地球科学进展 ›› 2018, Vol. 33 ›› Issue (3): 321 -332. doi: 10.11867/j.issn.1001-8166.2018.03.0321

所属专题: 青藏高原研究——青藏科考虚拟专刊

研究简报 上一篇    

东昆仑断裂带秀沟段晚第四纪滑动速率研究
黄飞鹏( ), 任俊杰 *( ), 吕延武, 赵俊香   
  1. 中国地震局地壳应力研究所,地壳动力学重点实验室,北京 100085
  • 出版日期:2018-03-20
  • 通讯作者: 任俊杰 E-mail:huangfeipeng5@gmail.com;renjunjie@gmail.com
  • 基金资助:
    *中国地震局地壳应力研究所中央级公益性科研院所基本科研业务专项项目“青藏高原东南缘扩展与隆升”(编号:ZDJ2017-24);国家自然科学基金项目“基于阶地暴露年龄的青藏高原东南缘第四纪构造隆升历史重建”(编号:41472139)资助.

Late Quaternary Slip Rate of the Xiugou Segment, Eastern Kunlun Fault Zone

Feipeng Huang( ), Junjie Ren *( ), Yanwu Lü, Junxiang Zhao   

  1. Key Laboratory of Crustal Dynamics, Institute of Crustal Dynamics, China Earthquake Administration, Beijing 100085, China
  • Online:2018-03-20 Published:2018-05-02
  • Contact: Junjie Ren E-mail:huangfeipeng5@gmail.com;renjunjie@gmail.com
  • About author:

    First author:Huang Feipeng(1993-), male, Hanyuan County, Sichuan Province, Master student. Research areas include active tectonics and tectonic geomorphology. E-mail:huangfeipeng5@gmail.com

  • Supported by:
    Project supported by the Research Grant from Institute of Crustal Dynamics, China Earthquake Administration “Extension and uplift of the southeastern margin of the Qinghai-Tibet Plateau”(No.ZDJ2017-24);The National Natural Science Foundation of China “Historical reconstruction of Quaternary tectonic uplift in the southeastern margin of the Qinghai-Tibet Plateau based on the exposure age of terrace”(No.41472139).

东昆仑断裂带是青藏高原北部一条大型左旋走滑断裂带,其滑动速率对于断裂地震危险性评价和青藏高原的地球动力学研究具有重要意义。已有的研究认为东昆仑断裂带中西段晚第四纪滑动速率稳定、均一(10~13 mm/a),但对中段精确的滑动速率研究较少。以东昆仑断裂带中段秀沟盆地一个被断错的洪积扇为研究对象,基于高分辨率卫星影像和SPOT7立体像对提取的高精度数字高程模型(DEM)恢复位错量,利用宇宙成因核素测年厘定了断错洪积扇的年龄。结果表明,该洪积扇被左旋断错(1 862±103) m,年龄为(76.55±3.20)~(106.37±3.38)ka,据此得到的平均左旋滑动速率为(20.3+3.5/-2.3)mm/a。东昆仑断裂带中段的左旋滑动速率从晚更新世到全新世存在明显的减慢趋势。

The Eastern Kunlun fault zone (EKLF) is a large left-lateral strike-slip fault, whose slip rate is meaningful to seismic hazard assessment and geodynamics of the Tibetan Plateau. Previous studies suggested that the late Quaternary average slip rate was stable and uniform (10~13 mm/a) in the central and western segment of the EKLF. But there were a few researches of accurate slip rate in the central segment on the EKLF. Therefore, we focused on an offset and well preserved alluvial fan from Xiugou basin, located in the east of Xidatan-Dongdatan, to make it clear. Moreover, we used high-resolution satellite images and digital elevation model extracted from SPOT7 stereo image pairs to restore the offset alluvial fan, and combined terrestrial cosmogenic nuclides method, including 13 quartz-rich samples from this fan surface, 1 quartz-rich sample from the main active channel bed and 1 10Be depth profile from this fan edge to eliminate the 10Be concentration of inheritance accurately, with 1 optically stimulated luminescence sample to obtain the reliable age of this alluvial fan together. Referring to field observations, this alluvial fan was offset left-laterally by (1 862±103) m, and its age is (76.55±3.20)~(106.37±3.38) ka which can be determined through the actual geologic setting and improving chi-square test. Thus, we used the Monte Carlo method to obtain a left-lateral slip rate of (20.3+3.5/-2.3) mm/a with 68% confidence envelopes since the late Pleistocene in the Xiugou basin. As a result, combining with the results of previous studies, the left-lateral slip rate indicated that the obviously decreasing activity transferred from late Pleistocene to Holocene on the central segment of the EKLF.

