, Zhang Peizhen, Zheng Dewen, et al.Tectonic geomorphology of the Qilian Shan: Insight into the late Cenozoic landscape evolution and deformation in the north eastern Tibetan Plateau[J]. Quaternary Sciences, 2012, 32(5): 907-920.
[张会平, 张培震, 郑德文, 等. 祁连山构造地貌特征:青藏高原东北缘晚新生代构造变形和地貌演化过程的启示[J]. 第四纪研究, 2012, 32(5): 907-920.]
[23] Zhang P Z, Shen Z, Wang M, et al.Continuous deformation of the Tibetan Plateau from global positioning system data[J]. Geology, 2004, 32(9): 809-812.
[24] Dunai T J. Cosmogenic Nuclides-principles, Concepts and Applications in the Earth Surface Sciences[M]. UK: Cambridge University Press, 2010: 187.
[25] Lal D.Cosmic ray labeling of erosion surfaces: In situ nuclide production rates and erosion models[J]. Earth and Planetary Science Letters, 1991, 104(2/4): 424-439.
[26] Nishiizumi K, Lal D, Klein J, et al.Production of 10Be and 26Al by cosmic rays in terrestrial quartz in situ and implications for erosion rates[J]. Nature, 1986, 319(6 049): 134-136.
[27] Bierman P, Steig E J.Estimating rates of denudation using cosmogenic isotope abundances in sediment[J]. Earth Surface Processes and Landforms, 1996, 21: 125-139.
[28] Greensfelder Liese.Subtleties of sand reveal how mountains crumble[J]. Science,2002, 295(5 553): 256-258.
[29] Ouimet W B, Whipple K X, Granger D E.Beyond threshold hillslopes: Channel adjustment to base-level fall in tectonically active mountain ranges[J]. Geology, 2009, 37(7): 579-582.
[30] Roering J J, Kirchner J W, Dietrich W E.Hillslope evolution by nonlinear, slope-dependent transport: Steady state morphology and equilibrium adjustment timescales[J].Journal of Geophysical Research, 2001, 106(B8): 16 499-16 513.
[31] Burbank D W, Anderson R S.Tectonic Geomorphology[M]. New Jersey: Black Publishing, 2000.
[32] Hu Xiaofei, Pan Baotian, Kirby E, et al.Spatial differences in rock uplift rates inferred from channel steepness indices along the northern flank of the Qilian Mountain, northeast Tibetan Plateau[J]. Chinese Science Bulletin, 2010, 55(23): 2 329-2 338.
[胡小飞, 潘保田, Kirby E, 等. 河道陡峭指数所反映的祁连山北翼抬升速率的东西差异[J]. 科学通报, 2010, 55(23): 2 329-2 338.]
[33] Hetzel R, Niedermann S, Tao M X, et al.Low slip rates and long-term preservation of geomorphic features in central Asia[J]. Nature, 2002, 417(6 887): 428-432.
[34] Hetzel R, Tao M X, Stokes S, et al.Late pleistocene/holocene slip rate of the Zhangye thrust (Qilian Shan, China) and implications for the active growth of the northeastern Tibetan Plateau[J]. Tectonics, 2004, 23(6), doi:10.1029/2004TC001653.
[35] Zheng D W, Clark M K, Zhang P Z, et al.Erosion, fault initiation and topographic growth of the north Qilian Shan (northern Tibetan Plateau)[J]. Geosphere, 2010, 6(6): 937-941.
[1] 王澄海, 张晟宁, 张飞民, 李课臣, 杨凯. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[2] 李琼,王姣姣,潘保田. 构造和降水对祁连山北麓冲积扇演化影响的数值模拟研究[J]. 地球科学进展, 2020, 35(6): 607-617.
[3] 高艳红,许建伟,张萌,姜凤友. 中国 400 mm等降水量变迁与干湿变化研究进展[J]. 地球科学进展, 2020, 35(11): 1101-1112.
[4] 王坚红,张萌,任淑媛,王兴,苗春生. 太行山脉地形坡度对下山锋面气旋暴雨影响模拟研究[J]. 地球科学进展, 2019, 34(7): 717-730.
[5] 黄飞鹏, 任俊杰, 吕延武, 赵俊香. 东昆仑断裂带秀沟段晚第四纪滑动速率研究[J]. 地球科学进展, 2018, 33(3): 321-332.
[6] 张乐乐, 高黎明, 赵林, 乔永平, 史健宗. 降水观测误差修正研究进展[J]. 地球科学进展, 2017, 32(7): 723-730.
[7] 陈京华, 贾文雄 , 赵珍, 张禹舜, 刘亚荣. 1982—2006年祁连山植被覆盖的时空变化特征研究[J]. 地球科学进展, 2015, 30(7): 834-845.
[8] 尹金方, 王东海, 许焕斌, 翟国庆, 姜晓玲. 冰核对云物理属性和降水影响的研究[J]. 地球科学进展, 2015, 30(3): 323-333.
[9] 张红梅, 吴炳方, 闫娜娜. 饱和水汽压差的卫星遥感研究综述[J]. 地球科学进展, 2014, 29(5): 559-568.
[10] 孟素花,费宇红,张兆吉,雷廷,钱永,李亚松. 50年来华北平原降水入渗补给量时空分布特征研究[J]. 地球科学进展, 2013, 28(8): 923-929.
[11] 孔祥辉, 周卫健, 鲜 锋, 武振坤. 布容—松山极性倒转事件的海陆地质记录及其不同步性探讨[J]. 地球科学进展, 2012, 27(9): 937-946.
[12] 刘彧,王世杰,刘秀明. 宇宙成因核素在地质年代学研究中的新进展[J]. 地球科学进展, 2012, 27(4): 386-397.
[13] 郑国光,陈跃,陈添宇,陈乾,朱君鉴,李照荣. 祁连山夏季地形云综合探测试验[J]. 地球科学进展, 2011, 26(10): 1057-1070.
[14] 由伟丰,张海清,校培喜,曹宣铎,胡云绪,谢从瑞. 北祁连山—阿拉善地区寒武纪构造—岩相古地理[J]. 地球科学进展, 2011, 26(10): 1092-1100.
[15] 余吉远,李向民,马中平,孙吉明,王建强. 青海省祁连县清水沟-白柳沟矿田含矿火山岩系年代学研究[J]. 地球科学进展, 2010, 25(1): 55-60.
阅读次数
全文


摘要