中图分类号: 

图1 东昆仑断裂带几何展布及已开展的滑动速率研究结果 [ 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 ]
EKLF.东昆仑断裂带;HF.海原断裂带;AWCF.阿万仓断裂;GYF.甘孜—玉树断裂带;XSF.鲜水河断裂带;LRBF.龙日坝断裂带;MJF.岷江断裂;HYF.虎牙断裂;LMSF.龙门山断裂带;白色圆点数据来自参考文献[ 7 ],浅棕色圆点数据来自参考文献[ 8 ],浅蓝色圆点数据来自参考文献[ 9 ],黑色圆点数据来自参考文献[ 10 ],浅绿色圆点数据来自参考文献[ 11 ],紫色圆点数据来自参考文献[ 12 ],白色方形数据来自参考文献[ 13 ],深绿色圆点数据来自参考文献[7,14],红色圆点数据来自参考文献[ 15 ],红色方形数据来自参考文献[ 16 ],粉红色方形数据来自参考文献[ 17 ],浅绿色方形数据来自参考文献[ 18 ](滑动速率单位:mm/a)
Fig.1 Geometric distribution and previous slip-rate studies of the Eastern Kunlun fault zone [ 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 ]
EKLF:Eastern Kunlun Fault Zone; HF:Haiyuan Fault zone; AWCF:Awancang Fault; GYF:Ganzi-Yushu Fault zone; XSF:Xianshui River Fault zone;LRBF:Longriba Fault zone; MJF:Minjiang fault; HYF:Huya Fault; LMSF:Longmenshan Fault zone. The data of white circle from reference[7], the data of light brown circle from reference[8], the data of light blue circle from reference[9], the data of black circle from reference[10], the data of light green circle from reference[11], the data of purple circle from reference[12], the data of white square from reference[13], the data of deep green circle from references[7] and [14], the data of red circle from reference[15], the data of red square from reference[16], the data of pink square from reference[17], the data of light green square from reference[18](the unit of slip-rate: mm/a)
图1 东昆仑断裂带几何展布及已开展的滑动速率研究结果 [ 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 ]
EKLF.东昆仑断裂带;HF.海原断裂带;AWCF.阿万仓断裂;GYF.甘孜—玉树断裂带;XSF.鲜水河断裂带;LRBF.龙日坝断裂带;MJF.岷江断裂;HYF.虎牙断裂;LMSF.龙门山断裂带;白色圆点数据来自参考文献[ 7 ],浅棕色圆点数据来自参考文献[ 8 ],浅蓝色圆点数据来自参考文献[ 9 ],黑色圆点数据来自参考文献[ 10 ],浅绿色圆点数据来自参考文献[ 11 ],紫色圆点数据来自参考文献[ 12 ],白色方形数据来自参考文献[ 13 ],深绿色圆点数据来自参考文献[7,14],红色圆点数据来自参考文献[ 15 ],红色方形数据来自参考文献[ 16 ],粉红色方形数据来自参考文献[ 17 ],浅绿色方形数据来自参考文献[ 18 ](滑动速率单位:mm/a)
Fig.1 Geometric distribution and previous slip-rate studies of the Eastern Kunlun fault zone [ 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 ]
EKLF:Eastern Kunlun Fault Zone; HF:Haiyuan Fault zone; AWCF:Awancang Fault; GYF:Ganzi-Yushu Fault zone; XSF:Xianshui River Fault zone;LRBF:Longriba Fault zone; MJF:Minjiang fault; HYF:Huya Fault; LMSF:Longmenshan Fault zone. The data of white circle from reference[7], the data of light brown circle from reference[8], the data of light blue circle from reference[9], the data of black circle from reference[10], the data of light green circle from reference[11], the data of purple circle from reference[12], the data of white square from reference[13], the data of deep green circle from references[7] and [14], the data of red circle from reference[15], the data of red square from reference[16], the data of pink square from reference[17], the data of light green square from reference[18](the unit of slip-rate: mm/a)
图2 秀沟盆地地质地貌特征
Fig. 2 Geologic and geomorphic characteristics of Xiugou Basin
图2 秀沟盆地地质地貌特征
Fig. 2 Geologic and geomorphic characteristics of Xiugou Basin
图3 基于断错洪积扇的走滑断裂水平位移恢复模式
Fig.3 Models for horizontal displacement of a strike-slip fault based on offset alluvial fan
图3 基于断错洪积扇的走滑断裂水平位移恢复模式
Fig.3 Models for horizontal displacement of a strike-slip fault based on offset alluvial fan
图4 野外采样地点照片
Fig.4 Photos of field sampling sites
图4 野外采样地点照片
Fig.4 Photos of field sampling sites
表1 宇宙成因核素样品信息和 10Be结果
Table1 Sample information of cosmogenic nuclides and 10Be results
表1 宇宙成因核素样品信息和 10Be结果
Table1 Sample information of cosmogenic nuclides and 10Be results
表2 深度剖面样品信息和 10Be结果
Table 2 Sample information of depth profile and 10Be results
表2 深度剖面样品信息和 10Be结果
Table 2 Sample information of depth profile and 10Be results
图5 深度剖面采样照片和拟合结果
Fig.5 Sampling photo and result of the 10Be depth profile
图5 深度剖面采样照片和拟合结果
Fig.5 Sampling photo and result of the 10Be depth profile
图6 野外采样分布(位置见 图2 )和洪积扇SPOT7卫星影像解译
Fig.6 Distribution of sampling sites and SPOT7 satellite image of the alluvial fan
图6 野外采样分布(位置见 图2 )和洪积扇SPOT7卫星影像解译
Fig.6 Distribution of sampling sites and SPOT7 satellite image of the alluvial fan
图7 洪积扇P3的断错冲沟和断层剖面
1.黄土层;2.细砂层;3.砾石层;4.粉砂质黏土层;5.断层带
Fig.7 Offset channels and fault exposure of the eastern Kunlun fault in alluvial fan P3
1:Loess; 2:Fine sand; 3:Gravel; 4:Silty soil; 5:Fault zone
图7 洪积扇P3的断错冲沟和断层剖面
1.黄土层;2.细砂层;3.砾石层;4.粉砂质黏土层;5.断层带
Fig.7 Offset channels and fault exposure of the eastern Kunlun fault in alluvial fan P3
1:Loess; 2:Fine sand; 3:Gravel; 4:Silty soil; 5:Fault zone
图8 洪积扇位错恢复图
(a)由位错模式c得到的最小位移;(b) 由位错模式b得到的最大位移
Fig. 8 Restoration map of fault displacement on the alluvial fan P3
(a) Minimum displacement by model c; (b) Maximum displacement by model b
图8 洪积扇位错恢复图
(a)由位错模式c得到的最小位移;(b) 由位错模式b得到的最大位移
Fig. 8 Restoration map of fault displacement on the alluvial fan P3
(a) Minimum displacement by model c; (b) Maximum displacement by model b
图9 洪积扇P3光释光样品采样剖面
Fig.9 OSL sampling profile of western alluvial fan P3
图9 洪积扇P3光释光样品采样剖面
Fig.9 OSL sampling profile of western alluvial fan P3
表3 洪积扇P3光释光样品测年结果
Table 3 OSL dating result of western alluvial fan P3
表3 洪积扇P3光释光样品测年结果
Table 3 OSL dating result of western alluvial fan P3
图10 洪积扇P3暴露年龄分布和年龄概率密度曲线
Fig.10 Distribution and probability density plot of 10Be surface exposure ages for fan P3
图10 洪积扇P3暴露年龄分布和年龄概率密度曲线
Fig.10 Distribution and probability density plot of 10Be surface exposure ages for fan P3
图11 东昆仑断裂带中段基于断错地貌研究的位移—年龄图
矩形框表示位移—年龄范围,黑线和灰线分别表示68%和95%置信区间的速率历史路线,浅灰色和红色区域分别表示68%和95%置信区间的中值速率历史
Fig. 11 Displacement-age plot of middle segment from eastern Kunlun fault zone based on offset landform
Rectangular box, displacement-age envelope; Black & grey line, slip history path; Light grey & red area, median slip history with 68% & 95% confidence envelopes
图11 东昆仑断裂带中段基于断错地貌研究的位移—年龄图
矩形框表示位移—年龄范围,黑线和灰线分别表示68%和95%置信区间的速率历史路线,浅灰色和红色区域分别表示68%和95%置信区间的中值速率历史
Fig. 11 Displacement-age plot of middle segment from eastern Kunlun fault zone based on offset landform
Rectangular box, displacement-age envelope; Black & grey line, slip history path; Light grey & red area, median slip history with 68% & 95% confidence envelopes
[1] Deng Qidong, Zhang Peizhen, Ran Yongkang, et al. Basic characteristics of active tectonics of China[J]. Science in China(Series D), 2002, 32(12): 1 020-1 030.
[邓起东,张培震, 冉勇康,等. 中国活动构造基本特征[J]. 中国科学:D辑, 2002, 32(12): 1 020-1 030.]
[2] Anderson J G.Estimating the seismicity from geological structure for seismic-risk studies[J]. Bulletin of the Seismological Society of America, 1979, 69(1): 135-158.
[3] Zhang Peizhen, Deng Qidong, Yang Xiaoping, et al. Late Cenozoic tectonic deformation and mechanism along the Tianshan Mountain, northwestern China[J]. Earthquake Research in China, 1996, 12(2): 127-140.
[张培震,邓起东,杨晓平,等. 天山的晚新生代构造变形及其地球动力学问题[J]. 中国地震,1996,12(2): 127-140.]
[4] Tapponnier P, Zhiqin X, Roger F, et al. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 2001, 294(5 547): 1 671-1 677.
doi: 10.1126/science.105978     URL    
[5] Ren Jinwei, Wang Yipeng, Wu Zhangming, et al. Holocene earthquake deformation zones and their displacement and slip rate along the Xidatan-Dongdatan of Kusai-Maqu fault in northern Qinghai-Xizang Plateau[J]. Seismology and Geology, 1993, 15(3): 285-288.
[任金卫,汪一鹏,吴章明,等. 青藏高原北部库玛断裂东、西大滩段全新世地震形变带及其位移特征和水平滑动速率[J]. 地震地质,1993,15(3):285-288.]
[6] Liu Guangxun.Eastern Kunlun active fault zone and its seismic activity[J]. Earthquake Research in China, 1996, 12(2): 119-126.
[刘光勋. 东昆仑活动断裂带及其强震活动[J]. 中国地震,1996,12(2):119-126.]
[7] Van der Woerd J, Tapponnier P, Ryerson F J, et al. Uniform postglacial slip-rate along the central 600km of the Kunlun Fault (Tibet), from 26Al, 10Be, and 14C dating of riser offsets, and climatic origin of the regional morphology[J]. Geophysical Journal International, 2002, 148(3): 356-388.
doi: 10.1046/j.1365-246x.2002.01556.x     URL    
[8] Li H, Van Der Woerd J, Klinger Y, et al. Slip rate on the Kunlun Fault and recurrence time of great earthquake comparable to the 14/11/2001, Mw ~7.8 Kokoxili earthquake at Hongshui Gou[J]. Earth and Planetary Science Letters, 2005, 237: 285-299.
doi: 10.1016/j.epsl.2005.05.041     URL    
[9] Kirby E, Harkins N, Wang E, et al. Slip rate gradients along the eastern Kunlun fault[J]. Tectonics, 2007, 26(2): 485-493.
[10] Harkins N, Kirby E.Fluvial terrace riser degradation and determination of slip rates on strike-slip faults: An example from the Kunlun fault, China[J]. Geophysical Research Letters, 2008, 35: 94-96.
[11] Harkins N, Kirby E, Shi X, et al. Millennial slip rates along the eastern Kunlun fault: Implications for the dynamics of intracontinental deformation in Asia[J]. Lithosphere, 2010, 2(4): 247-266.
doi: 10.1130/L85.1     URL    
[12] Li Chenxia, Xu Xiwei, Wen Xueze, et al. Rupture segmentation and slip partitioning of the mid-eastern part of the Kunlun fault, north Tibetan Plateau[J]. Science in China(Series D), 2011, 41(9): 1 295-1 310.
[李陈侠,徐锡伟,闻学泽,等. 东昆仑断裂带中东部地震破裂分段性与走滑运动分解作用[J]. 中国科学:D辑, 2011,41(9):1 295-1 310.]
[13] Ren J, Xu Xiwei, Yeats R S, et al. Millennial slip rates of the Tazang fault, the eastern termination of Kunlun fault: Implications for strain partitioning in eastern Tibet[J]. Tectonophysics, 2013, 608(8): 1 180-1 200.
doi: 10.1016/j.tecto.2013.06.026     URL    
[14] Li Chunfeng, He Qunlu, Zhao Guoguang.Holocene slip rate along the eastern segment of the Kunlun fault[J]. Seismology and Geology, 2004, 26(4): 676-687.
[李春峰,贺群禄,赵国光. 东昆仑活动断裂带东段全新世滑动速率研究[J]. 地震地质,2004,26(4): 676-687.]
[15] He Wengui, Yuan Daoyang, Xiong Zhen, et al. Study on characteristics of new activity and Holocene slip rate along Maqu fault of East Kunlun active fault[J]. Earthquake, 2006, 26(4): 67-75.
[何文贵,袁道阳,熊振,等. 东昆仑断裂带东段玛曲断裂新活动特征及全新世滑动速率研究[J]. 地震,2006,26(4):67-75.]
[16] Zhang Junlong, Ren Jinwei, Chen Changyun, et al. The late Pleistocene activity of the eastern part of east Kunlun fault zone and its tectonic significance[J]. Science in China(Series D), 2014, 44(4): 654-667.
[张军龙,任金卫,陈长云,等. 东昆仑断裂带东部晚更新世以来活动特征及其大地构造意义[J]. 中国科学:D辑,2014,44(4):654-667.]
[17] Li Chenxia, Yuan Daoyang, Yang Hu, et al. The tectonic activity characteristics of Awancang fault in the Late Quaternary,the sub-strand of the Eastern Kunlun fault[J]. Seismology and Geology, 2016, 38(1): 44-64.
[李陈侠,袁道阳,杨虎,等. 东昆仑断裂带东段分支断裂——阿万仓断裂晚第四纪构造活动特征[J]. 地震地质,2016,38(1):44-64.]
doi: 10.3969/j.issn.0253-4967.2016.01.004    
[18] Li J, Zhang Y, Li H, et al. Revisiting Late quaternary slip-rate along the Maqu Segment of the Eastern Kunlun Fault, Northeast Tibet[J]. Acta Geologica Sinica, 2016, 90(2): 486-502.
doi: 10.1111/acgs.2016.90.issue-2     URL    
[19] Xu Xiwei, Yu Guihua, Ma Wentao, et al. Rupture behavior and deformation localization of Kunlunshan earthquake (Mw 7.8) and their tectonic implications[J]. Science in China (Series D), 2008, 38(7): 785-796.
[徐锡伟,于贵华,马文涛,等. 昆仑山地震(Mw 7.8)破裂行为、变形局部化特征及其构造内涵讨论[J]. 中国科学: D辑,2008,38(7):785-796.]
[20] Guo J, Lin A, Sun G, et al. Surface ruptures associated with the 1937 M 7.5 Tuosuo Lake and the 1963 M 7.0 Alake Lake Earthquakes and the Paleoseismicity along the Tuosuo Lake Segment of the Kunlun Fault, Northern Tibet[J]. Bulletin of the Seismological Society of America, 2007, 97(2): 474-496.
doi: 10.1785/0120050103     URL    
[21] Seismological Bureau of Qinghai Province, Institute of Crustal Dynamics of China Earthquake Administration. Eastern Kunlun Active Fault Zone[M]. Beijing: Seismological Press, 1999.
[青海省地震局,中国地震局地壳应力研究所. 东昆仑活动断裂带[M]. 北京:地震出版社,1999.]
[22] Yang Shunhu, Fu Bihong, Shi Pilong.Late Quaternary structural deformation and tectonic-geomorphic features along the Xiugou Basin segment,eastern Kunlun fault zone[J]. Quaternary Sciences, 2012, 32(5): 921-930.
[杨顺虎,付碧宏,时丕龙. 东昆仑活动断裂带秀沟盆地段晚第四纪构造变形与地貌特征研究[J]. 第四纪研究,2012,32(5):921-930.]
[23] Xu Xiwei, Tapponnier P, Van der Woerd J, et al. Late Quaternary sinistral slip rate along the Altyn Tagh Fault and its structural transformation model[J]. Science in China(Series D), 2005, 48(3): 384-397.
[徐锡伟,Tapponnier P,Van der Woerd J,等. 阿尔金断裂带晚第四纪左旋走滑速率及其构造运动转换模式讨论[J]. 中国科学:D辑,2003,33(10):967-974.]
[24] Fu Bihong, Zhang Songlin, Xie Xiaoping, et al. Late Quaternary tectono-geomorphic features along the Kangxiwar fault, Altyn Tagh fault system, Northern Tibet[J]. Quaternary Sciences, 2006, 26(2): 228-235.
[付碧宏,张松林,谢小平,等. 阿尔金断裂系西段——康西瓦断裂的晚第四纪构造地貌特征研究[J]. 第四纪研究, 2006, 26(2): 228-235.]
[25] Van der Woerd J, Yann K, Kerry S, et al. Long-term slip rate of the southern San Andreas Fault, from 10Be-26Al surface exposure dating of an offset alluvial fan[J]. Journal of Geophysical Research, 2006, 111. DOI:10.1029/2004JB003559.
[26] Fletcher K E K, Rockwell T K, Sharp W D. Late Quaternary slip rate of the southern Elsinore fault, Southern California: Dating offset alluvial fans via 230Th/U on pedogenic carbonateSouthern California: Dating offsluvial fans via 230Th/U on pedogenic carbonate[J]. Journal of Geophysical Research Earth Surface, 2011, 116(F2). DOI:10.1029/2010JF001701.
[27] Hetzel R, Tao M, Stokes S, et al. Late Pleistocene/Holocene slip rate of the Zhangye thrust (Qilian Shan, China) and implications for the active growth of the northeastern Tibetan Plateau[J]. Tectonics, 2004, 23: 159-163.
[28] Frankel K L, Brantley K S, Dolan J F, et al. Cosmogenic 10Be and 36Cl geochronology of offset alluvial fans along the northern Death Valley fault zone: Implications for transient strain in the eastern California shear zone[J]. Journal of Geophysical Research Solid Earth, 2007, 112(B6). DOI: 10.1029/2006JB004350.
[29] Dühnforth M, Densmore A L, Ivy-Ochs S, et al. Early to Late Pleistocene history of debris-flow fan evolution in western Death Valley (California) using cosmogenic 10Be and 26Al[J]. Geomorphology, 2017, 281: 53-65.
doi: 10.1016/j.geomorph.2016.12.020     URL    
[30] Li An, Ran Yongkang, Liu Huaguo, et al. Active characteristics and paleoearthquakes in the west Kalpin nappe since the Holocene, SW Tianshan Mountain[J]. Advances in Earth Science, 2016, 31(4): 377-390.
[李安, 冉勇康, 刘华国,等. 西南天山柯坪推覆系西段全新世构造活动特征和古地震[J]. 地球科学进展, 2016, 31(4):377-390.]
doi: 10.11867/j.issn.1001-8166.2016.04.0377.    
[31] Anderson R S, Repka J L, Dick G S.Explicit treatment of inheritance in dating depositional surfaces using in situ 10Be and 26Al[J]. Geology, 1996, 24(1): 47-51.
doi: 10.1130/0091-7613(1996)024<0047:ETOIID>2.3.CO;2     URL    
[32] Hidy A J, Gosse J C, Pederson J L, et al. A geologically constrained Monte Carlo approach to modeling exposure ages from profiles of cosmogenic nuclides: An example from Lees Ferry, Arizona[J]. Geochemistry Geophysics Geosystems, 2013, 11(9): 5 424-5 425.
[33] Balco G.Contributions and unrealized potential contributions of cosmogenic-nuclide exposure dating to glacier chronology, 1990-2010[J]. Quaternary Science Reviews, 2011, 30(1): 3-27.
doi: 10.1016/j.quascirev.2010.11.003     URL    
[34] Chen Y, Li Y, Wang Y, et al. Late Quaternary glacial history of the Karlik Range, easternmost Tian Shan, derived from 10Be surface exposure and optically stimulated luminescence datings[J]. Quaternary Science Reviews, 2015, 115: 17-27.
doi: 10.1016/j.quascirev.2015.02.010     URL    
[35] Kohl C P, Nishiizumi K.Chemical isolation of quartz for measurement of in-situ -produced cosmogenic nuclides[J]. Geochimica et Cosmochimica Acta, 1992, 56(9): 3 583-3 587.
doi: 10.1016/0016-7037(92)90401-4     URL    
[36] Bierman P R, Caffee M.Slow rates of rock surface erosion and sediment production across the Namib Desert and Escarpment, Southern Africa[J]. American Journal of Science, 2001, 301(4): 326-358.
doi: 10.2475/ajs.301.4-5.326     URL    
[37] Hein A S, Hulton N R J, Dunai T J, et al. Middle Pleistocene glaciation in Patagonia dated by cosmogenic-nuclide measurements on outwash gravels[J]. Earth and Planetary Science Letters, 2009, 286(1): 184-197.
doi: 10.1016/j.epsl.2009.06.026     URL    
[38] Yang Haibo, Yang Xiaoping, Huang Xiongnan.A preliminary study about slip rate of middle segment of the northern Qilian thrust fault zone since late quaternary[J]. Seismology and Geology, 2017, 39(1):20-42.
[杨海波, 杨晓平, 黄雄南. 祁连山北缘断裂带中段晚第四纪活动速率初步研究[J]. 地震地质, 2017, 39(1):20-42.]
[39] Lal D.Cosmic ray labeling of erosion surfaces: In situ nuclide production rates and erosion models[J]. Earth and Planetary Science Letters, 1991, 104(91): 424-439.
doi: 10.1016/0012-821X(91)90220-C     URL    
[40] Stone J O.Air pressure and cosmogenic isotope production[J]. Journal of Geophysical Research Solid Earth, 2000, 105(B10): 23 753-23 759.
doi: 10.1029/2000JB900181     URL    
[41] Lu Y C, Wang X L, Wintle A G.A new OSL chronology for dust accumulation in the last 130,000yr for the Chinese Loess Plateau[J]. Quaternary Research, 2007, 67(1): 152-160.
doi: 10.1016/j.yqres.2006.08.003     URL    
[42] Yao Tandong, Thompson L G, Shi Yafeng, et al. Climate variation since the last interglaciation recorded in the Guliya ice core[J]. Sicence in China(Series D), 1997, 27(5): 447-452.
[姚檀栋, Thompson L G, 施雅风,等. 古里雅冰芯中末次间冰期以来气候变化记录研究[J]. 中国科学:D 辑, 1997, 27(5): 447-452.]
[43] Jiang Dexin, Yang Huiqiu.Palynological evidence for climatic changes in Dabuxun lake of Qinghai Province during the past 500,000 years[J]. Acta Sedimentologica Sinica, 2001, 19(1): 101-106.
[江德昕, 杨惠秋. 青海达布逊湖50万年以来气候变化的孢粉学证据[J]. 沉积学报,2001,19(1):101-106.]
doi: 10.3969/j.issn.1000-0550.2001.01.017     URL    
[44] Gold R D, Cowgill E.Deriving fault-slip histories to test for secular variation in slip, with examples from the Kunlun and Awatere faults[J]. Earth and Planetary Science Letters, 2011, 301(1/2): 52-64.
doi: 10.1016/j.epsl.2010.10.011     URL    
[45] Kirby E, Harkins N.Distributed deformation around the eastern tip of the Kunlun fault[J]. International Journal of Earth Sciences, 2013, 102(7): 1 759-1 772.
doi: 10.1007/s00531-013-0872-x     URL    
[1] 王金荣;翟新伟;边少之;李双文;董宁芳;王廷印. 地壳早期演化的研究进展[J]. 地球科学进展, 2004, 19(4): 591-598.
[2] 马宗晋,张培震,任金卫,冯锐,张进. 从GPS水平矢量场对中国及全球地壳运动的新认识[J]. 地球科学进展, 2003, 18(1): 4-011.
[3] 张明利,万天丰. 含油气盆地构造应力场研究新进展[J]. 地球科学进展, 1998, 13(1): 38-43.
阅读次数
全文


摘要